Abstract

Estrogenic procarcinogenic effects of piceatannol (PIC) contrast reports about anticarcinogenic activities of PIC. To explain this contradiction, we investigated PIC in estrogen-dependent MCF-7 breast cancer cells and elucidated those cellular mechanisms that correlated with the observed cell effects induced by PIC. Low PIC concentrations (50 nM) induced c-Myc that depended on progesterone receptor (PR) and estrogen receptor (ER). PR-mediated c-Myc induction by PIC was independent of nuclear PR activity but depended on mitogen-activated protein kinase (MAPK) signaling and was associated with an acceleration of cancer cell proliferation. In contrast, 25 μM PIC inhibited deoxynucleotide triphosphate synthesis, activated Chk2 and p38-MAPK and this was accompanied by an attenuation of cancer cell growth. Apoptosis was most probably inhibited due to activation of Akt; however, high PIC concentrations (>100 μM) permitted apoptosis-like cell death in consequence to disruption of orchestrated mitotic signaling. The presented results show for the first time that nanomolar PIC concentrations signal through PR and Erk1/2 and provide a mechanistic explanation why moderate wine consumption—but not other alcoholic beverages—increases the breast cancer risk in women. In contrast, higher PIC concentrations in the micromolar range are considered for adjuvant anticancer therapeutic concepts.

You do not currently have access to this article.