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Lung cancer remains the leading cause of cancer death
worldwide. Overall 5-year survival is �10–15% and
despite curative intent surgery, treatment failure is
primarily due to recurrent disease. Conventional prog-
nostic markers are unable to determine which patients
with completely resected disease within each stage group
are likely to relapse. To identify a gene signature
associated with recurrent squamous cell carcinoma
(SCC) of lung, we analyzed primary tumor gene expres-
sion for a total of 51 SCCs (Stages I–III) on 22 323 element
microarrays, comparing expression profiles for individu-
als who remained disease-free for a minimum of 36 months
with those from individuals whose disease recurred
within 18 months of complete resection. Cox proportional
hazards modeling with leave-one-out cross-validation
identified a 71-gene signature capable of predicting the
likelihood of tumor recurrence and a 79-gene signature
predictive for cancer-related death. These two signatures
were pooled to generate a 111-gene signature which achie-
ved an overall predictive accuracy for disease recurrence
of 72% (77% sensitivity, 67% specificity) in an indepen-
dent set of 58 (Stages I–III SCCs). This signature also
predicted differences in survival [log-rank P ¼ 0.0008;
hazard ratio (HR), 3.8; 95% confidence interval (CI), 1.6–
8.7], and was superior to conventional prognostic markers
such as TNM stage or N stage in predicting patient
outcome. Genome-wide profiling has revealed a distinct
gene-expression profile for recurrent lung SCC which may
be clinically useful as a prognostic tool.

Introduction

Lung cancer remains the leading cause of cancer death in
Western countries with an overall 5-year survival of 10–15%
(1). Complete surgical resection remains the most effective
treatment, but despite clinical and technical advancements,
the outcome of lung cancer has not improved significantly

during the last 20 years. Treatment failure is frequently
attributable to the presence of undetectable and unpredictable
micrometastases (2). Generally, early-stage tumors have
better clinical outcome and tumor staging aids treatment
planning, yet there are instances where patients unexpectedly
develop recurrent disease, illustrating the limitations of
current clinical staging techniques in accurately predicting
tumor recurrence.

Recurrent disease is disease that develops after initial
treatment of the primary tumor with curative intent, and may
occur in local (e.g. bronchial stump), regional (e.g. medias-
tinal lymph node) or distant (e.g. contralateral lung, brain,
liver or bone) sites. Distant metastatic disease arises where
malignant cells separate from the primary tumor and
establish secondary tumor growth.

Non-small cell lung carcinomas (NSCLCs) constitute
�80% of all lung cancers, with small-cell carcinomas
making up the remaining 20%. The NSCLC group can be
further divided into histological subtypes with adenocarci-
noma (AC), squamous cell carcinoma (SCC) and large cell
carcinoma (LCC) being the most common, accounting for 40,
27 and 8% of all lung cancers, respectively (3). Gene-
expression profiling has recently been used to characterize
prognosis in lung cancer (4–14), mostly with a survival
endpoint rather than tumor recurrence. Two previous studies,
unstratified for histopathologic subtype, reported expression
profiles associated with disease recurrence (9,13). As
prognosis may differ between SCC and AC it is possible
these signatures reflect, in part, the known gene-expression
differences between histological types of lung cancer
(4,5,15). The single study which has described a gene-
expression signature of recurrence in SCC had limited
sample size with 10 training samples and 5 test samples (11).

In this study, we sought to determine if a gene-expression
profile of disease recurrence exists in SCC using a large well-
defined cohort. Microarray analysis was used to profile
gene expression in primary lung SCCs that were associated
with clinically distant prognostic outcomes. We aimed to
identify a clinically useful classification signature that could
predict the likelihood of tumor recurrence and which may
ultimately aid clinicians in making treatment decisions for
this tumor type.

Materials and methods

Additional details for the Materials and methods given here can be found in
the Supplementary information.

Sample collection and selection

Fresh-frozen primary lung tumor tissue specimens were obtained from The
Prince Charles Hospital Tissue Bank. Tumor samples were collected from
consecutive patients undergoing curative surgical resection, between 1990
and 2004, excluding patients who had undergone neo-adjuvant radiation or
chemotherapy. The study protocol was approved by the Ethics Committee
of The Prince Charles Hospital, and subjects gave informed written consent

Abbreviations: AC, adenocarcinoma; LCC, large cell carcinoma; NSCLC,
non-small cell lung carcinoma; Rec(�), clinically disease-free for atleast
36 months following surgery; Rec(+), recurrent; SCC, squamous cell
carcinoma.
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for use of resected tissue. Study inclusion criteria were as follows: primary
NSCLC of the squamous cell histological subtype (mixed histology
excluded), tumor haematoxylin and eosin examination showed at least 50%
tumor cells, surgical bronchial margins were free of disease and resection
was considered complete, no adjuvant chemotherapy, and fitted to one of our
two disease recurrence outcome criteria: non-recurrence [Rec(�)], clinically
disease-free for at least 36 months following surgery; or recurrent disease
[Rec(+)], unambiguous clinical, imaging, or histopathologic evidence of
recurrence of the original primary lung cancer in a local or distant metastatic
site occurring between 3 and 18 months post-resection in patients. The
threshold of 36 months for Rec(�) cases was selected because the majority
of patients develop disease recurrence within this period of time (16) and
to allow for comparison with other similarly designed studies (14).
A summary of individual sample characteristics of the training set is given
in Supplementary Table I.

Array hybridization

Microarray experiments conformed to MIAME guidelines (http://www.mged.
org/Workgroups/MIAME/miame_checklist.html). Each tumor sample was
compared with Universal Human Reference RNA (Stratagene, CA), which
consists of RNA pooled from eleven cell lines of diverse tissue types.
Twenty micrograms of total RNA from tumor samples (test) and universal
reference RNA (reference) were subjected to first-strand cDNA synthesis
with oligo-dT (0.1 mg) and random hexamer primers (0.1 mg) using a
CyScribe Post-Labeling Kit (Amersham/GE Healthcare, PA) incorporating
aminoallyl-modified dUTP. Modified nucleotides were then chemically
coupled to Cy3 (reference) or Cy5 (test) fluors (Amersham/GE Healthcare,
PA) and any uncoupled dyes removed using a CyScribe GFX� Purification
Kit (Amersham/GE Healthcare, PA). Each tumor sample (Cy5) was then
pooled with a reference sample (Cy3) and hybridized to a commercially
available 22 K Human Oligo Microarray (Operon Human Genome Oligo Set
v2.1 (http://www.operon.com) containing 21 329 70mer probes representing
�14 200 named transcripts) and printed by the British Columbia Gene Array
Facility (http://prostatelab.org/arraycentre/index.html). Hybridization was
carried out at 37�C for 16�18 h, and the slides were washed according to
the manufacturer’s protocol. Arrays were scanned by a GMS418 confocal
scanner (Affymetrix, CA).

Microarray analysis

Raw images were imported into Imagene V5.1 (BioDiscovery, CA) to extract
pixel intensities and to flag spots with poor/absent signal. The raw
background subtracted signal median for each probe was imported into
GeneSpring GX V7.3 (Agilent Technologies, CA) for analysis. Data was
normalized and probe signals filtered on pixel intensity and consistent spot
morphology. For each probe, the logarithm to the base 2 of the ratio between
the intensity in the tumor sample (red) channel and the reference (green)
channel was used as the expression value for the probe. Of 21 329 probes
present on the chip, 18 525 passed the filtering criteria. The data discussed in
this publication have been made available in the NCBI Gene Expression
Omnibus (GEO) public repository (http://www.ncbi.nlm.nih.gov/geo/) and
are accessible through GEO Series accession number GSE5123.

Statistical analysis

To identify a signature that predicts the likelihood of recurrence, we use Cox
proportional hazards modeling, leave-one-out cross-validation (LOOCV),
and class prediction using 1-nearest neighbor (BRB ArrayTools Version 3.5;
developed by Dr. Richard Simon and Amy Peng Lam, http://linus.nci.nih.
gov/~brb/tool.htm). The major endpoint was time to recurrence, defined as
the time from surgery to tumor recurrence (local, regional or distant). As
recurrence usually leads to death, we also tested time to cancer-related death,
defined as the time from surgery to death, where death was cancer-related.
Cases that died of a non-cancer-related death were excluded from the latter
analysis. To identify genes robustly correlated with time to recurrence and
cancer-related death, we used Cox proportional hazards modeling with
LOOCV. Briefly, 51 iterations of Cox modeling were performed so that each
sample was left out once with the significance of each gene in relation to
time to recurrence/cancer-related death calculated at each iteration. P-values
for each gene were then averaged and ranked to identify genes that
consistently, and robustly, correlated with outcome. We selected genes that
met set criteria (average P < 0.01) to identify the genes that comprise our
signature.

The signature was then tested for its predictive ability by 1-nearest
neighbor class prediction in an independent set 130 primary lung SCCs (test
set) (14) recently reported by Raponi et al. Hierarchical clustering was
performed using Pearson correlation with bootstrapping of 1000 iterations.
Principal component analysis was performed using Avadis V4.3 (Strand
Genomics, India) scaled for equal variance. Kaplan–Meier survival plots and

log-rank tests performed in SPSS Version 11.5 (SPSS, Chicago, Illinois,
USA) were used to assess the differences in survival of the predicted good
and poor outcome groups. Distributions of clinical and pathological
parameters were analyzed using c2, t-test, or log-rank tests where
appropriate.

Results

Tumor samples

To identify a prognostic expression signature of tumor
recurrence, a training set of 51 primary SCCs were studied,
29 with Stage I disease, 15 with Stage II and 7 with Stage III.
The demographics of the patients and tumors in the training
and test sets are outlined in Table I with detailed information
on each patient in the training set given in Supplementary
Table I. Univariate analysis showed that the maximum
diameter of the primary tumor and pathological nodal stage
(pN) were associated with tumor recurrence in these patients
(P ¼ 0.006, t-test and P ¼ 0.016, c2, respectively). Rec(�)
and Rec(+) phenotypes were not associated with other
clinical or pathological factors including age, gender,
smoking history, TNM stage, differentiation, tumor invasion
(lymphatic, vascular, pleural or perineural), and clinical
investigation (Table I). Two patients had adjuvant radiation,
R19: Rec(+) and N32: Rec(�). All patients had follow-up of
a minimum 60 months or until death.

Unsupervised analysis of SCCs

Unsupervised hierarchical clustering was initially performed
on the 51 SCCs to identify any subgroups (clinical or
otherwise) with distinct gene-expression profiles. A filtered
gene list of 6748 probes was applied after excluding probes
from the original filtered list of 18 525 probes with low log-
ratio variation (P > 0.01). SCCs clustered into two distinct
groups of 24 and 27 tumors (Figure 1), with a robustness
index of 0.74 over 1000 permutations indicating high
reproducibility. These two clusters differed in terms of time
to cancer-related death with borderline statistical significance
(P ¼ 0.05, log-rank) (Figure 1). Additionally, Cluster
1 (with poorer survival), had a higher frequency of poorly
differentiated tumors (67 versus 37%), although this was
not statistically significant (P ¼ 0.07, c2). No significant
association was identified between the clusters and recur-
rence phenotype, recurrence site (none, local, distant), TNM
stage, tumor size (<3 cm/�3 cm), N stage, invasion status
(vascular, lymphatic, pleural or perineural), smoking status,
gender, age or pack-years.

Identification of a SCC signature to predict tumor recurrence

To identify a robust set of genes whose expression could
identify primary tumors likely to develop recurrent disease
we employed Cox proportional hazard modeling. For each
probe in the filtered set of 6748 probes, we computed a
statistical significance level for two endpoints—time to
recurrence and the correlated, time to cancer-related death,
based on univariate Cox proportional hazards models (17).
P-values were used in a multivariate permutation test (10 000
permutations) in which the survival times and censoring
indicators were randomly permutated among arrays. To test
the robustness of the signature in the training set, probes
selected by hazards modeling were subjected to LOOCV.
This led to the identification of a recurrence signature of
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71 probes [whose expression significantly correlated to time
to tumor recurrence (P < 0.01)] and a survival signature of
79 probes [whose expression significantly correlated to time
to cancer-related death (P < 0.01)]. Then, we combined the
two outcome signatures to form one final overarching
signature of 111 probes due to the close correlation between
time to recurrence and time to cancer-specific death and as
39 probes were common to both signatures (Supplementary

Table II). Principal component analysis (PCA) was used to
assess the degree of separation in our set of 51 tumors
according to disease recurrence status (Figure 2A). To ensure
a signature will have predictive capability in independent
cohorts, it is important not to over-fit the signature to the
training set. PCA analysis illustrated that within the training
set of 51 SCCs, our 111-gene signature could separate most,
but not all, tumors by recurrence phenotype.

Hierarchical clustering was performed on the 111 genes
and 51 samples to visualize the expression levels and iden-
tify genes with similar expression patterns (Figure 2B).

Fig. 1. Unsupervised analysis of the training set of 51 SCC samples identifies
two clinically relevant subsets of SCC. (A) Unsupervised hierarchical
clustering of the 51 SCCs (using Pearson correlation with 1000 bootstrap
iterations using a filtered list of 6748 probes) identified two distinct clusters
of 24 and 27 samples. Each column is a sample and each row a gene.
Heatmap indicates level of gene-expression, red, high expression, blue, low
expression. Prognostic parameters color-coded beneath heatmap: Recurrence
(black, no recurrence; red, recurrence); TNM stage (black, Stage I; red,
Stage II; yellow, Stage III); Nodal stage (black, N0; red, N1; yellow, N2);
Site of recurrence (black, none; red, distant; yellow, local); Differentiation
(black, well; red, moderate; yellow, poor); Tumor invasion (lymphatic,
vascular, pleural or perineural) (black, no; red, yes; yellow, unknown).
(B) Cluster 1 had poorer survival in Kaplan–Meier analysis (log-rank test)
as well as a higher frequency of poorly differentiated tumors. Tick marks
indicate patients whose data were censored at last follow-up.

Table I. Clinical, pathological and prognostic characteristics of cases in
training and test sets

Characteristics Training set Test set
All tumors

All tumors R(+)/R(�)

Patient demographics
Total number of samples (N) 51 32/19 58
Age, median (years) 68 68/68 66
Gender [n (%)]

Male 37 (73) 23/14 35 (60)
Female 14 (27) 9/5 23 (40)

Smoking status [n (%)]
Never 2 (4) 1/1 NA
Former 13 (25) 8/5 NA
Current 36 (71) 23/13 NA

Pack-years, median 50 50/55 60
Primary tumor

TNM Stage [n (%)]
IA 8 (16) 6/2 8 (14)
IB 21 (41) 16/5 22 (38)
IIA 1 (2) 1/0 2 (3)
IIB 14 (27) 5/9 12 (21)
IIIA 5 (10) 2/3 10 (17)
IIIB 2 (4) 2/0 4 (7)

Max. tumor measurement
(mm), median

45 40/55a NA

Differentiation [n (%)]
P 25 (49) 14/11 19 (33)
M 15 (29) 10/5 33 (57)
W 11 (22) 8/3 6 (10)

Tumor invasion [n (%)]
Lymphatic 5 (10) 3/2 NA
Vascular 15 (29) 8/7 NA
Perineural 0 (0) 0/0 NA
Pleural 13 (25) 7/6 NA

Clinical investigation [n (%)]
Abdominal CT scan 49 (96) 30/19 NA
Bone scan 34 (67) 19/15 NA
Chest CT scan 51 (100) 32/19 NA
Head CT scan 21 (41) 12/9 NA
PET scan 7 (14) 4/3 NA

Prognostic parameters
Recurrence site [n (%)]

NEDb 29 (57) 29/0 NA
Lung—primary site 10 (20) 2/8 NA
Lymph node (loco-regional) 2 (4) 0/2 NA
Lung—distant 1 (2) 0/1 NA
Bone 3 (6) 0/3 NA
Brain 5 (10) 1/4 NA
Liver 1 (2) 0/1 NA
Adrenal 1 (2) 0/1 NA

Survival status [n (%)]
Alive 24 (47) 24/0 24 (41)
Dead 27 (53) 8/19c 34 (59)

Univariate analyses were performed to identify significant associations
between parameters and recurrence phenotype in training set (c2, t-test, or
log-rank). NA, not available.
aP-value ¼ 0.006.
bNED, no evidence of recurrent disease.
cDeath was cancer-related in 4 out of 8 [50%; Rec(�)] tumors and 18 out
of 19 [94.7%; Rec(+)] tumors.
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Two distinct groups of genes were identified, genes whose
expression directly correlated with a better outcome, and
genes whose expression inversely correlated with a better
outcome in our training set.

Validation of the SCC recurrence signature in an independent
test set

To assess the predictive potential of a prognostic signature or
classifier, validation is necessary in an independent cohort of
samples (test set; Table I). We used a high quality publicly
available dataset of 130 SCCs described previously (14) to
test whether the 111-gene signature performed as well at
predicting outcome in these tumors as in the training set of
51 SCCs. Signal intensity data scaled to an average intensity
of 600 U was downloaded from http://www.ncbi.nlm.nih.gov/
geo/ (GEO Series accession no. GSE4573) and imported
into BRB ArrayTools. Analysis of variance (ANOVA) was
performed to normalize experimental differences between
our dataset and the test dataset. Since disease recurrence
data was not available for this 130 sample test set, we
used the published overall survival data as a surrogate
marker, polarizing for recurrence. This was done by defining
‘poor outcome’ as patients who died within 1.5 years after
surgery and ‘good outcome’ as patients having >5 years of
clinical disease-free follow-up, leaving a test set of 58 SCCs
(Stages I–III).

We used Chip Comparer (http://tenero.duhs.duke.edu/
genearray/perl/chip/chipcomparer.pl) and independent map-
ping based on Unigene and Genbank accessions to determine
that 78 (70%) of the 111 genes in our recurrence/survival
signature were mapped to the Affymetrix U133A GeneChip
microarray which was used for the test set samples. For
probes that could not be mapped by these methods, a BLAST
search was performed on the target sequence of the Operon
HumanV2 probe. Supplementary Table II indicates which
genes in the signature were present on the U133A array.

We applied the reduced recurrence/survival signature of
78 genes to predict the classification of the 58 SCCs as likely
to have either good or poor outcome using a 1-nearest
neighbor predictor (BRB ArrayTools). This determines which
expression profile in the training set (51 SCC samples) is
most similar to the expression profile of each sample in
the test set. The expression profile is a vector of log-ratios or
log-intensities for the signature. Euclidean distance is used as
the distance metric for the Nearest Neighbor Predictor. The
class of the nearest neighbor in the training set for each
test sample is taken as the predicted class. In the test set of
58 SCC samples the signature had an accuracy of 72% in
predicting good outcome (alive for a minimum of 5 years
after surgery) or poor outcome (died within 1.5 years
following surgery). The signature was slightly better at
predicting tumors with poor outcome (77% sensitivity, 67%
specificity) than tumors with good outcome (67% sensitivity,
77% specificity). To verify that this level of performance did
not occur by chance, 1000 random permutations of class
labels were performed. The proportion of permutations with
accuracy similar to that attained by the true class labels was
0.001. Kaplan–Meier log-rank analysis confirmed that the
predicted good and poor outcome groups had significantly
different survival [log-rank P ¼ 0.0008; hazard ratio (HR),
3.77; 95% confidence interval (95% CI), 1.63–8.70;
Figure 3A].

Fig. 2. Separation of the training set of 51 SCC samples by the 111-gene
signature. (A) Principal component analysis (PCA) allowed evaluation of the
level of separation between recurrence phenotypes [Rec(+) and Rec(�)].
(B) Hierarchical clustering using a Spearman’s correlation was performed
in both the sample and gene dimensions. Two distinct patterns of gene
expression were observed in the 111-gene signature, genes whose expression
correlates with better prognosis (upper half of heatmap) and genes whose
expression correlates with poorer outcome (lower half of heatmap). Heatmap
is colored by level of gene-expression, red, up-regulated genes, blue, down-
regulated genes. Samples are color-coded in relation to recurrence phenotype,
black, no recurrent disease at 36 months, red, recurrent disease within
18 months.
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Comparison of recurrence/survival signature against
conventional prognostic markers

We used Kaplan–Meier log-rank tests to determine if the
signature was a better predictor of outcome than conventional
prognostic markers such as TNM stage, tumor size and N
stage in the independent test set of 58 SCC samples.

Univariately, N stage could stratify patients with respect to
survival (log-rank P ¼ 0.002; HR, 3.17; 95% CI, 1.39–7.22;
Figure 3B) but inclusion of nodal stage as a confounder in
the Cox regression model revealed that the signature could
predict outcome independently of N stage (Wald P ¼ 0.002;
HR, 3.77; 95% CI, 1.63–8.70). TNM stage or tumor size

Fig. 3. Validation of the 111-gene signature in an independent test set of 58 SCCs. Comparison of Kaplan–Meier survival estimates (log-rank test) for
predicted patient groups using the 111-gene signature with clinical patient groups. HRs and 95% CI obtained by Cox regression. Tick marks indicate
patients whose data were censored at last follow-up. (A), Predicted good (n ¼ 22; full line) and poor (n ¼ 36; dashed line) outcome groups using 111-gene
signature in 58 SCCs; (B) survival estimates in relation to nodal stage (N0: full line, N1: dashed line, N2: dotted line); (C) survival estimates in relation to
TNM stage (Stage I: full line, Stage II: dashed line, Stage III: dotted line); (D), survival estimates in relation to tumor size (<3 cm: full line, �3 cm:
dashed line); (E), in Stage I tumors (n ¼ 30): overall survival (bold line), and signature predicted good (n ¼ 14; full line) and poor (n ¼ 16; dashed line)
outcome groups; (F), in N0 tumors (n ¼ 37): overall survival (bold line), and signature predicted good (n ¼ 16; full line) and poor (n ¼ 21; dashed line)
outcome groups.

764

J.E.Larsen et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/carcin/article/28/3/760/2476620 by guest on 24 April 2024



(<3 cm or �3 cm) were not significantly associated with
survival (P > 0.05) (Figure 3C and D). Finally, we examined
the prognostic discriminatory ability of the signature in very
early stage SCCs which are generally expected to have a
good outcome. The signature predicted differences in survi-
val within both TNM Stage I samples (log-rank P ¼ 0.0310;
HR, 2.99; 95% CI, 1.05–8.52; n ¼ 30) and N0 stage samples
(log-rank P ¼ 0.0102; HR, 3.22; 95% CI, 1.25–8.27; n ¼ 37)
(Figure 3E and F).

Discussion

We investigated lung SCCs to determine if a gene-expression
profile predictive of recurrence is present in the primary
tumor. The samples used in this study were collected from
patients treated by surgical resection with curative intent
where a subset of patients (37%) developed tumor recurrence
within 18 months of resection. Unsupervised hierarchical
clustering on 51 SCCs identified clusters which differed in
time to cancer-related death, but were not significantly
different in other pathological or clinical characteristics
suggesting the potential of primary tumor gene expression to
be independently prognostic. Similar findings have also been
reported for SCC (12,14).

To determine whether a signature was present within the
primary tumor that could predict the likelihood of recurrence,
we initially identified two groups of prognosis-related genes
by using two defined clinical outcomes: one associated with
time to disease recurrence and one associated with time to
cancer-related death in a training set of 51 SCCs. These are
often closely related outcomes; however, it is not uncommon
for patients with low volume disease recurrence to have a
relatively long survival. We considered it possible that
prognostic signatures predictive of survival identified in
previous studies (6,14) may not necessarily be able to predict
recurrence. To develop our prognostic signature, we therefore
included genes significantly correlated with either time to
recurrence or time to cancer-related death. As expected, the
gene ontology composition of the 111-gene signature inclu-
ded genes with biological relevance to disease recurrence,
such as cell growth and movement, cell communication and
cell signaling. A 111-gene signature was identified which
was found to predict outcome in an independent test set of 58
SCCs with a 72% accuracy. It is likely that absence of 33 of
the 111 genes from the array platform used for the test set
will have limited the fidelity of the test set validation.
Furthermore, the extrapolation from overall survival time
(the surrogate outcome variable available for the test set) to
dichotomize groups of cases likely to have developed early
recurrence and those likely to have been recurrence-free
required the setting of artificial censorship points. The accom-
panying introduced potential error could mean that the true
predictive accuracy of the signature could be either higher or
lower than the estimated 72%. Nevertheless, the ability of the
signature to identify patients of significantly different overall
survival in an independent set of SCC samples indicates its
potential for application in the clinical setting. This is
especially the case given that the predictive ability of the
gene-expression signature was independent of and superior to
conventional prognostic markers such as TNM stage, tumor
size and N stage.

Several studies have used expression profiling to charac-
terize prognosis in lung cancer (4–14), yet only one

specifically explored an expression profile of disease
recurrence in SCCs (11) using 10 samples. The authors
described a 27-gene signature that could classify five
unknown samples, however the training set comprised only
10 tumors—5 ‘aggressive’ (patients died of recurrence within
24 months) and 5 ‘less-aggressive’ (patients survived >54
months after surgery) (11). A recent, large study used a
combined cohort of AC and SCC samples to define a lung
metagene model capable of predicting the likelihood of recu-
rrence in two independent test sets of 25 NSCLCs (11 AC
and 14 SCC) and 84 ACs (13). However, as prognosis may
differ between SCC and AC and there is substantial evidence
for gene-expression differences between histological types
of lung cancer (4,5,15), we used a homogeneous cohort of
SCCs to determine expression differences due solely to tumor
recurrence, without potentially confounding histological
influences. Two studies have investigated survival in SCCs
(11,12,14), one reporting distinct subgroups of SCCs with
significant differences in the likelihood of survival to 6 years
(12), the other identifying an optimized set of 50 prognostic
genes in 129 lung SCCs with a predictive accuracy of 68%
in classifying patients with good or poor overall survival in
an independent set of 36 SCC samples (14).

A signature identified in gene-expression studies is not a
set of genes but rather a function that can transform the
expression levels for that set of genes to a risk score or
predicted class (18). The lack of commonality of genes
identified between the published prognostic signatures for
lung cancer to date simply reflects the fact that numerous
gene-expression signatures may be capable of predicting out-
come in NSCLCs, a premise recently demonstrated in breast
cancer (19–21). Cross-validation steps such as LOOCV can,
if executed properly, give an unbiased estimate of how well
the signature will perform in an independent set of samples
but a major potential flaw in developing a predictive
signature is over-fitting to the training dataset. An over-
fitted signature will reflect characteristics of the individual
samples represented in the training set and will not accurately
predict outcome in independent test sets. Therefore the
critical test of prognostic signatures is validation in
independent datasets.

We envisaged that prediction of lung tumor recurrence will
likely require a set of genes with moderate changes in
expression as observed in breast cancer (19–21), rather than
single genes. In this study, we have demonstrated the value
of a genomic approach in identifying patients likely to
develop tumor recurrence by validating our signature in an
independent set of SCC samples. As a result, subjects at high
risk of recurrent disease may require adjuvant treatment in
addition to surgical resection. Genes and gene ontology path-
ways differentially expressed between recurrence phenotypes
could also represent potential novel therapeutic targets.

Supplementary data

Supplementary data are available at Carcinogenesis online.
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