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The inhibitors of differentiation (Id) proteins belong to the helix-loop-helix group of transcription factors and regulate cell differentiation and
proliferation. Recent studies have reported that Id proteins play important roles in cardiogenesis and formation of the vasculature. We have
also demonstrated that heritable pulmonary arterial hypertension (HPAH) patients have dysregulated Id gene expression in pulmonary artery
smooth muscle cells. The interaction between bone morphogenetic proteins and other growth factors or cytokines regulates Id gene expression,
which impacts on pulmonary vascular cell differentiation and proliferation. Exploration of the roles of Id proteins in vascular remodelling that
occurs in PAH and atherosclerosis might provide new insights into the molecular basis of these diseases. In addition, current progress in identi-
fication of the interactors of Id proteins will further the understanding of the function of Ids in vascular cells and enable the identification of novel
targets for therapy in PAH and other cardiovascular diseases.
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1. Introduction
Impairment of vessel structure and function in response to pathophysio-
logical factors contributes to numerous cardiovascular disorders. Endo-
thelial dysfunction is an important early feature of vessel injury and
promotes vasoconstriction leading to hypertension.1 Abnormal remod-
elling of the vessel wall is common in atherosclerosis, systemic and
pulmonary hypertension, and restenosis following vein grafting or angio-
plasty.2,3 In addition, disordered angiogenesis is important in diseases
such as pulmonary arterial hypertension (PAH) and also is an important
contributor to tumour growth.4

Transcription factors are widely expressed in vascular cells and con-
tribute to the maintenance of normal vessel homeostasis.5 Several
classes of transcription factors are known to be involved in the regula-
tion of vascular cell differentiation and proliferation.6 Recent studies
implicate the Id family of proteins, which are helix-loop-helix (HLH)
transcription factors, as important regulators of vascular cell function.
Based on the dominant-negative effect of Id proteins on transcription
factor binding, they promote wide-ranging effects on the expression
of genes involved in vasculogenesis and angiogenesis.7– 9 Id proteins
interact with tissue-specific transcription factors, but are also them-
selves regulated by key peptides and cytokines involved in vascular
function, including angiotensin II, bone morphogenetic protein (BMP),
and VEGF.10–12 Id proteins act as orchestrators of multiple biological
responses induced by these and other cytokines. Here, we will review
the biological function of Id proteins in the cardiovascular system by

examining their known protein-binding partners and gene targets, and
then focus on the role of Id proteins in cardiogenesis, vascular cells,
and cardiovascular diseases such as pulmonary hypertension and ath-
erosclerosis. Finally, the potential of Id proteins as a new therapeutic
target will be discussed.

1.1 Inhibitors of DNA binding and inhibitors
of differentiation
Id proteins were first identified in 1990.13 Since then four members of the
Id family, Id1–Id4, have been identified in mammalian cells,14–16 with
differing expression patterns and protein structure. For example, Id4 is
expressed at a much lower level in the vascular wall than the other
three Id proteins.17 Id2, Id3, and Id4 but not Id1 possess a consensus
cyclin-dependent kinase 2 (CDK2) phosphorylation site in the N-
terminus (Figure 1).18,19 Further details of the specific differences
between Id proteins are summarized in Table 1. These differences may
have important functional consequences. Forexample, only Id2binds spe-
cifically with retinoblastoma protein to induce cell cycle arrest, whereas
Id3 induces apoptosis in vascular lesions by other mechanisms.26,32

Id proteins belong to the HLH family of transcription factors. Usually,
basic HLH (bHLH) transcription factors possess a basic DNA-binding
domain and a HLH region that mediates protein–protein interactions.
bHLH factors activate transcription as homodimeric or heterodimeric
complexes throughbinding to DNAwhere there is a specific recognition
motif in the promoter region of the target gene, named E-box
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(CANNTG) or N-box (CACNAG), where N ¼ any nucleotide.33,34

While Id proteins lack the basic DNA-binding domain, they still form
heterodimers with bHLH transcription factors. However, the resulting
complex cannot bind with DNA and promote gene transcription.
Thus, Id proteins function as dominant-negative transcriptional regula-
tors and have been named ‘inhibitors of DNA binding’. Soon after
their identification, Id proteins were found to be associated with cell
differentiation. In mammalian cell culture systems, Id expression was
down-regulated during the differentiation of some cell lineages.35– 38

In vivo studies showed that targeted expression of Id genes could
inhibit muscle cell differentiation.39 Thus, Id proteins arealso alternative-
ly known as inhibitors of differentiation.

Id genes demonstrate characteristics of early response genes that
respond to a multitude of ligand-receptor combinations at the cell
surface. However, much less is known about the range of extracellular

signals that trigger expression of Id gene. Members of the transforming
growth factor (TGFb) superfamily, including BMPs and TGF-b, regulate
Id1 expression via Smad-dependant pathways in certain cell types, and
the regulation occurs at the level of the Id promoter.40 Id protein
levels can also be regulated via the ubiquitin-proteasome degradation
pathway or by phosphorylation during cell cycle progression. It has
been reported that Id proteins turn over quickly after activation and
have a short half-life of �20 min in HEK293 cells. The half-life varies
for individual Ids and is dependent on the cell type. It is noteworthy
that when Id proteins exist in the heterodimeric state, they are less sen-
sitive to degradation by the 26S proteasome. In addition, the localization
of Id proteins from cytoplasm to nucleus only occurs following forma-
tion of the heterodimer.41 These studies suggest the important relation-
ship between Id protein stability, localization, and function, though the
precise relevance of this, has not yet been revealed.

Figure 1 The structure and sequence homology of Id proteins. (A) bHLH proteins form dimers in order to bind to DNA (upper), and Id proteins have no
basic region and inhibit the binding of bHLH protein to DNA through dimerization (lower). (B) The amino acid sequence differences between Id1, Id2, Id3,
and Id4. The blue box represents the CDK2 phosphorylation site on the N-terminal regions of Id2, Id3, and Id4. The HLH conserved sequence is important
for Id dimerization with other E proteins. Id1 and Id3 may exist as isoforms: Id1.25 and Id3a, resulting from intron retention at the C terminus.
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Table 1 The known functions of individual Id proteins in vascular cells

Official human
gene symbol

Alternative
name

Human
chromosome

Subtype Effect on ECs Effect on EPCs Effect on VSMCs

Id1 bHLHb24 20q11 Id1.2520 Pro-angiogenesis5

Activates ECs21
Controls EPCs formation5,22

Promotes EPC migration
and proliferation23

Mediates MAPK and
angiotensin II-induced
proliferation6

Id2 bHLHb26 2p25 Activate ECs21

Proliferation and
differentiation24

Modulates phenotype25

Id3 bHLHb25 1p36.13–p36.12 Id3a26 Pro-angiogenesis5

Proliferation and
differentiation24

Controls EPCs formation5 Proliferation10,26–30

Modulates
phenotype,25

Differentiation31

Id4 bHLHb27 6p22.3
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1.2 Id protein-binding partners and targets
The main targets of Id proteins are E-proteins (e.g. E12, E47, E2-2, and
HEB), which belong to the class I of bHLH transcription factors.42– 44

E-proteins are ubiquitously expressed in many tissues including the vas-
culature. They also associate with class II bHLH factors (e.g. MyoD and
NeuroD), forming heterodimers, and modulate cell type-specific gene
transcription and cellular differentiation.6 Id proteins can interact with
class I and II bHLH factors, but individual Id proteins have distinct prefer-
ences for these targets.13,45 Id proteins bind to class I bHLH factors
(E12, E47, E2-2, and HEB) with high affinity. In contrast, a broad range
of affinities exists for class II proteins, such as the myogenic regulatory
factors (MyoD, myogenin, Myf-5, and MRF4/MYF-6). No interactions
were observed between the Ids and the haematopoietic bHLH factors
(Scl/Tal-1, Tal-2, and Lyl-1). The first helix of the HLH domain of the
Id protein and the residues immediately adjacent to it are responsible
for thedimerization selectivity.46 In addition tobHLHfactors, Idproteins
can also interact with some non-bHLH factors and this function is
probably as important as the Id–bHLH interactions. For example,
non-bHLH-binding partners, such as Rb (retinoblastoma protein, a
tumor suppressor protein), ETS (E26 transformation-specific or
E-twenty-six, one of the largest families of transcription factors), and
PAX (paired box transcription factors, the important regulators in
early development), are known for their roles in cell fate determination;
proteasome components were reported recently as another important
group of non-bHLH interactors with Id proteins.32

Recently, new binding partners have been identified (Table 2), includ-
ing hairy and enhancer of split-1 (Hes1) and dead ringer-like-1 (Dril1)
that have a similar protein structure to Id1.47,54 Bai et al. showed that
Id proteins interact directly with Hes1 and release the negative feedback
autoregulation of Hes1 without interfering with its ability to affect other
target genes. These results indicate that Id proteins participate in the
maintenance of neural stem cells through sustaining Hes1 expression
in early embryos.54 The interaction with Hes1 also facilitates the Ids to
regulate tip- vs. stalk-cell selection and vessel plasticity.8 Since Notch3
activation of Hes5 was found to be crucial for the proliferation of
smooth muscle cells in animal models of PAH, the interaction of Ids
with Hes family members warrants further studies in this setting.61

Furthermore, Id1 interacts with Dril1 to interrupt its binding to DNA,
providing a potential mechanism for suppression of fibrosis through
inhibition of the profibrotic function of Dril1.47

Id1, Id2, and Id3 are subject to ubiquitination and subsequent degrad-
ationby the26Sproteasome. Ling et al.49 reported that Id1 interactswith
the Hepatitis-B virus-encoded protein HBX, and that Id1 binds to the
proteasome subunit C8 to facilitate its interaction with the HBX
protein. In addition, the proteasome subunit S5a was previously isolated
as an Id1-interacting protein.48 A yeast two hybrid screen identified that
Id3 interacts with a mouse JAB1 homologue, which is related to factors
thought be present in the 19S regulatory complex of the 26S prote-
asome.48 The ubiquitously expressed APC/Cdh1 complex is an E3 ubi-
quitin ligase that governs Id2 stability and reprogrammes quiescent
neurons into the axonal growth mode.55 Ubiquitin-specific protease 1
(USP1) deubiquitinates and stabilizes Id1, Id2, and Id3. USP1 directly
interacts with Id2 in HOS and U2-OS cells to preserve the stem
cell state.50

More recently, endogenous inhibitors of Ids have been discovered in
neuroblastoma cells, including an inhibitor of Id2, known as 13I. 13I was
isolated from a phage display library of HLH domains, harbouring amino
acid substitutions in residues critical for dimerization.62 13I selectively

binds to Id2, impairs complex formation with Rb, and relieves repression
of E protein-activated transcription. A novel peptide aptamer, Id1/
3-PA7, was found to specifically interact with Id1 and Id3. Id1/3-PA7
deregulated expression of Id1 and Id3, releasing E47 to activate the
E-box promoter and increased the expression level of CDK inhibitors,
p16 and p21. This non-toxic exogenous agent led to antiproliferative
and apoptotic effects in ovarian cancer cells.63 Although Id proteins
have been found to be expressed at high level in most types of cancer,
they can also act as tumour suppressors in certain lymphomas.32

Thus, understanding the cell-specific and tumour-specific effects of Id
modulators is of great importance before embarking on clinical trials.

1.3 Role of BMP type II receptor and Ids
in cardiogenesis
BMPs are pleiotropic cytokines regulating growth, differentiation, and
apoptosis in diverse cell types and act as instructive signals during
embryogenesis. BMPRII, like other TGFb superfamily type II receptors,
is a constitutively active serine/threonine kinase. BMPs signal via three
type II receptors (BMPRII, ActRIIA, and ActRIIB). Binding of ligand
leads to the assembly of a hetero-oligomeric receptor complex in
which the type II receptor phosphorylates and activates the type I recep-
tor. The activated type I receptor then phosphorylates intercellular sig-
nalling molecules, termed Smads. Smad complexes translocate into the
nucleus to regulate transcription of target genes. Id HLH proteins are
among of the most highly regulated downstream targets of BMP/Smad
signalling.12,21,24

It was reported in 2000 by two groups that heterozygous germ-line
mutations in BMP type II receptor caused .70% of cases of familial
PAH.64–66 Homozygous bmpr2 knockout (KO) mouse die during gastru-
lation without forming mesoderm. Heterozygous bmpr2 KO mice (het-
erozygous mutation generated by deletion of exon 4, 5, 6 in C57BL/6J
mice) recapitulate the major effect of BMPR2 mutations in man, which
is haploinsufficiency. In response to an additional injury, such as inflamma-
tion, hypoxia, or serotonin, heterozygous bmpr2 KO mice developed pul-
monary hypertension and remodelling of the pulmonary vasculature.67

Beppu et al. employed Mox2-Cre to delete bmpr2 throughout the
embryo during gastrulation (targeting the epiblast at E5.5). These investi-
gators found cardiac defects including double-outlet right ventricle,
ventricular septal defect (VSD), atrioventricular cushion defects, and
thickened valve leaflets in these mice. BMPRII was also required for
proper positioning of the aorta (Figure 2). Thus, although there was no
obvious myocardial defect in these mice, endocardial BMPRII expression
was required for septum formation and valvulogenesis.68

Similar defects were also found in compound Id KO mice lacking Id1,
Id2, and Id3 (Id12/2Id32/2; Id12/2Id22/2; Id12/2Id2+/2Id32/2; and
Id1+/2Id2+/2Id32/2).69,70 In the developing heart, Id1, Id2, and Id3
are detected in the endocardium and epicardium from embryonic day
E10.5 through E16.5, but Id4 is absent. Id1 and Id3 expression persists
in these regions at post-natal day P7. Id1, Id2, or Id3 single KO
embryos do not exhibit developmental abnormalities, but double- and
triple-Id KO embryos display severe cardiac defects and die at mid-
gestation.DoubleKO embryosdisplayedVSDsassociatedwith impaired
ventricular trabeculation and thinning of the compact myocardium.
Since the defect in the myocardium was not observed in BMPRIIflox/2

Mox2-Cre mice, the lack of expression of Ids in the myocardium
provides support for the idea that the myocardial defect of Id KO
micemayarise fromdysregulated molecular signalling between the myo-
cardium and the epicardium or endocardium. Compound Id KO mouse

J. Yang et al.390
D

ow
nloaded from

 https://academ
ic.oup.com

/cardiovascres/article/104/3/388/2930856 by guest on 25 April 2024



demonstrates more severe septal defects and disrupted endocardial cell
lining, which suggests that the Id genes are important target genes of a
range of BMP receptors during cardiogenesis.

1.4 Id proteins in endothelial cells
and angiogenesis
BMPs induce Id gene expression in endothelial cells (ECs) and vascular
smooth muscle cells (VSMCs). Besides BMPs, growth and differentiation
factor 5 (GDF5) and TGF-b also regulate the expression of Id proteins.
GDF5 induces Id1 and Id3 expression in human umbilical vein smooth
muscle cells.71 Although, TGF-b induces the expression of Id genes, this

tends to be transient in some cell types due to induction of Id1 that is
then suppressed by cyclic AMP-dependent transcription factor 3.72

Although previous reviews described the role of Id proteins in angio-
genesis during tumour formation, their effects on the disordered angio-
genesis in PAH still remain unclear.73 Here, we review updated
information about the involvement of Id gene induction by diverse
stimuli and their contribution to angiogenesis and vascular remodelling.

Proliferation and migration of ECs is necessary for angiogenesis. Id
proteins are thought to act as pro-angiogenic factors by regulating
migration, proliferation, and apoptosis of ECs. Id1, Id2, and Id3 are all
expressed by human ECs derived from the microvasculature and pul-
monary artery, and in smooth muscle cells derived from the aorta and
pulmonary artery (PASMCs).38,74 Human umbilical vein endothelial
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Table 2 Binding partners of Id proteins and their biological function (&: common for Id1, Id2, Id3; 1&3: common for Id1 and Id3;
2&3: common for Id2 and Id3)

Id Class I HLH-binding
partner

Other class
HLH

Non-HLH factors Targeted gene and downstream effector References

Id1 E47 Mediates BMP-induced EC migration (12)

Dril1 Suppression of fibrosis through inhibiting Dril1 (47)

26S proteasome
subunit S5a

Regulates terminal myogenic differentiation (48)

20S proteasome
subunit C8

Regulates HBX protein stability in HCC cells (49)

E12, E47, E2-2, HEB MyoD, Myf-5 Plays a role in myogenesis& (46)

USP1 Preserves a mesenchymal stem cell programme in osteosarcoma& (50)

E47 Suppresses Rap1GAP to synchronize stemness with adhesion& (9)

Hes1 Regulates tip- vs. stalk-cell selection and vessel plasticity& (8)

E47 Suppression of neural differentiation& (51)

E47 Regulates p21 to control NIH 3T3 cells growth (1&3) (52)

E2-2 Regulates p16 and VEGF-induced angiogenesis in ECs (1&3) (11)

Regulates p16/p21 in prostate cancercells independentof E protein (1&3) (53)

Id2 Hes1 Neural stem cells maintenance in early embryos (54)

APC/Cdh1
(E3ubiquitin
ligase)

Inhibition of axonal growth (55)

Rb Mediates cell cycle regulation by Myc (56)

Promotes cell death by increase Bax level independent of E protein (57)

E12, E47, E2-2, HEB MyoD, Myf-5 Plays a role in myogenesis& (46)

USP1 Preserves a mesenchymal stem cell programme in osteosarcoma& (50)

E47 Suppresses Rap1GAP to synchronize stemness with adhesion& (9)

Hes1 Regulates tip- vs. stalk-cell selection and vessel plasticity& (8)

SRF/E12 Binding on SM-a-actin promoter to control SMC differentiation (2&3) (25)

Id3 E47 SREBP-1c-mediated adiponectin expression (58)

E47 Regulates VSMCs through P21 within vascular lesion (26)

26S proteasome
regulatory
complex 19S

Degraded through the ubiquitin-proteasome pathway when E47 is absent (48)

E12, E47, E2-2, HEB MyoD, Myf-5 Plays a role in myogenesis& (46)

USP1 Preserves a mesenchymal stem cell programme in osteosarcoma& (50)

E47 Suppresses Rap1GAP to synchronize stemness with adhesion& (9)

Hes1 Regulates tip- vs. stalk-cell selection and vessel plasticity& (8)

E12, E47, E2-2, HEB MyoD Negatively regulates E2A to inhibit fibroblasts growth by serum (3) (59)

SRF/E12 Binding on SM-a-actin promoter to control SMC differentiation (2&3) (25)

Id4 Suppresses tumour growth through AR, p21, p27, and p53 in prostate
cancer

(60)
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cells (HUVECs) overexpressing Id1 and transplanted into the hind limbs
of mice accelerated recovery of blood flow and increased capillary
density in the ischaemia area.75 Conversely, knockdown of Id1 abolished
VEGF-induced angiogenic responses in HUVECs.11 The expression of Id
proteins are induced in response to several EC mitogens including BMPs,
TGF-b, and VEGF (Figure 3). It has been suggested that Id genes are the
main mediators of BMP effects on ECs.76,77 For example, Id1 was found
to mediate EC migration and tube formation induced by BMP6 and
ectopic expression of Id1 in cultured ECs enhanced capillary-like tube

formation in vitro.12 It is of interest that Id1 and Id2 can only be
induced by TGF-b through the activin receptor like kinase 1 (ALK1)
receptor but not the ALK5 receptor in HUVECs.78 High levels of
TGF-b inhibit EC migration and proliferation through the induction of
plasminogen activator inhibitor 1 (PAI-1) gene expression, whereas
low levels of TGF-b stimulate EC migration and proliferation dependent
on Id1 expression. Furthermore, endoglin activates ECs under hypoxic
conditions through up-regulating the ALK1/Id1 pathway rather than
ALK5.79 It should be pointed out that the actions of VEGFand Id proteins

Figure 2 Id double KO mice and BMPRII-deficient mice exhibit similar cardiac defects. BMPs signal through the BMP type II receptor and the activated
receptor in turn phosphorylate BMP-restricted Smads, which translocate to the nucleus and regulate Id gene transcription. BMPRII flox/2; Mox2-Cre mice
survived gastrulation, but demonstrated outflow tract (OT) defects at E12.5 (Ao: aorta; P: pulmonary artery). The normal rotation of the OT (A) was inter-
rupted as shown in (B). Id12/2Id32/2 mice had VSDs and the myocardial defects (D), compared with wild type (WT) at E11.5 (C) (Myo: myocardium).

Figure 3 The regulation of Id proteins in ECs and smooth muscle cells affects vascular remodelling. In ECs, BMPs, TGF-b, and VEGF regulate angiogenesis
by inducing the expression of Id proteins. BMPs and TGF-b promote EC migration and tube formation through induction of Id1 protein. VEGF induces
activation of Id1 and Id3 to promote EC survival and vessel regeneration. In smooth muscle cells, thrombin regulates Id genes in an NAD(P)H oxidase-
dependent manner during vascular lesion formation. Id3 is an atheroprotective factor that limits carotid intima-media thickness, whereas angiotension
II-induced hyperplasia in ascending aortas is dependent on Id3 expression. Also, Id3 is essential for ox-LDL-induced VSMC growth.
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are closely linked in the vasculature. The angiogenic defect in compound
Id-deficient mice is due to impaired VEGF-driven mobilization of
VEGFR2 (vascular endothelial growth factor receptor 1, also known
as Flk-1, KDR)-positive circulating endothelial precursor cells and
impaired proliferation of VEGFR1 (vascular endothelial growth factor
receptor 1, also known as Flt1)-positive cells.7 Another study revealed
that VEGF induces Id1 expression through VEGFR2 signalling in liver
sinusoidal endothelial cells.80 The use of VEGFR-specific inhibitors
could lead to a better understanding of the roles of VEGF as a
pro-angiogenic factor in the pathology of PAH. The first VEGF receptor
2 inhibitor, SU5416, was originally in clinical development for cancer
therapy. In rodent models of PAH, the administration of SU5416 com-
bined with chronic hypoxia results in severe angioproliferative PAH
accompanied by neointimal thickening. It is believed that the inhibition
of VEGFR2 increases the apoptosis of ECs, and favours the survival of
apoptosis-resistant cells. It is hypothesized that hyperproliferation of
these apoptosis-resistant clones of ECs gives rise to the characteristic
plexiform lesions in human PAH. The up-regulation of BMP receptor
signallingvia theSmad/Idpathwayhasbeen showntopromotepulmonary
arterial endothelial cells survival, prevent loss of vessels, and induce vessel
regeneration in PAH.81 It is thus likely that Id proteins contribute to the
complex interplay between EC apoptosis and proliferation in PAH.

As to the mechanism of the angiogenic effects of Id proteins, it is
known that inhibition of thrombospondin-1 by Id proteins is involved
in the induction of angiogenesis.82 Doebele et al.83 found that VEGF
up-regulated Id1 expression via the MEK5/ERK5 pathway in ECs. In add-
ition, overexpression of Id1 enhanced the expression of intercellular cell
adhesion molecule-1 and E-selectin, induced angiogenic processes such
as EC migration, and increased activity of MMP-2 and -9.11

Id1 also promotes the generation, proliferation, and migration of
endothelial progenitor cells (EPCs).23 Recently, Id proteins were recog-
nized as a biomarker of EPCs since Id1 can be used to track EPCs from
the bone marrow (BM). Silencing of Id1 caused ablation of BM-derived
EPCs and led to significant defects in angiogenesis-mediated tumour
growth.84 Id1 mutant mice demonstrate an absence of EPCs in periph-
eral blood. The generation of EPCs in BM appears to be dependent on
the repression of p21 by Id1.22

1.5 Id proteins and VSMCs
Id proteins are abundantly expressed in VSMCs and regulate their pro-
liferation and differentiation.6 Id proteins are involved in the proliferative
responses of VSMCs to thrombin, angiotensin II, and oxidized low-
density lipoprotein (ox-LDL). Thrombin regulates the expression of
BMP4 and Id proteins in VSMCs via the NAD(P)H oxidase. During
wire-induced vascular stenosis in mice, levels of Id1 and Id3 are
reduced in the vascular media. However, mice deficient in p47phox—
an important component of NAD(P)H—were resistant to vascular
stenosis following injury and exhibited increased expression of Id1 and
Id3.85 In contrast, the hypertrophic activity of angiotensin II appears to
be partly mediated by Id3 downstream of increased reactive oxygen
species and MAPK signalling.27 Another in vivo study also suggested
that angiotensin II infusion could cause aortic VSMC hypertrophy
and hyperplasia via up-regulating Id3.10 Therefore, the roles of Id
proteins under these experimental conditions warrant further investiga-
tion to delineate the precise contribution to vascular homeostasis and
pathology.

Id proteins are also involved in lipid-induced VSMC growth. The
growth-promoting effects of 12/15-lipoxygenase are partially mediated
through induction of Id3 transcription.28 In these studies, Id3 mediated

the mitogenic effect of hyperlipaemic sera and ox-LDL in VSMC via
inhibition of p21cip1 expression, subsequently increasing DNA synthe-
sis and proliferation.29 These studies reveal an important role for Id pro-
teins in lipid metabolism and atherosclerosis, which will be discussed
further below. The interaction with Gut-enriched Kruppel-like factor
may also explain the regulatory role of Id3 on VSMC proliferation in
the pathogenesis of atherosclerosis.30

Id proteins play additional roles in the modulation of VSMC pheno-
type. Binding of class I bHLH proteins to the two E-boxes on the pro-
moter region of the smooth muscle a-actin (a-SMA) gene, a
differentiation marker of VSMCs, is required for the expression of
a-SMA in vivo and can be inhibited by Id proteins.25 Id proteins are also
involved in SMC differentiation from BM-derived cells where individual
Id proteins show unique effects.31 For example, Id2 mRNA expression
was up-regulated in parallel with increased expression of the smooth
muscle cell markers, myosin heavy chain, calponin, and a-SMA,
without a change in Id1 expression. However, in these cells, BMP4
induced Id1 expression along with a reduction of markers in smooth
muscle cell differentiation.

1.6 Id proteins and atherosclerosis
In atherosclerosis, intimal plaques form as a consequence of endothelial
dysfunction and the accumulation of lipid ladenmacrophages. Id proteins
act as negative regulators of cellular differentiation and modulation of
VSMC phenotype, which is a hallmark of the dedifferentiated phenotype
of certain populations of SMCs observed in lesion formation in athero-
sclerosis and vasculoproliferative disorders (Figure 4). The role of the
immune system in atherosclerosis is increasingly recognized. Recently,
Doran et al.86 revealed that Id3-mediated B cell homing is an important
mechanism by which Id3 affords protection in atherosclerosis. As men-
tioned above, Id proteins are involved in lipid metabolism and Id3 has
been shown to mediate VSMC growth induced by hyperlipaemia and
ox-LDL.29 One study found that Id3 and its partner E47 were novel reg-
ulators of adiponectin expression in differentiating adipocytes,58 which
might influence the process of atherosclerosis.

Matsumura et al.87 found that Id3 was involved in the growth regula-
tion of VSMCs in atherosclerotic plaques. Also, alternative splicing of Id3
protein is induced during vascular lesion formation, resulting in the
appearance of the splice variant, Id3a. Id3a induces smooth muscle cell
apoptosis and functions as a negative regulator to limit pathological vas-
cular lesion formation in balloon-injured rat carotid arteries.26 A single-
nucleotide polymorphism variant at rs11574 in the human Id3 gene was
independently associated with carotid intima-media thickness in
patients. The fact that Id32/2ApoE2/2 (apolipoprotein E-deficient
mice as an atherosclerosis model) mice developed significantly more
atherosclerosis than Id3+/+ApoE2/2 mice revealed a direct and
robust relationship between Id proteins and atherosclerosis.88 Further-
more, aortic VSMC proliferation was induced by angiotensin II via
up-regulated Id3. These apparently conflicting reports of the role of Id
proteins likely reflect the complex roles played by Id proteins induced
by BMP signalling or other mediators in the cellular context. To highlight
this complexity, recent studies have shown that inhibition of BMP signal-
ling with the selective small molecule BMP type I receptor inhibitor,
LDN-193189, protects against atherosclerosis and associated vascular
calcification.89 In contrast, specific endothelial deficiency of BMPRII
induced endothelial inflammation and contributed to the development
of atherosclerosis.90
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Figure 4 Id proteins are involved in the development of atherosclerosis. When monocyte infiltration occurs initially, Id3-mediated B cell homing plays a
role in limiting macrophage accumulation. Later, during lipid accumulation and plaque formation, ox-LDL-driven proliferation of smooth muscle cells is
mediated by Id3. The intron retention isoform of Id3, Id3a, functions in a negative feedback loop to down-regulate the expression of Id3. Id proteins
also participate in thrombin-induced neointimal hyperplasia.

Figure 5 The deficient BMP signalling and second ‘hit’ hypothesis in PAH. In control human pulmonary arterial smooth muscle cells (hPASMCs), BMPs
activate BMPRII and signal through Smad1 activation, whereby C-terminal phosphorylated Smad1 forms a transcriptional complex to bind the promoter
region of Id genes. BMP signalling is important to inhibit proliferation of hPASMCs. At the same time, BMPRII activates ERK to phosphorylate Smad1 at its
linker region to restrict the C terminal phosphorylation. When the BMP type II receptor is mutated, there is a reduction in Id gene transcription. In the
presence of PDGF orother environment stimulation, constituting the ‘second hit’, the enhanced Smad1 linker region phosphorylation by ERK further exag-
gerates the existing deficiency of BMP signalling, which leads to the uncontrolled proliferation of hPASMCs and pulmonary vascular remodelling.
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1.7 Id proteins and PAH
PAH is characterized bya sustained elevation of pulmonary arterial pres-
sure. The increased pressure usually results from a complex process of
vascular remodelling and occlusion involving the endothelial, smooth
muscle, and fibroblast components of the pre-capillary pulmonaryarter-
ies.91 It is well recognized that BMPRII mutations are responsible for the
majority of heritable PAH.92 In addition, dysfunction of BMP signalling is
found in idiopathic PAH and experimental models of PAH induced by
chronic hypoxia, monocrotaline (MCT) exposure, and high flow.92

The fact that bmpr2+/2 mice do not spontaneously develop PAH sug-
gests that additional ‘second hits’ or furtherdysfunction of BMP signalling
are necessary to cause initiation and progression of PAH.67,93 The res-
toration of BMP signalling has proved effective as a therapeutic strategy
in preclinical models of disease.81

In PASMCs, the most consistent transcriptional targets of BMP/Smad
signalling are the Id proteins (Figure 5). Our group has shown that cells
harbouring a mutation in BMPRII failed to induce Id gene expression in
response toBMPs, though this canbepartlyovercomebyhigherconcen-
trations of BMPs. We also showed that loss of BMPRII function or knock-
down of Id1 leads to loss of the growth suppressive effects of BMPs in
PASMCs.40,74 Hypoxia is a well-recognized stimulus for pulmonary
hypertension. In a report that apparently contradicts some of these find-
ings, de Caestecker and colleagues recently reported elevated Id1 and
Id3 expression in hypoxic pulmonary VSMCs in vivo in a BMP-dependent
manner. In response to chronic hypoxia, Id1 null mice did not develop
more PH than wild types. An increase in Id3, but not Id2, expression in
pulmonary VSMCs of Id1 null mice suggests that Id1/Id3 may play a com-
pensatory role in regulating VSMC responses to chronic hypoxia.94

Since Id1 and Id3 are known to compensate for each other in VSMCs,
studies in VSMC-specific Id1/3 double KO mice are required to

further explore their role in hypoxic pulmonary hypertension. A
marked reduction in the expression of Id proteins was also observed
in MCT-treated and hypoxia-induced PAH models in rats.94,95 All
these studies point towards a major role of Id proteins in the complex
process of PAH. However, the precise mechanisms by which the Id
proteins contribute to the development of PAH are still not known.

1.7.1 Crosstalk with other signalling pathways
Generally, Ids are thought to mediate mitogen-induced growth and inhibit
systemic VSMC differentiation. However, in PASMCs, we observed
minimal Id gene and protein induction by the mitogen platelet-derived
growth factor (PDGF)-BB, and other angiogenesis-related growth
factors.40,96 BMP4-induced Id1 expression was negatively regulated by
extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation. The
mechanism involved ERK1/2-dependent phosphorylation of the Smad1
linker region (serine 206), which inhibits C-terminal serine 463/465 phos-
phorylation and Smad nuclear accumulation. Taken together, these find-
ings indicatean important interactionbetweenERK1/2andSmad1/5 in the
regulation of Id genes in PASMCs (Figure 5).74

1.7.2 The potential therapeutic target for PAH
Prostanoids are one of the most effective clinical treatments for PAH.
Although predominantly vasodilators, prostanoids may exert antiproli-
ferative effects during long-term administration, which beneficially affect
pulmonary vascular remodelling. We investigated the potential inter-
action between prostacyclin analogues and BMP signalling in PASMCs
(Figure 6). We demonstrated that prostacyclin analogues enhance the
growth suppressive effects of BMPs in human PASMCs through
up-regulation of Id1 and provided direct evidence that overexpression
of Id1 leads to growth suppression of PASMCs. We also provided

Figure 6 The crosstalk between BMP/Id and other pathways currently targeted in the treatment of PAH. Prostacyclin analogues enhance intracellular
cAMP levels to regulate BMP signalling in a Smad-dependent and Smad-independent manner. Sildenafil promotes BMP signalling through the interaction of
cGKI with BMPRII and the formation of cGKI–Smad transcription factor complex on the Id gene promoter. Recently, FK506 was found to release BMPRI
from FKBP12, thereby promoting BMP signalling to inhibit pulmonary vascular remodelling.
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in vivo evidence in the MCT rat model of PAH that treprostinil infusion
prevented progression of PAH and reduced muscularization of
intra-acinar pulmonary arteries while increasing phosphorylation of
Smad1/5 and Id1 gene expression in the lung without altering BMPRII
expression.40

The interaction between cGMP and BMP receptors was also recent-
ly demonstrated in vascular cells.97 We found that sildenafil enhances
canonical BMP signalling via cyclic GMP and cGKI [cyclic nucleotide-
dependent protein kinase G (PKG or cGKI), is activated by cGMP] in
vitro and in vivo and partly restores deficient BMP signalling in BMPRII
mutant PASMCs. Our findings demonstrate a novel mechanism of
action of sildenafil in the treatment of PAH and suggest that targeting
BMP signalling may be beneficial in this disease. Based on the knowl-
edge that Ids are the major functional targets of BMP signalling in pul-
monary vascular cells, an elegant study used the BMP response
element from the Id1 promoter as a reporter to screen for com-
pounds capable of inducing the expression of Id genes. The com-
pounds screened included 3756 FDA approved drugs. Of these,
Spiekerkoetter et al. identified the immune suppressant tacrolimus
(FK506) as the most potent activator of the BMP response element.
The mechanism involves FK506 binding to FK-binding protein-12
(FKBP12) to activate the BMP type I receptor, while also acting as an
inhibitor of the phosphatase, calcineurin. In vivo FK506 proved benefi-
cial in three different animal models of PAH, including the reversal of
PAH in the sugen/hypoxia rat model. Experimental medicine studies
are now underway in patients. Thus, the strategy of screening for com-
pounds that up-regulate Id genes with high selectivity may prove a
promising strategy for the treatment of PAH.

2. Conclusions
In summary, although Id proteinswere initially identifiedas controllersof
terminal myogenic differentiation, they play important roles in develop-
ment including neural stem cell differentiation, osteoblast differenti-
ation, and lymphocyte maturation. In the cardiovascular system, Id
proteins play major roles in cardiogenesis. The major function of Id pro-
teins in cancer appears to be to promote proliferation and inhibition of
differentiation.32,98 Although BMPs are critical regulators on Id protein
expression, additional growth factors and cytokines regulate Id gene ex-
pression in a highly cell- and tissue-specific context to impact on vascular
cell proliferation, differentiation, and function. Research in atheroscler-
osis has revealed that Id protein expression is important in the multistep
process of disease development. Furthermore, targeting Id proteins
have proved to be an effective therapeutic strategy in PAH where they
impact on PASMC proliferation and EC survival. However, the role of
the individual Id proteins in the complex process of vascular disease
remains to be fully elucidated. Determining the regulation and function
of Id proteins during vascular development and diseasewill contribute to
our understanding of cardiovascular disease, particularly PAH, and will
be essential to develop approaches with tissue selectivity for targeted
therapies.
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