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Abstract

A variety of lipid microdomains, including caveolae, have been shown to play an important role in both protein targetting and in

controlling protein–protein interactions. There is increasing evidence for significant ion channel localization in lipid rafts. Cardiac channel

subunits known to localize in lipid rafts include Kv1.4, Kv1.5, Kv2.1, Kv4, Kir2, Kir3, KATP, Nav and Cav subunits. This article reviews

what is known about the occurrence and functional significance of cardiac ion channel/lipid raft interactions. Much remains to be learned

about this area of potentially enormous importance to cardiac function in health and disease.
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1. Introduction

Ion channels play a critical role in shaping the cardiac

action potential (AP), which governs regional electrical

activity [1]. The physiological function of ion channels is

affected by interactions with proteins that modulate their

activity and/or localization.

The fluid-mosaic model of Singer and Nicholson (1972)

considered the membrane as a fluid bilayer with homoge-

neous lipid distribution [2]. The cell membrane contains

>2000 species of lipids [3], some of which associate,

whereas others are exclusionary [4]. Such behavior leads to

formation of distinct lipid structures resulting in ‘‘phase

separation’’ [5]. Phospholipids with relatively long saturated

acyl chains and cholesterol pack together to create a liquid-

ordered phase (Lo), and bulk phospholipids composed of

phosphoglycerolipids with polyunsaturated fatty acids

make up the more fluid liquid-disordered phase (Ld) [5].

Lo microdomains, called ‘‘lipid rafts’’, float in the Ld phase,
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like icebergs on the ocean, and have revolutionized our

notions of membrane-protein targeting and organization

[4,6]. Post-translational protein-modifications like palmi-

toylation and myristoylation favor protein-localization in

lipid rafts [7]. Glycosyl phosphatidyl inositol moieties,

known as ‘‘GPI anchors’’ also promote lipid raft localization

[8]. Specific transmembrane domain residues govern local-

ization in cholesterol enriched domains and membranes [9].

Protein targetting toward lipid rafts may result from lipid

raft specific targeting signals as well as via interactions with

other proteins.

The presence of proteins in lipid rafts depends on both

lipid and protein content. Current membrane models

incorporate clusters of proteins and lipids and consider

dynamic remodeling of individual microdomains with

protein and lipid inclusion or exclusion followed by

microdomain fusion (Fig. 1). Lipid rafts participate actively

in signal transduction and cellular adaptation to changing

environments.

Small invaginated membrane structures called ‘‘caveolae’’

are the best characterized lipid rafts (Fig. 1). First discovered

in the early 1950s using electron microscopy [10], these

invaginated membrane structures are enriched in cholesterol
69 (2006) 798 – 807
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Fig. 1. Schematic representation of lipid raft structures in a plasma membrane. Lipid rafts float in the membrane, constituting distinct signalling platforms

depending on lipid raft subtype and composition. While some are invaginated structures (caveolae), others constitute planar plaques. Lipid rafts can fuse,

favouring interactions between constituent proteins. Ion channel regulating complexes in cardiomyocytes are also illustrated. DAPCs (Dystrophin Associated

Protein Complexes) are anchored in caveolae and stabilize structures interacting with the actin cytoskeleton, whereas other lipid rafts localized at intercalated

disks preferentially interact with cadherin complexes for anchorage to the actin cytoskeleton. In both cases, MAGUK proteins favour the clustering of distinct

proteins that regulate channel function. For discussion of specific proteins in complexes, see text.
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and sphingolipids, along with the small (21–25 kD)

cholesterol-binding protein ‘‘caveolin’’ [11]. Caveolin has

several isoforms [12] but caveolin-1 and caveolin-3 are the

best-characterized. Caveolin-3 is expressed exclusively in

myocytes [13]. Caveolins contain a highly hydrophobic

33-amino acid membrane-spanning core. The invaginated

caveolar structure results from a core hairpin loop in caveolin

[11]. Myocardial caveolin-3 is found in cardiomyocyte

t-tubules and sarcolemma but is absent from intercalated

disks [14]. Although research on cardiomyocyte micro-

domains has focused on caveolae, increasing evidence points

to heterogeneity of cardiac lipid raft structures [4,15].
Table 1

Detergent selectivity profile in MDCK cells

Detergent Selectivity DRM

cholesterol/GPL ratio

DRM

sphingolipid/GPL ratio

Triton X-100 +++ 4.6 3.2

CHAPS +++ 4 3.5

Brij 98 ++ 2.3 2.3

Brij 96 ++ 1.7 1.7

Brij 58 ++ 1.3 1.3

Lubrol ++ 1.3 1.4

Tween 20 + 0.8 0.8

DRM=detergent-resistant membrane; GPL=glycophospholipid.
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2. Technical considerations

2.1. Biochemical approaches

Lipid rafts are insoluble in non-ionic detergents [4].

Cholesterol and sphingolipids are so tightly packed together

in lipid rafts that detergents are generally not strong enough

to destabilize them or solubilize proteins anchored in them.

Lipid raft microdomains can be separated according to their

buoyant density with sucrose or Optiprep gradients.

Different detergents possess selectivity for specific lipid

raft extraction. Triton X-100 and CHAPS are more selective

than Tween-20 and Brij58 (Table 1) [16]. Some detergents

solubilize lipids and proteins only partially, yielding an
incomplete picture of raft composition [17]. Some deter-

gents can provoke lipid raft fusion, favouring non-physio-

logical protein interactions [17]. To avoid these artifacts,

detergent-free isolation techniques have been developed

[18], involving mechanical disruption followed by buoyant-

density gradient separation. Recent modifications avoid

artifacts due to associated non-lipid raft proteins [18].

2.2. Imaging approaches

The localization of ion channels and regulatory partners

can be observed with immunofluorescence techniques [19].

One limitation of using constitutively localized proteins as

lipid raft markers is partial lipid raft population labeling.

New tools allow labeling of the whole lipid raft population

[19–22]. Fluorescence Recovery After Photobleaching



Fig. 2. Illustration of cardiac ion channels known to localize into lipid rafts and their involvement in distinct phases of cardiomyocyte APs. There is still limited

knowledge about the lipid raft localization of the subunits (like HERG, KvLQT1 and minK) that control phase-3 repolarization (represented by ?).
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(FRAP) is widely used to determine ion channel transla-

tional mobility. An early study showed that the membrane-

associated guanylate kinase (MAGUK) protein PSD-95

immobilizes Kv1.4 channels at the plasma membrane [23].

Increasing evidence suggests that mobility depends on ion

channel localization [24,25]. Caveolae are highly immobile

microdomains [26]. Although lipid rafts exhibit distinct

rates of lateral diffusion, diffusional mobility is more

correlated with membrane anchorage than with raft associ-

ation [27].

2.3. Functional approaches

Another way to study lipid raft ion channel targeting is to

analyze ion channel function after disruption of raft

structure. Several reagents have been used (Table 2). A

frequently used technique is membrane-cholesterol deple-

tion with methyl-h-cyclodextrin (MCD) [28]. MCD pos-

sesses high affinity for cholesterol, removing it from

membranes and causing lipid raft disruption [29].
Table 2

Chemicals used for disruption of lipid raft structure

Molecule Effect Comments References

5-methyl-

h-cyclodextrin
Cholesterol

depletion

Lipid raft

disruption

[24]

2-hydroxypropyl-

h-cyclodextrin
Cholesterol

depletion

Lipid raft

disruption

[24]

Fumonisin B Shingolipids

biosynthesis

inhibitor

Lipid raft

disruption

[24]

Sphingomyelinase Sphingolipid

disruption

Lipid raft

disruption

Cytochalasin D Cytoskeleton

disruption

Caveolae

endocytosis

[26]

Colcemide Cytoskeleton

disruption

Caveolae

endocytosis

[35]
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3. Evidence for ion channel localization in lipid

rafts/caveolae

A wide range of cardiac ion channel subunits have been

localized to lipid rafts, as detailed below. Fig. 2 illustrates

the role of these subunits in cardiac APs.

3.1. K+channels

K+ channels are key regulators of the resting membrane

potential, which governs excitability, of diastolic conduc-

tance, which affects pacemaking function, and of AP

repolarization, which determines AP duration and suscep-

tibility to a variety of arrhythmia mechanisms.
3.1.1. Shab-family (Kv2)

The first reported cardiac lipid-microdomain ion channel

compartmentalization was for Kv2.1 channels. Kv2.1

localized preferentially into the low buoyant-density sarco-

lemma fraction after cold-extraction with 1% Triton X-100,

indicating anchoring in cholesterol-enriched microdomains

[30]. Distinct localization patterns for caveolin-1 and Kv2.1

suggest anchoring in non-caveolar lipid rafts [30]. Colce-

mide, which disrupts microtubules and causes caveolin

internalization, did not affect Kv2.1 localization but

dramatically altered caveolin-1 localization [30]. In pancre-

atic h-cells, lipid raft disruption causes a hyperpolarizing

shift of Kv2.1 inactivation [31].

3.1.2. Shaker-family (Kv1)

Kv1.5-subunits underlie an important repolarizing cur-

rent (IKur) in atrial myocytes [32]. Kv1.5 function is

regulated by various associated proteins, including

Kvh�subunits [33], MAGUK proteins [34,35] and protein
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kinases [36]. Like Kv2.1, Kv1.5 channels are found in low-

density Triton X-100 insoluble fractions [24]. In contrast to

Kv2.1, Kv1.5 localization follows caveolin-1 after microtu-

bule disruption-induced caveolar internalization [24]. Treat-

ment with MCD slightly shifts Kv1.5 voltage-dependent

activation and inactivation [24]. Association of the

MAGUK protein SAP97 with Kv1.5 channels in lipid rafts

accelerates C-type inactivation. Acceleration of inactivation

is abolished by lipid raft disruption with MCD and recovers

with cholesterol replacement [37]. SAP97 acts as a

scaffolding protein, favoring Kv1.5-interaction with lipid-

microdomain regulatory proteins. A SAP97-caveolin-3

complex in COS-7 cells recruits Kv1.5-subunits via multiple

protein–protein interactions [38]. In atrial myocardium,

Kv1.5 channels localize in intercalated disks, which lack

caveolin-3. Kv1.4 channels have also been found in

cholesterol-enriched Triton X-100 insoluble fractions in

neurons and HEK cells [39], but not in pancreatic h-cells
[31]. This may be due to a requirement for another MAGUK

protein, PSD-95, for Kv1.4 micro-localization [39].

3.1.3. Shal-family (Kv4)

Kv4.2/4.3 is the molecular basis for the Ca2+-indepen-

dent transient outward K+ current (Ito), which is activated

immediately after the cardiac AP upstroke. There is

evidence for lipid raft Kv4.2-localization in rat brain and

transfected HEK 293 cells [39]. Kv4.2 requires PSD-95 for

targetting to the Triton X-100 insoluble fraction. Removal of

the putative PDZ-interacting sequence, which permits

channel-binding to MAGUK proteins, diminishes Kv4.2

channel lipid raft localization [39]. Thus, other PDZ-domain

proteins may be needed for Kv4.2 lipid raft localization.

KChIP is a good candidate, since KChIP profoundly affects

Kv4.2 intracellular trafficking and function [40]. Palmitoy-

lation, required for efficient Kv4.3–KChIP interaction [41],

also favors lipid raft localization [4].

3.1.4. Inwardly rectifying K+channels

3.1.4.1. Kir2. Kir2-subunits are essential for the primary

inward-rectifier conductance controlling the resting mem-

brane potential in workingmyocardium. There is presently no

biochemical evidence for Kir2-localization into Triton X-100

insoluble membrane fractions. However, membrane choles-

terol content modulates Kir2.1 current in aortic endothelial

cells [42]. Increased plasma membrane cholesterol decreases

Kir2.1 current density, whereas cholesterol-depletion

increases current density [42]. Single channel properties of

Kir2.1 are not modified, suggesting that cholesterol modu-

lates the number of active membrane Kir2.1 channels [42].

3.1.4.2. Kir3. Kir3 subunits underlie the G-protein-cou-

pled acetylcholine-dependent current that is a key modulator

of heart rate. Kir3.1 subunits co-precipitate with Ghg, PKAc,
PP1c and PP2A [43]. Most of these localize into lipid rafts

[44]. In neurons and CHO cells, Kir3.1 channels localize in
low buoyant-density fractions following extraction with 1%

Triton X-100 and sucrose-gradient separation [45].

3.1.4.3. ATP-sensitive K+ current (KATP). KATP channels

serve as endogenous homeostatic transducers, balancing

cellular resources and metabolic demands. Cardiac KATP

channels protect against the metabolic insult of ischemia and

contribute to adaptive responses to metabolic stress [46].

KATP channels regulate vascular delivery of metabolic

resources [47]. While ATP-sensitive K+ channels in the

adult heart classically consist of Kir6.2 and SUR2A-

subunits, Kir6.1, SUR1 and SUR2B-subunits are also

expressed in adult mouse hearts [48].

Pancreatic h-cell Kir6.2 and SUR1-subunits localize to

the bulk plasma membrane following detergent-free extrac-

tion and separation on sucrose step-gradients [31]. In rat

aortic smooth muscle cells, Kir 6.1 colocalizes with an

upstream signaling partner, adenylyl cyclase, in caveolin-

enriched low buoyant-density fractions after detergent-free

extraction and sucrose-gradient separation [49]. Caveolin

co-immunoprecipitates with Kir6.1 from arterial homoge-

nates, supporting Kir6.1-caveolin co-localization. Lipid raft

structure disruption reduces the cAMP-dependant, protein-

kinase A (PKA)-sensitive component of KATP current,

indicating that lipid raft integrity is important for adenylyl

cyclase-mediated channel modulation [49].

3.1.5. Ca2+-activated K+ channels

Recently, high-conductance Ca2+-activated K+ channels

(KCa) have been shown to contribute to ischemic precondi-

tioning [50,51], primarily in the early trigger-phase [51].

There is no direct evidence for KCa channel localization in

cardiomyocyte-membrane lipid rafts. PKC inhibits [52],

whereas PKA activates [53], KCa channels. Both PKA and

PKC appear to localize in caveolae [54,55]. Membrane

cholesterol content modulates high-conductance KCa acti-

vation in colonic epithelia [56]. The hSlo channel, the

molecular equivalent of KCa, is found in Triton X-100

insoluble fractions of transfected MDCK cells [57].

3.1.6. Summary

Compartmentalization of cardiac K+ channels illustrates

lipid raft heterogeneity. While some channels localize in

caveolae, others associate with other lipid raft subtypes

(Table 3). These results also point to the differential

targetting of channel function and regulation. Finally, some

channels require interaction with other proteins, such as

MAGUK, for localization in membrane microdomains.

3.2. Na+channels

Phase-0 Na+-flow through voltage-gated Na+ channels

produces activation and electrical-impulse conduction.

Nav1.5 sodium channel mutations lead to arrhythmic

channelopathies like congenital long QT syndrome, Brugada

syndrome, conduction disorders and sudden death [58].



Table 3

Summary of presently recognized cardiac ion channel localization in lipid raft structures

Channel-subunit Membrane localization Cell type studied References

Kv1.4 Non-caveolar lipid raft HEK cells [39]

Kv1.4 Bulk plasma membrane Pancreatic beta-cells [31]

Kv1.5 Caveolae L-cells, Ventricular cardiomyocytes [24,38]

Kv1.5 Non-caveolar lipid raft Atrial cardiomyocytes [37]

Kv2.1 Non-caveolar lipid raft L-cells [30]

Kv4.2 Subtype of lipid rafts HEK cells [39]

Kir2.1 Cholesterol enriched lipid raft Aortic endothelial cells [42]

Kir3.1 Subtype of lipid rafts CHO cells, neurons [45]

Kir6.1 Cholesterol enriched lipid rafts Rat aortic SMC [49]

Kir6.2 Bulk plasma membrane Pancreatic beta-cells [31]

KCa channel Subtype of lipid rafts MDCK cells [57]

Nav1.5 Caveolae Ventricular myocytes [14]

Cav1.2 Caveolae Cardiomyocytes, SMC, Pancreatic beta-cells [25,31,68,69]

IP3-receptor Caveolae Various [77]

HCN4 Caveolae Sinus-node cardiomyocytes [80]

Connexin-43 Caveolae Alveolar epithelial cells, Various transfected cell types [25,81,82]

HEK=Human Embryonic Kidney; CHO=Chinese Hamster Ovary; SMC=Smooth muscle cells.
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The sympathetic nervous system modulates cardiac Na+

channel function via h-adrenergic (hAR) pathways [59].

Both indirect PKA-dependant modulation and direct G-pro-

tein modulation occur [60,61]. INa enhancement occurs

without changes in single channel characteristics or voltage-

dependent activation [59,62], suggesting that increased

current density may be due to increased numbers of

functional channels in the sarcolemma [59]. The short

time-frame of INa-increase implies rapid membrane recruit-

ment of Na+ channels, suggesting a sub-sarcolemmal

reservoir. The localization of hARs in cardiac caveolae

[63] and the role of lipid rafts in protein-trafficking make

them candidates for the location of ‘‘recruitable’’ Na+

channels [14]. Dialysis of caveolin-3 antibodies into atrial

myocytes abolishes ‘‘direct’’ Gas-induced INa increases,

Na+ channels co-localize with Gas in the caveolin-3

enriched fraction, and caveolin-3 co-precipitates and co-

localizes with Na+ channels and Gas-subunits [14]. These

results suggest that tripartite caveolar complexes of cav-

eolin-3, Na+ channels, and Gas constitute the reservoir of

functional Na+ channels recruited by hAR activation, and

the site of Na+ channel phosphorylation by activated PKA.

3.3. Ca2+ channels

3.3.1. L-type Ca2+ channels and Ca2+-release channels

Depolarization-induced Ca2+ entry through L-type Ca2+

channels (LTCCs) maintains the AP plateau and activates

nearby Ca2+-release channels or ‘‘ryanodine-receptors’’

(RyRs) in the sarcoplasmic reticulum (SR), releasing Ca2+

via ‘‘Ca2+-induced Ca2+ release’’ (CICR) [64] and producing

excitation-contraction coupling. In cardiomyocytes, LTCCs

are mainly localized within the t-tubular network. This

localization is profoundly altered in caveolin-3 null-mice

[65]. Several studies suggest that caveolae are responsible

for the LTCC/RyR co-localization that underlies CICR. This

function may be particularly important in atrial cardiomyo-
cytes, whose t-tubular system is less developed than in

ventricular cells. The most efficacious Ca2+-signal for SR

Ca2+-release may be a transient microdomain of high [Ca2+]i
beneath individual, open LTCCs [66]. High-[Ca2+]i domains

may be more easily obtained with invaginated structures

like caveolae [67,68], although the precise role of micro-

domain-structure in Ca2+-dynamics awaits clarification.

Cardiomyocyte cholesterol depletion decreases the frequen-

cy, amplitude and width of Ca2+-sparks [68]. In pancreatic

h-cells, Cav1.2, the pore-forming subunit of LTCCs, is

found in low buoyant-density membrane-fractions enriched

in caveolin [31]. Moreover, the a1-chain is preferentially

found in caveolin-rich detergent-insoluble fractions of

smooth muscle cells and cardiomyocytes [25,69].

3.3.2. IP3 receptors

Inositol-1,4,5-trisphosphate receptors (IP3-receptors) are

intracellular Ca2+ channels releasing Ca2+ from the sarco-

plasmic reticulum. Type 1 and 2 IP3-receptors are found in the

heart, predominantly in atria [70]. Their role is controversial

[71]. IP3-dependant Ca
2+-release likely enhances atrial Ca2+-

signaling, exerting positive inotropic effects, and may

contribute to Ca2+-dependent atrial arrhythmias [72].

IP3 receptors interact with ankyrin-B [73]. Ankyrins are

membrane-associated adapter proteins [74] that bind other

proteins via membrane-binding domains. Ankyrin-B knock-

out mice show mislocalization of cardiac IP3-receptors,

suggesting an essential role for ankyrin-B in their targeting

[75]. Ankyrin-B mutations produce long-QT syndrome

arrhythmias and sudden death, to which IP3-receptor

dysfunction could contribute [76].

IP3-receptors localize to Triton X-100 insoluble caveolin-

enriched fractions and electronic-microscopy localizes IP3-

receptors to caveolae-like invaginated structures [77]. A link

between ankyrin-B and lipid-microdomain localization of

IP3-receptors is suggested by the following evidence [78]: In

aortic endothelial cells, hyaluronan increases the number of
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CD44 receptors in the Triton X-100 insoluble caveolin-rich

fraction. Immunoprecipitation of the caveolin-rich fraction

results in co-precipitation of ankyrin-B, IP3-receptors and

CD44, but in the absence of hyaluronan neither ankyrin-B

nor IP3-receptors co-precipitate with CD44. Lipid raft

disruption by cholesterol-depletion inhibits IP3-receptor

association with caveolae and suppresses Ca2+-signaling.

Thus, physical association between CD44-containing lipid

rafts and IP3-receptors may be important for triggering

Ca2+-release from internal stores.

3.4. Hyperpolarization-activated, cyclic-nucleotide binding

channels (HCNs)

The hyperpolarization-activated non-selective cation

current, first called ‘‘funny current’’ or If, is believed to be

important in cardiac automaticity. If is carried by HCN-

subunits, with HCN4 particularly important in the heart [1].

HCN4-subunit function is finely controlled by hAR and

muscarinic-cholinergic regulation. Most proteins in the

hAR-pathway are localized in lipid rafts and sinus-node

cardiomyocytes are rich in caveolae [79]. HCN4-subunits

are found in low-density fractions of sinus-node cardio-

myocyte preparations containing flotilin and caveolin [80].

Lipid raft disruption alters HCN4-subunit localization, shifts

If-activation in the depolarizing direction and reduces

deactivation, accelerating diastolic depolarization and heart

rate [80].

3.5. Connexins

Myocytes are linked via gap junctions to form an

electrically continuous syncitium that permits AP propaga-

tion. Gap junctions contain hemi channel connexin proteins

which subserve their electrical function. Cardiomyocytes

actively adjust their coupling by changes in connexin

expression, regulation of connexin trafficking and turnover,

and modulation of connexin channel properties [81].

Connexin-43, the major cardiac isoform, co-localizes

with caveolin-1 in low buoyant-density Triton X-100

insoluble fractions and co-immunoprecipitates with caveo-

lin-1 [25,81,82]. Caveolin is not found in myocardial

intercalated disks, so other lipid raft structures may produce

connexin-43 localization to in vivo intercalated-disk micro-

domains [83,84]. The MAGUK protein ZO-1, a major

connexin-interacting protein, mediates delivery of connexin-

43 from lipid raft domains to gap-junctional plates [85].

There is increased association of ZO-1 with connexin-43

during cardiac gap-junction remodeling [86].
4. Lipid rafts as a scaffolding structure for ion

channel regulation

Ion channel biophysical properties are determined by

their 3-dimensional structure and related interactions with
regulatory proteins. Structures that include channel-subunits

and regulatory proteins have been termed ‘‘channelosomes’’.

Channelosome structure depends on the microdomains that

incorporate protein constituents. MAGUK proteins appear

crucial in forming channelosomes. While PSD-95 is

required for Kv1.4 localization in lipid rafts, SAP-97 serves

a similar role for Kv1.5 [37–39]. SAP-97 and PSD-95 are

also part of Kir2-containing complexes. [87]. These proteins

can bind other scaffolding proteins, such as CASK, Veli

and Mint, forming the skeleton of the channelosome

architecture [88–90]. CASK is present in lipid rafts and

the multiprotein complex SAP97/CASK/Veli/Mint1 is

essential for trafficking and plasma membrane localization

of Kir2 channels [87,91]. CASK interacts with the N-type

Ca2+ channel [92]. Such proteins bind directly to ion

channels, offering protein-binding surfaces such as PDZ-

domains and recruiting regulatory proteins to intracellular

sites [93]. For instance, SAP-97 favors Kvh–Kv1.5
association in lipid rafts, increasing C-type inactivation

[37]. Kvh may also recruit PKC to the channel complex by

interacting with the PKC~-interacting (ZIP) protein [94].

SAP-97 and PSD95 also bind type-II Ca2+-activated

calmodulin-kinase (CAMKII) [95,96], which regulates

numerous ion channels as a function of intracellular Ca2+

concentration. Most channels regulated by CAMKII localize

in lipid rafts, including Kv1.5, Na+ channels, LTCCs and

IP3-receptors [97–102], and CAMKII localizes to lipid rafts

[103,104].

PSD-95 and SAP-97 also bind A-kinase anchoring

proteins (AKAPs), which localize PKA in close proximity

to ion channels. PKA is found in lipid rafts [105,106].

KCNQ1, the pore-forming subunit of the cardiac repolariz-

ing current IKs, associates with both PKA and protein-

phosphatase 1 (PP1) through the protein yotiao, promoting

sympathetic regulation [107]. The interaction of AKAP with

PKA is required for cAMP-dependent regulation of LTCCs

[108]. AKAPs interact with the h2AR, favoring localization

of the h2-adrenergic pathway within channelosomes [109].

Stimulation of h2ARs increases cardiac contractility without

globally increasing cAMP [110], suggesting that LTCCs and

the h2AR transduction pathway share a privileged signaling

microenvironment. LTCCs co-assemble with h2ARs, Gas,

adenylyl-cyclase, PKA and phosphatase–PP2A [111]. In

adult cardiomyocytes, h2ARs are found exclusively in low

buoyant-density fractions enriched in caveolin-3, together

with Gas and adenylyl-cyclase [112].
5. Interactions with cytoskeletal proteins

Kir2 channels are associated with the dystrophin-

associated protein complex (DAPC) [87]. DAPC forms a

structural link between the actin cytoskeleton and the

extracellular matrix and is especially prevalent in muscle

cells [113]. Caveolin-3 null mice show important changes in

DAPC distribution and t-tubule abnormalities [65].
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Caveolin-3 associates with dystrophin and interacts directly

with the C-terminal tail of h-dystroglycan, part of the DAPC
[114]. Dystroglycan also regulates caveolin-3 distribution

[115]. In mdx mice deficient in dystrophin [116], mini-

dystrophin restores LTCC current in skeletal-muscle myo-

cytes, suggesting that dystrophin influences LTCCs [117].

Dystrophin and a-actinin regulate caveolae by anchoring

them to the actin cytoskeleton. Na+ channels, which localize

in cardiomyocyte t-tubular caveolae, interact specifically

with syntrophin, another constitutive DAPC protein [118].

N-cadherin and catenins are principally found in the low

buoyant-density fractions of myoblast plasma membranes

[119]. SAP97, which co-localizes with Kv1.5 channels at

the intercalated disk, also binds cadherin [34,37]. Connexin-

43, which is found in intercalated-disk lipid rafts, is also

associated with the N-cadherin multiprotein complex. Cell-

surface expression of connexin-43 requires N-cadherin and

vice versa [120].
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6. Pathophysiological implications

Structural remodeling of caveolae occurs in cardiac

pathologies. The cardiac distribution of caveolin-3 is

dramatically altered by heart failure, with an increased

proportion of caveolin-3 in the detergent-soluble fraction

[121]. Caveolin-3 knock-out mice exhibit progressive

cardiomyopathy with hypertrophy, dilation, and reduced

fractional shortening [122]. Caveolin-3 over-expression

induces cardiac degeneration, fibrosis and cardiac-function

impairment, along with DAPC downregulation [123]. ANP

is found in rat-cardiomyocyte caveolae [124]. ANP modu-

lates cardiac hypertrophy and remodeling; ANP deficiency

exaggerates hypertrophy and remodeling after pressure

overload [125]. ANP binds to caveolar B-type ANP

receptors, which possess guanylyl cyclase activity. cGMP

formation leads to cGMP-dependent kinase activation,

which can inhibit LTCC activity and thereby reduce

contractility [124]. Furthermore ANP modulates If in human

atrial cardiomyocytes [126]. Thus, caveolar integrity may be

important in myocardial adaptation to mechanical overload.

Lipid rafts and caveolae are acutely affected by mechanical

events. Mechanical overload can also induce membrane

fusion of caveolae [127].

Statins, which directly act on the cholesterol synthesis

pathway, are widely used for the prevention of cardiovas-

cular disease. Recent studies showed that statin therapy

affects caveolar turnover by limiting their endocytosis [128].

Atorvastatin has also been shown to modulate the choles-

terol enrichment of the lipid rafts [129]. Thus, many effects

of these molecules may be due to lipid raft modification.

Given the evidence for ion channel localization in lipid

rafts, pathological modifications in lipid raft structures and

distribution may underlie ion channel dysfunction and

associated arrhythmias in conditions like hypertension,

diabetes, ischemic heart disease and heart failure.
7. Conclusions

Lipid rafts constitute dynamic platforms that float in

cardiomyocyte membranes. Enriched in signaling molecules

and ion channel regulatory proteins, the various forms of

lipid rafts exhibit distinct protein populations and mem-

brane-anchoring mechanisms. Thus, they can actively

participate in differential cardiomyocyte ion channel target-

ing and regulation. At present, little is known about the role

of lipid rafts in cardiac dysfunction and arrhythmias. Recent

technical advances will help to further our understanding of

these important membrane structures and their role in

cardiac health and disease.
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