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In addition to its established roles in the haemostatic system, thrombin is an intriguing coagulation pro-
tease demonstrating an array of effects on endothelial cells, vascular smooth muscle cells (VSMC),
monocytes, and platelets, all of which are involved in the pathophysiology of atherosclerosis. There
is mounting evidence that thrombin acts as a powerful modulator of many processes like regulation
of vascular tone, permeability, migration and proliferation of VSMC, recruitment of monocytes into
the atherosclerotic lesions, induction of diverse pro-inflammatory markers, and all of these are
related to the progression of cardiovascular disease. Recent studies in transgenic mice models indicate
that the deletion of the natural thrombin inhibitor heparin cofactor II promotes an accelerated athero-
genic state. Moreover, the reduction of thrombin activity levels in apolipoprotein E-deficient mice,
because of the administration of the direct thrombin inhibitor melagatran, attenuates plaque pro-
gression and promotes stability in advanced atherosclerotic lesions. The combined evidence points to
thrombin as a pivotal contributor to vascular pathophysiology. Considering the clinical development
of selective anticoagulants including direct thrombin inhibitors, it is a relevant moment to review
the different thrombin-induced mechanisms that contribute to the initiation, formation, progression,
and destabilization of atherosclerotic plaques.
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1. Introduction

There is abundant evidence for a close interaction between
inflammation and coagulation systems and a bidirectional
cooperation between these mechanisms has been pro-
posed.1,2 Although the important contribution of blood
cells involved in coagulation, particularly platelets and leu-
cocytes, to atherothrombosis is beyond dispute, the proper-
ties of several coagulation proteins and their expression in
atherosclerotic lesions suggest that they might also contrib-
ute to the pathogenesis of cardiovascular disease (CVD).

With the current development of highly specific antith-
rombotic agents including thrombin inhibitors aimed for
long-term use in patients with CVD it seemed appropriate
to focus on the pleiotropic actions of thrombin, in order to
better appreciate possible long-term sequelae related to
thrombin inhibition. This is even more important considering
a number of physiological functions of thrombin (anticoagu-
lant, vasodilating properties) that are of importance in a
healthy vascular system. Taking physiology as a starting

point for this review we next focus on the different mechan-
isms by which thrombin may modulate the formation of the
atherosclerotic lesion and the course of atherogenesis.

2. Thrombin’s functional roles in physiology

In the coagulation cascade, thrombin is one of the key
players. It is a central enzyme generated upon the exposure
of tissue factor (TF) which binds and activates circulating
factor VII and subsequently enters into the formation of a
complex with factor X. The formed prothrombinase
complex of factor Xa, factor Va, calcium (Ca2þ) cleaves pro-
thrombin into thrombin. Thus the coagulation pathways are
amplified by thrombin feedback activation of the cofactors V
and factor VIII and the activation of the factor XI zymogen.
Hence, generated thrombin leads to the conversion of
fibrinogen into fibrin and ultimately to the formation of a
fibrin clot.

Thrombin activates a subfamily of G protein-coupled
receptors named protease-activated receptors (PARs)—1,
3, and 4, affecting processes such as vasomotor regulation.
Thrombin depicts a two-faceted role at the level of vascular
reactivity, showing diverse vasoactive features, not only
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with regard to the type of vascular bed but also to the phys-
iological condition of the vessel—whether healthy or dis-
eased one. Several reports indicate that thrombin
predominantly causes endothelium-dependent vasorelaxa-
tion in different species in vitro.3–5 In addition, recent pub-
lished data show that thrombin induces PAR-1-mediated
forearm arterial vasodilatation in humans in vivo.6 These
endothelium-dependent dilating effects are generally
attributed to a PAR-1-mediated production of various vaso-
protective factors such as prostacyclin (PGI2), endothelium-
derived hyperpolarizing factor, and mainly nitric oxide
(NO).7

Similarly to its contrasting functional effects on vasoreac-
tivity, thrombin demonstrates antagonizing actions in hae-
mostasis also, e.g. the procoagulant action of converting
fibrinogen into fibrin vs. the anticoagulant action of activat-
ing protein C (APC) after binding of thrombin to thrombomo-
dulin (TM).8 Moreover, systemically generated thrombin, not
captured by receptors is rapidly inactivated by inhibitors
such as antithrombin (AT), APC, or heparin-cofactor II (HCII).

Thrombin elicits at least 13 different actions (Figure 1).
Thus, it consolidates its multifaceted character in physi-
ology but it also establishes a strong link between coagu-
lation and inflammation by playing a substantial role in the
PAR-dependent initiation of different pro-inflammatory
responses in various cell types including platelets, endo-
thelial cells (EC), macrophages, and vascular smooth
muscle cells (VSMC). Thrombin’s humoral and cellular
actions in normal and pathophysiological conditions are sum-
marized in Figure 2.

3. Thrombin as a trigger of endothelial
dysfunction

Endothelial dysfunction, which is characterized with the
inability of the endothelium to regulate its key functions
(vascular tone, haemostasis, cellular adhesion, electrolyte
balance, etc.) is thought to be a prerequisite for the
initiation of an atherosclerotic plaque. Endothelial

Figure 1 Antagonizing actions of thrombin in coagulation cascade. Platelets get activated by the collagen that is exposed at sites of vessel damage, leading to
the formation of a haemostatic plug. (1, 2) Thrombin (FIIa) is generated upon tissue factor (TF) exposure but the reaction is relatively slow. (3) Once formed,
thrombin activates factor V, factor VIII, and factor XI, which results in a 300 000-fold acceleration, amplification, and thrombin propagation. (4a) To prevent a
massive conversion of fibrinogen into fibrin and thereby leading to the formation of a stable clot, all natural anticoagulant pathways get activated. Thrombin gets
involved into these actions by binding thrombomodulin (TM), which results in the activation of protein C (PC) into activated protein C (APC), which by proteolytic
cleavage of activated factors V and VIII reduces the rate of thrombin generation. In addition, antithrombin (ATIII) forms a thrombin–antithrombin (TAT) complex,
which irreversibly inhibits thrombin, in association with heparin and heparin cofactor II. (4b) In case the procoagulant stimulus overpowers the capacity of the
anticoagulant pathways, this would result in more production of fibrin and would lead to the formation of a thrombus. Thrombin–thrombomodulin (T-TM)
complex could additionally support the procoagulant actions of thrombin by activating thrombin-activatable fibrinolysis inhibitor (TAFI), thereby inhibiting fibri-
nolysis. (5) Except for the exposed collagen at the site of injury, platelets also get activated by thrombin via PAR-1- and PAR-4-mediated mechanisms but also by
cleavage of glycoprotein V (GPV).Thrombin also prevents destabilization of the platelet plug by inhibiting ADAMTS13 action (a disintegrin and metalloproteinase
with a thrombospondin type 1 motif, member 13).Thrombin facilitates clot stabilization by activating factor XIII (fibrin stabilizing factor) which has the capacity
to crosslink fibrin.
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dysfunction results in increased interactions of circulating
cells with the endothelium contributing to enhanced per-
meability. Thrombin signalling in the endothelium, mediated
by PARs, might interlace with some of these pathophysiolo-
gical pathways by triggering a multitude of phenotypic
drifts, including changes in vascular tone, EC shape, haemo-
stasis, permeability, downstream gene transcription, and
angiogenesis.

3.1. Thrombin, vascular tone, and phenotypic
alterations of the endothelium

Despite the evolving experimental evidence on the molecu-
lar mechanisms of thrombin’s signalling in endothelium,
mediated via PAR-1 and -4,9 thrombin’s actions in terms of
vasomotor physiology are partly elucidated. However, it is
known that thrombin induces contrary effects such as
endothelium-dependent or direct smooth muscle contrac-
tion in healthy animal arteries in vitro.3,10 Endothelium-
independent venoconstriction is observed in humans
in vivo.6 Thrombin mediates its vasoconstrictive actions by
the secretion of prostaglandin H2 (PGH2) or thromboxane
A2 (TxA2).

7,10 NO has a critical impact on the mediation of
vascular relaxation and endothelial function. It is syn-
thesized by an endothelial nitric oxide synthase (eNOS)
and this enzyme competes with arginase for L-arginine as a
substrate. It has been indicated that PARs could regulate

eNOS activity by phosphorylating the enzyme at several
sites.11 Ser1177, Ser615, Ser633, and Tyr81 enhances the
production of NO, whereas Thr495 inhibits. Thrombin med-
iates eNOS–Ser1177 phosphorylation through Gq and a
calcium and protein kinase C (PKC)-delta sensitive, but
phosphatidylinositol 3-kinase (PI3K)/Akt-independent
pathway. The phosphorylation of eNOS–Thr495 and inhi-
bition of NO synthesis is thought to be directed via the acti-
vation of the Rho/ROCK pathway.11,12 Prolonged incubation
with thrombin has been reported to inhibit the synthesis of
eNOS in EC.12,13 Moreover, multiple in vitro studies report
that thrombin increases arginase activity, thereby suppres-
sing NO production.14–16 In addition, the overexpression of
arginase by thrombin leads to the depletion of the L-arginine
pool, reducing NO production and inducing reactive oxygen
species (ROS) synthesis owing to the eNOS uncoupling,
which eventually compromises the endothelial function.17

Endothelin-1, a powerful natural vasoconstrictor, also
showed an increased expression upon stimulation with
thrombin.18

The antagonizing effects of thrombin on vasoactivity seem
relevant to the type of vascular bed and the severity of
atherosclerotic burden is also dependent on thrombin con-
centration and continuance of action. In normal arteries,
the short-term effect of thrombin is shown to support predo-
minantly the action of vasorelaxants such as NO and PGI2. On
the other hand, increased thrombin generation is usually

Figure 2 Schematic overview of thrombin’s humoral and cellular actions in normal and pathophysiological conditions. Relevant protease-activated receptors
(PAR) signalling pathways. PLT, platelet; ATIII, antithrombin III; TAT, thrombin–antithrombin complex; APC, activated protein C; HCII, heparin cofactor II;
CAMs, cell adhesive molecules; NO, nitric oxide; EDRF, endothelium-derived relaxing factors; PGI2, prostacyclin; PGH2, prostaglandin H2; TxA2, thromboxane
A2; PDP, platelet-derived products; TGF-b1, transforming growth factor-b1; PDGFAB, platelet-derived growth factorAB; ROS, reactive oxygen species; NOR-1,
neuron-derived orphan receptor-1.
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concentrated at the sites of vascular injury or within formed
thrombus in vivo, 19 but also in patients with advanced CVD
or suffering acute coronary syndromes.20 In vascular lesions
thrombin promotes a pro-inflammatory response, character-
ized by increased production of diverse chemokines and
cytokines, cell adhesion molecules (CAMs), enhanced
vascular permeability, VSMC migration and proliferation,
wall thickening and vasoconstriction.7 This might be a
result of the combination of a diminished TM and endothelial
protein C receptor (EPCR) capacity coupled to an overex-
pression of PAR-1 and PAR-2 receptors in vascular
lesions.21–23 Various mechanisms have been reported
linked to PARs upregulation. First, thrombin-induced acti-
vation of PAR-1 in cultured human EC in vitro upregulates
PAR-1 gene expression by signalling via Gi1/2 coupled to
Src and PI-3K, thus inducing the downstream Ras/MAPK
pathway.24 Selective augmentation of PAR-2 and -4 gene
expression is indicated upon treatment with inflammatory
stimuli such as interleukin (IL)-1a, (IL)-1b, tumour necrosis
factor (TNF)-a, and lipopolysaccharide (LPS).25,26 Finally,
high shear stress, also characterized by reduced expression
of various atherogenesis-related genes, inhibits PAR-1
expression in human EC in vitro.27 Thus, the alterations in
the vascular tone and the degree of expression of PARs in
the vessel wall might have additional impact on the
potency of thrombin’s cell signalling activity and the pro-
gression of atherosclerotic disease.

3.2. Impairing the barrier function and other
thrombin-mediated effects on the endothelium

Rabiet et al.28 proposed a mechanism in which thrombin
stimulates the intracellular accumulation of Ca2þ, consecu-
tively activating the PKC pathway, and causing eventual dis-
ruption of (VE)–cadherin–catenin complexes at the EC-cell
junctions. Further in vitro studies consolidated the partici-
pation of PKC in this pathophysiological process.29 Moreover,
Nobe et al.30 suggested that thrombin-induced endothelial
barrier impairment is a biphasic process in which the Rho/
Rho kinase pathway is also involved leading to rearrange-
ment of actin stress fibres. A recent study elicits a new
mechanism which gives input to a better comprehension of
the thrombin-induced endothelial gap formation and per-
meability. It was proposed that thrombin activates metallo-
protease ADAM10, which mediates VE–cadherin proteolysis
by specifically cleaving its ectodomain.31

Thrombin could also promote the generation of endothelial
microparticles (MPs) via ROCK-II activation.32 Increase levels
of endothelial MPs have been correlated with the morphology
and severity of stenosis in patients with CVD.33

3.3. Thrombin-induced oxidative stress

Aside from the induction of pro-inflammatory responses,
elevated ROS levels are presumably associated with the pro-
motion of endothelial dysfunction, combined most likely
with diminished NO bioavailability. The majority of risk
factors of atherosclerosis positively correlate with an
enhanced ROS synthesis, which tends to initiate multiple
pro-atherogenic effects.34 ROS are implicated in cellular sig-
nalling mechanisms, such as gene expression, proliferation,
migration or apoptosis. Several reports indicate the poten-
tiating effect of thrombin on ROS production in human
VSMCs35,36 and platelets.37 Different enzymatic systems

take part in the production of ROS in the vasculature, such
as xanthine oxidase, nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases, and NOS. Nevertheless,
NADPH oxidases have been indicated as a major source of
superoxide in vascular cells and myocytes.38 The importance
of NADPH oxidases in thrombin-induced ROS synthesis was
studied by the depletion of p22phox subunit, which sup-
pressed ROS formation in VSMCs.36,39 Thrombin also triggers
the activation of p38 mitogen-activated protein kinases
(MAPK) in a NADPH oxidase-dependent manner,35,40 which
establishes a link between thrombin and the MAPK/ERK
pathway, suggesting that it is also indirectly involved in pro-
cesses like cell differentiation, cell survival, and apoptosis.
Djordjevic et al.41 demonstrated that thrombin induces
elevated ROS production in EC in vitro by activating p38
MAPK and PI3K/Akt, inducing enhanced proliferation.

Intriguingly, thrombin induces its PAR-1 de novo
re-expression via Src-dependent mechanism, including G
proteins, PI3K, p38 MAPK, suggesting that redox pathways
are also implicated in the regulation of PAR-1 expression.24

The latter was consolidated by two reports indicating that
treating VSMCs with either flavin inhibitor diphenyleneiodo-
nium or antioxidants prevents PAR-1 upregulation upon
stimulation by cyclic strain or oxidative agents.42,43

Hawkins et al.44 indicated a thrombin-induced mechanism,
causing the production of mitochondrial-derived superoxide
(mROS), which is an outcome of a Ca2þ mobilization via ino-
sitol (1,4,5)-trisphosphate receptor (InsP3R), leading to a
subsequent mitochondrial uptake of Ca2þ, triggering mROS
expression and nuclear factor-kappa B (NF-kB) pathway sig-
nalling, which strongly promotes the overexpression of
intercellular cell adhesion molecule (ICAM)-1 and the
adhesion of leucocytes to the vascular endothelium.

4. Thrombin in the early stage of
atherosclerotic plaque formation

Although several more coagulation serine proteases could
function as activators of PARs by cleaving the N-terminal
extracellular domain (Figure 3) abundant in vitro exper-
imental data suggest that thrombin is a critical mediator
in the coagulation, inflammation, vessel wall crosstalk.
Thrombin enhances ROS production in the arterial vessel
wall facilitating lipid peroxidation and apoptotic processes.
Thrombin also induces a plethora of pro-inflammatory
mediators, causing alterations in gene transcription of
IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1,
CCL2), vascular cell adhesion molecule (VCAM)-1, and
ICAM-1, etc., facilitating the recruitment of blood circulat-
ing monocytes into the arterial vessel wall and encourages
early plaque formation. Its signalling mechanisms with a
pro-atherogenic impact on the arterial vessel wall are
mostly established via PARs.45

4.1. Thrombin-induced pro-inflammatory
responses in blood and vascular wall

Thrombin participates in the selective recruitment of mono-
cytes and T-cells into the vessel wall by inducing the syn-
thesis of MCP-1 in EC and monocytes.46 MCP-1 is a
well-characterized chemokine which is abundant in human
macrophage-rich atherosclerotic plaques.47 Thrombin has
been shown to augment mRNA levels encoding for MCP-1,
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IL-1b, IL-6, and TNF-a in human VSMC and less effectively, at
high concentrations, in monocytes.48 It was stated that
MCP-1 synthesis in monocytes in vitro, co-cultured with
EC, is mediated by a thrombin-induced production of frac-
talkine (FK, CX3CL1), a cytokine which effectively chemoat-
tracts T-cells and monocytes and has definite roles in CVD
progression.49 In addition, in human EC in vitro, other
inflammatory genes such as macrophage inflammatory
protein 2-alpha, and neutrophil-activating protein 3, CD69,
were reported to be overexpressed upon treatment with
thrombin.50

Some of the pro-inflammatory properties of thrombin
have been inferred from models of inflammation such as a
peritonitis mouse model, in which the administration of
the potent thrombin inhibitor hirudin suppressed the
antigen- or LPS-stimulated activation of macrophage
adhesion. In the same model, the intraperitoneal injection
of purified thrombin stimulated the adhesion of macro-
phages and the accumulation of IL-6 and MCP-1 in a
fibrinogen-dependent manner and independently from
PAR-1 activation.51 In a mouse heart-to-rat transplant
model, a crucial role of PAR-1 activation by thrombin
was shown in the initiation of leucocyte cell recruitment
in vivo.52

As stated earlier, thrombin is known to potentiate the pro-
duction of IL-6 both in EC53 and VSMC in vitro.54 IL-6 is an
important cytokine with recognized impact on inflammation
and is known to exacerbate atherosclerosis.55 Thrombin
upregulates IL-8 expression in the endothelium via p38
MAPK signalling pathway in vitro.56 Similarly, IL-8 triggers
monocyte adhesion to the endothelium under flow con-
ditions in vitro57 and is considered a possible biomarker to
predict subclinical atherosclerosis based on data from mul-
tiple clinical trials.58

Finally, thrombin induces the secretion of macrophage
migration inhibiting factor in EC and VSMC.59,60

4.2. Thrombin-mediated leucocyte adhesion,
rolling, and migration on the activated endothelium

Once the endothelium has been activated, various mol-
ecules get entangled in a molecular network of capture,
activation, and rolling. Selectins comprise a family of CAM
of transmembrane glycoproteins. L-, P-, and E-selectins
are known to act as main mediator molecules for rolling of
monocytes, neutrophils, T cells, and B cells upon binding
to the activated endothelium. E- and P- selectins, in particu-
lar, play a substantial role in the initial capturing, tethering,
and rolling of the leucocyte, relevant to the atherosclerotic
development and progression.61

E-selectin, present on EC only, was expressed on the
surface upon thrombin stimulation.62,63 Much interest was
devoted to the mechanism of this thrombin-mediated
expression and it was indicated that thrombin intervenes
in the phosphorylation and activation of p38 MAPK,
thereby inducing NF-kB-dependent and -independent path-
ways.64 Moreover, thrombin has the potential to promptly
release P-selectin from the Weibel–Palade bodies in the
EC.65 It was recently demonstrated that there is a differen-
tial regulation of endothelial exocytosis of P-selectin and
von Willebrand factor (vWF) by PARs and cAMP.66

Thrombin is not the only potent mediator for the expression
of selectins on the endothelium. Many more factors like, e.g.
TNF-a and IL-1 a intervene in the E- and P-selectin synthesis.
Elevated expression of adhesion molecules on activated EC is
considered a significant feature in the initiation of vascular
lesions.67 These pro-inflammatory responses additionally
increase the overall expression of PARs, facilitating the endo-
thelial reaction to thrombin, both with regard to endothelial
dysfunction and further atherosclerotic progression.68

Thrombin has a powerful potential to activate the endo-
thelium, especially via its PAR-1 and -2 receptors, but also
incites the overexpression of important pro-atherogenic

Figure 3 Coagulation serine proteases and PARs—activation and cellular expression. PAR, protease-activated receptor; APC, activated protein C; EC, endo-
thelial cells; VSMC, vascular smooth muscle cells.
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immunoglobulin superfamily molecules such as ICAM-1 and
VCAM-1.50,69,70 Rolling activated leucocytes are exposed to
the influence of various chemoattractants, mediated by
diverse integrins, and captured to cell adhesion glyco-
proteins. This eventually leads to the so called ‘leucocyte
arrest’.

Thrombin enhances VCAM- and ICAM-1 synthesis in cultured
human EC. NF-kB- and GATA-dependency was observed with
regard to VCAM-1 expression.71 Other in vitro studies indi-
cated that PKC-d and RhoA/ROCK activation independently
lead to thrombin-induced NF-kB-dependent ICAM-1 upregula-
tion.72,73 Moreover, the inhibition of both c-Jun N-terminal
kinase (JNK) and NF-kB pathways showed additive inhibitory
effect on ICAM-1 expression on the endothelium and high-
lighted a significant role for JNK signalling.74

The actual process of transmigration of leucocytes usually
occurs on activated endothelial regions thus facilitating the
leucocytes to pass through. Thrombin seems to interlace by
increasing the release of Ca2þ from the intracellular
stores,75,76 favouring the ligation of ICAM-1, activating Rho
family GTPases,77,78 which increases the myosin contracti-
lity of EC impairing the inter-endothelial junctions by dis-
rupting VE–cadherin complexes.79

4.3. Thrombin and monocytes/macrophages
in atherosclerosis

The effects of thrombin on monocytes and monocyte-
derived macrophages during atherosclerotic progression
remain less elucidated compared with other blood cells
such as platelets. Initially, it was indicated that VSMC may
be more sensitive to thrombin activation than monocytes
and macrophages in vitro, the latter needing much higher
concentrations of thrombin to achieve increased IL-6,
IL-1b, MCP-1, or TNF-a mRNA expression.48 Human mono-
cytes, macrophages, and dendritic cells in vitro express
PARs. PAR-1 was expressed in all cell types, whereas PAR-3
mRNA was less detected in monocytes and macrophages.
PAR-1, -2, and -3 levels were upregulated upon thrombin
treatment subsequently inducing MCP-1 expression. IL-4
downregulated PAR-1, -2, and -3 expression in dendritic
cells derived from monocytes by granulocyte–macrophage
colony-stimulating factor (GM-CSF).80 Li et al. found PAR-4
protein expression on monocytes, though they failed to
detect PAR-4 transcripts. They also showed that IL-6 was
released upon treatment with agonist peptides of PAR-1
and PAR-4, but not of PAR-3 which was associated with
PAR-3 incapability of mediating transmembrane signalling.81

Finally, there are multiple pro-inflammatory effects of
thrombin on other cell types which indirectly induce
pro-atherogenic reactions in monocytes (as discussed in
the text).

5. Thrombin in the advanced stage
of atherosclerosis

Intimal thickening, derangement of the arterial vessel wall
anatomy in concert with accumulation of lipids, infiltration
of cells, and matrix degradation, presented by a necrotic
core are the basic histological features of the advanced
atherosclerotic lesion.82 Thrombin is implicated throughout
plaque progression and destabilization events (Figure 4).

5.1. Thrombin and platelet-mediated effects in
plaque progression and destabilization

Besides being a major activator of platelets, thrombin likely
induces platelet-mediated atherogenic signals by boosting
the synthesis and release of multiple pro-inflammatory
mediators by platelets and deploying their interaction with
leucocytes to favour chemotaxis, adhesion, and migration
into the arterial vessel wall. Platelet activation by thrombin
is accomplished exclusively by targeting PAR-1 and -4 recep-
tors, expressed on their surface in humans.83 Platelets inter-
fere in atherosclerosis in each of its phases—initiation,
progression, and late complications.84–86

In vivo, thrombin-activation of human platelets results in
the rapid activation and maximal expression of CD40 ligand
(CD40L) on their surface.87 CD40L is a TNF family protein,
expressed on many cell types including platelets, and it
binds to CD40 thus forming a trimer, named CD40/CD40L
dyad. This established system potentiates downstream of
atherogenic signals in the arterial vessel wall constituents,
such as EC, VSMC, and monocytes. Downstream signalling of
CD40 is mediated by the so called TNF receptor-associated
factors which are able to recruit kinases and other effectors,
which subsequently lead to the activation of NF-kB pathway,
and thus induce the upregulation of various adhesion
molecules, matrix metalloproteinases (such as MMPs
1,2,3,9,11,13), cytokines, and growth factors.88

MCP-1 is induced upon transient interactions of thrombin-
stimulated platelets with the endothelium.89 These
pro-inflammatory events, related to MCP-1 production, are
observed in VSMC in vitro too, probably contributing to
VSMC migration and proliferation into the atherosclerotic
plaques.90 Thrombin is also known to induce IL-1b
expression under in vitro conditions, both by EC91 and
platelets.92

An additional number of thrombin-induced platelet
mediators, such as platelet factor-4 (PF-4), RANTES (Regu-
lated upon Activation, Normal T-cell Expressed, and
Secreted/CCL5),93 and neutrophil-activating peptide
(NAP)-294 are deposited by activated platelets on the endo-
thelium to support leucocyte arrest and to favour the sub-
sequent transmigration events. PF-4 (CXCL4) is a small
chemokine also found in atherosclerotic lesions where its
concentration correlates with severity of the plaques.95

PF-4 protects monocytes against apoptosis and induces
their differentiation,96 whereas it serves as a stimulator of
oxidative stress in macrophages.97

Aside from its vessel wall-related oxidative activities, a
recent study provides evidence for the role of thrombin in
evoking apoptosis in human platelets in vitro.98 It was
demonstrated that apoptosis was induced via H2O2 pro-
duction, mediated by mitochondrial cytochrome c release
and the activation of caspase-9, leading to caspase-3 acti-
vation and ultimately to phosphatidylserine (PS) exposure.
On the other hand, it is well known that MPs are mainly
released from cells upon activation or apoptosis. Moreover,
increased number of circulation procoagulant MPs are
positively associated with the initiation and dissemination
of pro-inflammatory processes but also with the severity
of CVD.99

In conclusion, thrombin appears to have an important role
in platelet-mediated pro-inflammatory cascades, resulting
in a stimulation of ICAM-1, VCAM-1, E-selectin, and MMPs
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production, all processes that contribute to plaque pro-
gression, subsequent destabilization, and rupture.88,100–102

5.2. Thrombin and VSMC migration and
proliferation

Besides its functions in the regulation of vascular tone,
thrombin mediates migration, proliferation, and hypertro-
phy of VSMC. VSMC are known to express PAR-1, -2, and -4
thus potentiating the effect of thrombin in the activation
of VSMC proliferation and migration.103 Multiple studies
report on situations associated with changes in the
expression of PARs in VSMC. We have to take into consider-
ation that the upregulation of these receptors might be as
crucial as the direct effect of thrombin alone, because of
the fact that they are the main mediators for its further
actions. Hence, an upregulation of PAR-1 in human and rat

VSMC in vivo is demonstrated upon the release of multiple
platelet-derived products (PDP) such as transforming
growth factor (TGF)-b1, platelet-derived growth factorAB

(PDGFAB) and to a lesser extent, serotonin.104 Thus a long-
term generation of new thrombin receptors at sites of vascu-
lar injury might consolidate that thrombin amplifies its
pro-atherogenic actions throughout the development of a
vascular lesion. Moreover, PAR-1 expression seems respon-
sive to physical stress in both human and rat aortic VSMCs
in vitro—being enhanced when cyclic strain is applied43

and being inhibited upon stimulation with high shear
stress.105 This substantiates the idea that VSMC requires
physical stimulation (flow or strain) in order to maintain
vessel wall homeostasis, and perturbation of this process
may be involved in atherosclerosis where an overexpression
of PAR-1 and PAR-2 receptors has been demonstrated.21–23

Figure 4 Proposed mechanism for thrombin-induced atherogenesis. All known thrombin-induced pro-atherogenic actions are depicted in a consecutive way,
showing its impact throughout the different stages of atherosclerotic development. Square with inverted ‘V’ indicates activation; encircled plus symbol indicates
induction; upward arrow indicates elevated levels; MCP-1, monocyte chemoattractant protein-1; PDGF, platelet-derived growth factor; EDN-1, endothelin-1
gene; ECE-1, endothelin converting enzyme-1 gene; COX-2, cyclooxygenase-2; MIF, migration inhibiting factor; ADAM10, A Disintegrin And Metalloproteinase
protein-10; ROS, reactive oxygen species; mROS, mitochondrial-derived reactive oxygen species; IL, interleukin; TNF-a, tumour necrosis factor-a; Mo, monocyte;
NO, nitric oxide; ICAM-1, intercellular cell adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; MPs, microparticles; CD40L, CD40 Ligand; MMP,
matrix metalloproteinases; PF-4, platelet factor-4; RANTES, Regulated upon Activation, Normal T-Cell Expressed, and Secreted; NAP-2, neutrophil-activating
peptide-2; NOR-1, neuron-derived orphan receptor-1; VEGF, vascular endothelial growth factor; PARs, protease-activated receptors; TF, tissue factor; PAI-1, plas-
minogen activator inhibitor-1.
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Wang et al. studied thrombin-induced VSMC migration in
cultured VSMC and demonstrated that the process is
p38-MAPK-mediated upon the generation of ROS. Maruyama
et al.106 indicated that thrombin-induced proliferation in
cultured human VSMC is regulated by NF-kB. VSMC prolifer-
ation appears to be regulated by neuron-derived orphan
receptor-1 (NOR-1), a transcription factor overexpressed in
human atherosclerotic plaques upon stimulation with
thrombin.107

Finally, the regulation of PDGF in the endothelium also
appears to be linked to thrombin. PDGF is related to ather-
osclerosis for its properties to stimulate VSMC migration and
proliferation. PDGF levels rise upon treatment with throm-
bin of human umbilical vein EC, together with monocyte
transmigration and E-selectin expression.108

5.3. Thrombin and its pro-angiogenic responses

Neoangiogenesis is closely associated with plaque pro-
gression. Intraplaque haemorrhage is currently considered
a critical factor for plaque destabilization and is predomi-
nantly attributed to the neovascularization of the intima
and media by disorganized and immature ‘leaky’ microves-
sels.109 Thrombin promotes angiogenesis both in vitro and
in vivo.110 It is indicated that it reduces the ability of EC
to affix to their anchorage on the basement membrane,
thereby promoting early angiogenic events.111 Furthermore,
it has been stated that thrombin increases the mRNA and
protein levels of anb3-integrin in a concentration-dependent
manner in EC.112 anb3-integrin is a known angiogenic marker
in vascular tissue and it directly interacts with thrombin,
thereby facilitating EC attachment, migration, and survival.
anb3-integrin also mediates progelatinase A (MMP-2) acti-
vation. Stimulation with thrombin has shown the induction
of MMP-2 release in both human EC113 and rat aorta in a
dose-dependent mode in vitro.114 In addition, thrombin aug-
ments the expression of vascular endothelial growth factor
(VEGF) and angiopoietin-2 via PAR-1-mediated mechan-
ism.115,116 Finally, various studies indicate a relevant role
for hypoxia-inducible factor-1a signalling pathway in the
thrombin-induced VEGF gene expression and angiogenesis.

6. Thrombin and atherosclerosis—in vivo
animal studies

Despite the wealth of existing data on thrombin’s
pro-atherogenic actions in vitro, we should point out that
many of these studies have been carried out with cell cul-
tures and purified thrombin, in the absence of receptors
and inhibitors, such that the relevance of any of these out-
comes may be debated. However, the critical role of throm-
bin in atherogenesis is supported by recent in vivo studies.

Indirect evidence shows that heterozygous tissue factor
pathway inhibitor (TFPI)-deficient ApoE2/2 mice exhibited
a significantly greater atherosclerotic burden compared
with TFPI wild-type genotype.117 TFPI is a potent inhibitor
of TF-mediated thrombin generation.

Direct evidence for the involvement of thrombin comes
from experiments in which the administration of the direct
thrombin inhibitor melagatran to ApoE2/2 mice reduced
lesion progression in brachiocephalic arteries. Total lesion
area was significantly decreased in melagatran-treated
animals. Thrombin inhibition also contributed to plaque

stability (significant increase of immunohistochemical stain-
ing against VSMC a-actin), characterized by thicker fibrous
caps, increased media thickness, smaller necrotic cores,
and a significant decrease of staining against MMP-9.118

MMP-9 is considered an important catalyser of plaque
rupture.

Finally, in a study employing transgenic double knock-out
mice, deficient for HCII, a natural thrombin inhibitor, on a
ApoE2/2 background, HCII deficiency was associated with
approximately 64% larger total plaque area and increased
neointimal formation than in wild-type mice. In support of
these findings, the administration of dermatan sulfate,
which potentiates the inhibitory function of HCII about
10 000-fold, showed a HCII-dependent antiproliferative
effect in wild-type animals.119

7. Clinical studies

Thrombin’s impact on atherosclerotic development is a rela-
tively novel topic to investigate and no specific clinical trials
have been conducted yet. However, several reports
indirectly demonstrate its importance with regard to CVD
progression.

Aihara et al.120 found a negative correlation between
plasma HCII activity and ultrasound imaged plaque thickness
of the carotid arteries in 306 elderly Japanese patients and
suggested that HCII inhibits atherogenesis, thereby also
showing a possible indirect link between higher thrombin
generation and atherosclerosis progression.

Moreover, various thrombotic markers measured upon pro-
gressive CVD, indicate an indirect link for thrombin and
atherosclerosis. The Cardiovascular Health Study (CHS)
showed that prothrombin fragments F1-2 (F1-2) and fibrino-
peptide A measured in 5201 individuals (399 free of CVD),
which are markers for thrombin generation in vivo, corre-
lated with various CVD risk factors such as triglycerides, C-
reactive protein, low ankle-brachial pressure index (ABPI),
etc.121 F1-2 plasma levels were also independently associ-
ated with carotid intima-media thickness in a population
of 181 middle-aged adults, free of clinically overt athero-
sclerosis.122 Moreover, Nylaende et al. studied the relation-
ship of prothrombotic activity and the severity of peripheral
arterial occlusive disease (PAD). Multiple haemostatic
markers such as vWF, soluble TM, soluble TF, TAT complex,
and D-dimer were determined in a cross-sectional study of
127 patients, diagnosed with PAD. Plasma levels of
D-dimer, TAT complex, and fibrinogen significantly corre-
lated with the severity of atherosclerotic burden, evaluated
by maximum treadmill walking distance and ABPI.123 A
recent meta-analysis of 191 studies, investigating seven
common haemostatic gene polymorphisms in CVD, indicated
that the 1691A variant of the factor V gene and 20210A
variant of the prothrombin gene, both of which promote
thrombin generation in blood, might be associated with
the risk of CAD.124 Moreover, it was recently shown that
long after acute myocardial infarction, patients generate
higher, earlier, and faster thrombin in comparison with
chronic CAD patients.125 This strengthens the concept of vul-
nerable atherosclerotic plaques contributing to the propa-
gation of thrombin generation, thereby leading to
aggravation of CVD.

Several more indirect cross-relations might be of interest
in this context. Numerous clinical trials postulate that
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haemostatic factors such as fibrinogen, C-reactive protein,
plasminogen activator inhibitor-1 (PAI-1) are risk factors
for CVD progression.126 A recent study associated the pro-
gression of symptomatic intracranial large artery athero-
sclerosis with a pro-inflammatory state and impaired
fibrinolysis, characterized with elevated concentrations of
the endogenous fibrinolysis inhibitor PAI-1.127 Despite the
fact that thrombin is not a sole mediator of PAI-1 it
induces its expression together with TF128,129 in EC
in vitro. TF and PAI-1 are already recognized for their
pro-inflammatory features. In addition, many studies
demonstrate a relationship between elevated PAI-1 levels
and the development of atherosclerosis, not only systemi-
cally but also locally.130

Leucocytosis, and high neutrophil count in particular, may
represent another intriguing mechanism for enhancing
chronic atherosclerosis via maintaining a hypercoagulable
state in CVD patients.131 Neutrophils are a pivotal link
between inflammation and coagulation. They produce mul-
tiple procoagulant factors and are able to release diverse
matrix-destabilizing enzymes (elastase, cathepsin G),
which easily activate the coagulation system.132 They con-
tribute to the liberation of TF-laden MPs into the blood
stream upon stimulation with cytokines and consequent
platelet adhesion via P-selectin.132 This seems another
potential mechanism for a continuous thrombin generation
in vivo, facilitating the amplification of thrombin’s
pro-atherogenic features.

8. Summary and Perspectives

From histological studies an intense interaction between
coagulation, inflammation, and the complex process of
atherosclerosis has emerged.133 Advanced atherosclerotic
lesions show evidence of the presence of active coagulation
products including fibrin and fibrin cleavage products.
Hence, the presence of an active coagulation cascade
within the arterial vessel wall seems likely and our recent
immunohistochemical data show that essentially all coagu-
lation proteins are detectable in the atherosclerotic
lesion.134 In the coagulation cascade we and others consider
the generation of thrombin as one of the key regulating
events. In vivo, thrombin is thought to be continuously gen-
erated as indicated by measurable quantities of F1-2 and
TAT complexes in the plasma of normal individuals. Physio-
logically, the generation of thrombin is the product of syn-
thesis under influence of TF and inhibition by several
inhibitors including AT and HCII. The net amount of thrombin
will be determined by the rate of synthesis and inactivation,
the localization (free or bound to surfaces), and its associ-
ated binding to receptors including PARs and TM. Upon pro-
gressive atherosclerosis, there is a diminution in the level of
TM at the endothelium,1 which impairs the anticoagulant
action of thrombin and the increased production of thrombin
because of TF exposure allows interactions of thrombin with
components of the arterial vessel wall, including dysfunc-
tional EC on both initial and advanced lesions and other
cell types in ruptured (thrombotic) plaques.

The continuous generation of mostly procoagulant throm-
bin may contribute to a vicious circle in the thrombin-
induced atherogenesis process. As discussed, thrombin
acts mostly via PARs, inducing multiple vascular pro-
inflammatory reactions. The authors are aware that also

other coagulation proteases including factor VIIa, factor
Xa, and APC contain PAR-activation properties that may
interfere with or add to the actions of thrombin. There
has indeed been a public debate on the preference of
thrombin vis-à-vis APC in their binding to PAR-1 and this
debate has not yet been settled.135 Atherosclerotic altera-
tions in the vessel wall are known to increase the level of
expressed PARs on the surface of most vessel wall constitu-
ents.21–23 Thrombin-mediated pro-inflammatory events are
a powerful trigger for more thrombin formation, which
may eventually amplify its contribution to further athero-
sclerotic progression.

Finally, from a clinical perspective the introduction of a
number of selective oral anticoagulants that will also be
aimed for long-term administration makes it of actual
importance to consider the effects and possible side-effects
of thrombin inhibition on the extent and nature of athero-
sclerosis. Hopefully, thrombin inhibition is, as predicted
from animal experiments, associated with a favourable
change in atherosclerosis phenotype. However, the typical
Janus face of many clotting proteases should warn against
overt enthusiasm and calls for prospective clinical studies.
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