Abstract

Our studies on brightness information processing in Macaque monkey visual cortex suggest that the thin stripes in the secondary visual area (V2) are preferentially activated by brightness stimuli (such as full field luminance modulation and illusory edge-induced brightness modulation). To further examine this possibility, we used intrinsic signal optical imaging to examine contrast response of different functional domains in primary and secondary visual areas (V1 and V2). Color and orientation stimuli were used to map functional domains in V1 (color domains, orientation domains) and V2 (thin stripes, thick/pale stripes). To examine contrast response, sinusoidal gratings at different contrasts and spatial frequencies were presented. We find that, consistent with previous studies, the optical signal increased systematically with contrast level. Unlike single-unit responses, optical signals for both color domains and orientation domains in V1 exhibit linear contrast response functions, thereby providing a large dynamic range for V1 contrast response. In contrast to domains in V1, domains in V2 exhibit nonlinear responses, characterized by high gain at low contrasts, saturating at a mid–high contrast levels. At high contrasts, thin stripes exhibit increasing response, whereas thick/pale stripes saturate, consistent with a strong parvocellular input to thin stripes. These findings suggest that, with respect to contrast encoding, thin stripes have a larger dynamic range than thick/pale stripes and further support a role for thin stripes in processing of brightness information.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
You do not currently have access to this article.