Abstract

The analysis and representation of visual cues to self-motion (egomotion) is primarily associated with cortical areas MST, VIP, and (recently) cingulate sulcus visual area (CSv). Various other areas, including visual areas V6 and V6A, and vestibular areas parietoinsular vestibular cortex (PIVC), putative area 2v (p2v), and 3aNv, are also potentially suited to processing egomotion (in some cases based on multisensory cues), but it is not known whether they are in fact involved in this process. In a functional magnetic resonance imaging (fMRI) experiment, we presented human participants with 2 types of random dot kinematograms. Both contained coherent motion but one simulated egomotion while the other did not. An area in the parieto-occipital sulcus that may correspond to V6, PIVC, and p2v were all differentially responsive to egomotion-compatible visual stimuli, suggesting that they may be involved in encoding egomotion. More generally, we show that the use of such stimuli provides a simple and reliable fMRI localizer for human PIVC and p2v, which hitherto required galvanic or caloric stimulation to be identified.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
You do not currently have access to this article.