Abstract

Retrograde tracer substances were injected into either the inferior or the superior colliculus in the Madagascan hedgehog tenrec, Echinops telfairi (Insectivora), to reveal the laminar and regional distribution of corticotectal cells and to correlate the labeled areas with architectural data. The tenrecs, taken from our breeding colony, have one of the least differentiated cerebral cortices among mammals, and experimental investigations of such brains are important for the understanding of the evolution and intrinsic organization of the more highly differentiated cerebral cortex in other placenta I mammals.

Following injections into the inferior colliculus, cortical neurons were labeled bilaterally, with an ipsilateral predominance. Most labeled cells were found in the caudolateral hemisphere, area 4 as defined by Rehkämper (1981); some were in the somatosensorimotor cortex, as defined in a previous study. The labeled neurons in area 4 were located in layers V and VI, forming two bands of cells separated from each other by a poorly labeled interspace. A further subdivision of this presumed auditory region could not be achieved. This entire area was also weakly labeled following tracer injections into the superior colliculus. The labeled cells, however, were restricted to layer V of the ipsilateral side.

The most consistent sites of labeled cells following injections into the superior colliculus were found in layer V of the ipsilateral caudomedial hemisphere, Rehkämper's caudal area 3, and the transitional zone adjacent to the retrosplenial cortex. This area is small in comparison to the entire region that was found in this study to project to the superior colliculus. The superior colliculus also receives projections from the ipsilateral sensorimotor and cingulate cortices. The latter projections are particularly striking in comparison to other mammals because they originate from along the entire rostrocaudal extent of the cingulate/retrosplenial region.

You do not currently have access to this article.