Current models hold that action selection is achieved by competitive interactions between co-existing motor representations associated with each potential action. Critically, selection via competition requires biasing signals to enable one of these alternatives to be selected. This study tested the hypothesis that selection is related to the prestimulus excitability of neuronal ensembles in which movements are encoded, as assessed through the phase of delta-band oscillations (2–4 Hz). Electroencephalography was recorded while participants performed speeded reaches toward appearing visual targets using the hand of their choice. The target locations were controlled such that only targets for which the left and right hands were selected equally often were used for analysis. Results revealed that hand selection as well as reach reaction times strongly depended upon the instantaneous phase of delta at the moment of target onset. This effect was maximal over contralateral motor regions, and occurred in the absence of prestimulus alpha- (8–12 Hz) and beta-band (15–30 Hz) amplitude modulations. These findings demonstrate that the excitability of motor regions acts as a modulatory factor for hand choice during reaching. They extend current models by showing that action selection is related to the underlying brain state independently of previously known decision variables.

You do not currently have access to this article.