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Recent studies have described muscle synergies as overlapping,
multimuscle groups defined by synchronous covariation in activa-
tion intensity. A different approach regards a synergy as a fixed
temporal sequence of bursts of activity across groups of motoneur-
ons. To pursue this latter definition, the present study used a
principal component (PC) analysis tailored to reveal the across-
muscle temporal synergies of human hand movement. Electromyo-
graphic (EMG) activity was recorded as subjects used a manual
alphabet to spell a list of words. The analysis was applied to the
EMG waveforms from 27 letter-to-letter transitions of equal
duration. The first PC (of 27) represented the main temporal
synergy; after practice, it began to account for more of the EMG
variance (up to 40%). This main synergy began with a burst in the 4-
finger extensor and a silent period in the flexors. There were then
progressively later and shorter bursts in the thumb abductor, thumb
flexor, little finger abductor, and finally the finger flexors. The
results suggest that hand movements may be generated by activity
waves unfolding in time. Because finger muscles are under
relatively direct cortical control, this suggests a specific form of
cortical pattern generation.
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Introduction

Recent research has reopened the issue of muscle synergies. In

the 1980s, the main question was the extent to which activation

combinations were flexible or fixed (Nashner 1977; Buchanan

and others 1986; Soechting and Lacquaniti 1989; Macpherson

1991). More recently, the goal has been to determine the extent

to which each muscle participates in each synergy and to

quantify the number of synergies needed to account for

a particular motor pattern. For example, it has been determined

that about 6 muscle synergies can almost fully account for the

electromyographic (EMG) activity of about 12 frog leg muscles

during various behaviors (Tresch and others 1999; Saltiel and

others 2001; Hart and Giszter 2004). Somewhat akin to the

traditional concept of central pattern generators for mammalian

gait, scratching, etc., these frog muscle synergies are thought to

represent the output of distinct, modular, premotor drives in

the spinal cord (Bizzi and others 1995, 2000).

The distinction between ‘‘synchronous synergies’’ and ‘‘time-

varying synergies’’ for the control of frog leg movements had

been introduced by d’Avella and Bizzi (2005). A synchronous

synergy is a vector of weighting coefficients that specify the

relative involvement (strength of membership) of each muscle

in the group. In contrast, a time-varying synergy is a collection of

EMG bursts in various muscles. The bursts may be of different

intensity and duration for the different muscles, but the muscle

membership and temporal pattern are fixed for each synergy

(see also d’Avella and others 2003). d’Avella and Bizzi (2005)

explained that several synchronous synergies may be scaled by a

different amount at each point in time and then summed

together to fit the EMG data for a particular movement. How-

ever, unless all muscles in a given synergy normally burst in

synchrony, a different analytical approach is needed to identify

the invariant temporal patterning of EMG bursts in a data set. In

the present study, we used such an approach to identify the

across-muscle temporal muscle synergies for human hand

movements.

Although finger movements may be fundamentally different

from locomotor activity (being under more direct cortical

control), synergy analysis is a useful approach. Hand movements

have been characterized in terms of synchronous muscle

synergies (Holdefer and Miller 2002; Brochier and others

2004; Weiss and Flanders 2004), but the temporal muscle

synergies remain to be identified. Santello and others (2002)

applied a temporal synergy analysis to the sequence of joint

rotations involved in reaching to grasp 20 different objects.

These investigators found that the temporal pattern was well

characterized as the weighted sum of 2 orthogonal compo-

nents: 1) an extension/abduction and then flexion/adduction of

all joints in unison and 2) a monotonic progression from the

current to the final joint angles, serving to precisely shape the

hand to the specific object in the second half of the reach.

The present study used a similar temporal synergy analysis on

the EMG data from a hand movement sequence, that of

American Sign Language (ASL) fingerspelling.

Fingerspelling is a well-specified task that features a rich

variety of postural transitions. Our group has proposed that the

study of fingerspelling movements, coupled with studies of

reaching to grasp various objects and keyboard positioning

movements, represents a comprehensive set of tasks in which

humans skillfully make individuated finger movements without

having significant force interactions with external objects. As

partially mentioned above, we have previously characterized

the patterns of joint rotations for all these tasks (Santello and

others 1989, 2002; Soechting and Flanders 1997; Jerde and

others 2003a, 2003b) as well as the synchronous muscle syn-

ergies for static grasping and fingerspelling hand shapes (Weiss

and Flanders 2004). For our initial study of temporal muscle

synergies, we chose to focus on dynamic fingerspelling move-

ments, a task that is both rhythmic and complex. We reasoned

that the rhythmicity would allow us to align and scale our EMG

data into discrete segments (for averaging and analysis), and the

complexity would insure that we would observe a realistic
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amount of individuation in the finger movements. We recorded

EMG as nonfluent human subjects practiced using the ASL

manual alphabet to spell a list of words. We sought to

quantitatively describe the EMG temporal patterns in terms of

coactivation and reciprocal activation of pairs of muscles

(relative amplitude fluctuations), as well as the relative onset

times and burst durations. Thus, we sought to reveal the

invariant across-muscle temporal synergies.

Materials and Methods

Subjects
Nine human subjects (6 males and 3 females, mean age 29) participated

in our experiment after giving informed consent. To determine the

extent of hand dominance, each was asked to fill out the Edinburgh

Handedness Inventory (Oldfield 1971). Six subjects were right handed

(mean score +78), and 3 were left handed (mean score –72). None of the

subjects were fluent signers. However, they were given ample oppor-

tunity to become familiar with the hand shapes that represent the 26

letters of the ASL manual alphabet.

Task and Procedure
The subjects were comfortably seated with the elbow of the dominant

arm on an armrest. Each was asked to finger spell words that were

presented on a computer screen. An entire set of hand shapes was

presented graphically, with the printed letters underneath, as in the top

row of Figure 1. These words were chosen to contain a wide range of

hand shape transitions. The spelling of each word started and ended

with a neutral, relaxed hand shape. Each block of trials consisted of

spelling each of the 6 words listed in Figure 1 seven times in a row, with

a pause in between the words/trials, that is, WHITE 7 times, followed by

TIE 7 times, etc. Thus, each block contained 42 trials.

There were 7 blocks of dynamic spelling trials, which were used to

examine changes in the EMG patterns across skill acquisition. These 7

blocks were alternated with 8 groups of static trials (starting and ending

with a group of static trials). In the static trials, all letters (n = 14)

occurring in the 6 words were presented one at a time in random order

and the shape was held for 2 s. These trials were intended to help the

subjects learn (by providing rest and reinforcement), and the EMG data

were used to control for recording stability (as explained below).

Subjects were allowed as much rest as they wanted in between blocks or

words to prevent fatigue. We stressed to subjects that during spelling,

they were not allowed to produce force with their fingers against other

fingers, for example, they were told not to squeeze when making a fist.

Ideally, all force produced by the hand muscles was supposed to go into

moving the fingers or holding the hand in a specific shape.

Data Acquisition

Hand Shape

Subjects wore either a left-handed or a right-handed version of an

instrumented glove (Cyberglove, Virtual Technologies, Palo Alto, CA),

depending on hand dominance. The glove was individually calibrated for

each subject using a standard set of postures. We recorded from 17

sensors with an angular resolution of <0.5� and a temporal resolution of

12 ms. The measured angles were the metacarpal phalangeal and

proximal interphalangeal (PIP) joint angles for the thumb and the 4

fingers; abduction of the thumb, middle, ring, and little fingers; thumb

rotation; and wrist pitch and yaw.

Muscle Activity

Small bipolar Ag/AgCl electrodes were attached to cleaned and abraded

skin. The conductive surfaces were 2 mm in diameter, and the disk

centers were positioned 10 mm apart. (Permanent electrodes similar to

our discontinued SensorMedics set are currently available from Dis-

count Disposables, St. Albans, VT.) The electrodes were custom soldered

to shielded cable and led to customized A-M Systems EMG amplifiers.

The ground was connected to the contralateral wrist. Muscle activity

was amplified and band-pass filtered (60--500 Hz). EMG signals from 8

channels were digitized at 1000 samples per second.

We recorded surface EMG from the same sites as illustrated in our

previous study of static hand shapes (Fig. 1 of Weiss and Flanders 2004).

We recorded from 2 parts of the first dorsal interosseus: the part near

the thumb (DIT) and the part closer to the metacarpal of the index

finger (DIF). On the palmar side of the thumb, we recorded from

abductor pollicis brevis (APB) and flexor pollicis brevis (FPB). The other

intrinsic muscle was the abductor digiti minimi (ADM), a muscle that is

well isolated from other muscles and moves only the little finger.

We also recorded from some of the extrinsic muscles that act upon all

4 fingers. The flexor digitorum superficialis (FDS), a forearmmuscle that

flexes all fingers, is a difficult muscle for recordings with surface

electrodes because it is partly hidden underneath other muscles and

tendons. The recording locations for this muscle were consistent with

our previous publication (Weiss and Flanders 2004) but different from

those suggested in older literature. After conducting a cadaver study and

a preliminary recording study with numerous electrode placements, we

decided to place one set of electrodes (FD) 25% of the distance from the

Figure 1. The ASL hand shapes of the words spelled in each of the 7 blocks of trials.
During the experiment, a picture of the letters and hand shapes of the current word to
be spelled (e.g., one row of this figure) was presented to the subject on the computer
screen. In each block of trials, the subjects spelled WHITE 7 times and then TIE 7
times, followed by 7 trials each with the words ABYSS, BAY, VOLCANO, and COLA.
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wrist crease to the elbow crease between the tendons of palmaris

longus and flexor carpi radialis (Fig. 2, recording location a). We placed

a second set (FD2) about 33% of the distance from the wrist crease to

the elbow crease on the ulnar side of the palmaris longus tendon (Fig. 2,

recording location b). This positioned the electrodes directly over FDS

but did not allow for separate recordings from digit-specific FDS

compartments. In test maneuvers involving rhythmical, voluntary

flexion--extension of individual PIP joints, our FD electrode recorded

mostly from the middle finger portion of FDS (Fig. 2, top row), whereas

the FD2 electrode picked up more activity during movements of the

other 3 fingers (Fig. 2, second row). Figure 2 also shows test recordings

from locations recommended for fine-wire (index finger FDS) electro-

des (location c, Burgar and others 1997) and for surface (4-finger flexor)

electrodes (location d, Basmajian and Blumenstein 1989). The present

study did not use these locations due to the relatively large amount of

EMG recorded during wrist flexion (middle right panel of Fig. 2),

presumably due to the close proximity of flexor carpi radialis and the

other wrist flexors (lower left panel of Fig. 2).

Using the eighth EMG channel, we recorded from the 4-finger

extensor, extensor digitorum (ED). For simplicity, the 4 EMG channels

devoted to DIT, DIF, FD, and FD2 will be referred to as representing 4

different ‘‘muscles’’ even though they really represent different parts of

2 muscles. For the remaining 4 muscles, we placed a single bipolar

electrode pair over the middle portion of the muscle.

Compared with most conventional EMG systems, our bipolar surface

electrodes were very small and closely spaced. We assume that they

recorded from the motor units directly under the electrode with the

largest amplitudes and from more distant motor units with peak

amplitudes that decayed exponentially with distance (Basmajian and

De Luca 1985). In our previous study with the same surface electrodes

(Weiss and Flanders 2004), we showed that the same unit could be

identified on the DIT and DIF electrodes (possibly due to overlapping

Figure 2. A demonstration of our choice of FDS (FD and FD2) recording locations (rows a, b, c, and d), and an evaluation of the degree of cross talk recorded from APB electrodes
during the firing of an FPB motor unit (rows e and f, left panels, trial 2 of Weiss and Flanders 2004). During a trial involving a different static hand shape, these 2 thumb EMG
channels showed similar overall amplitudes (rows e and f, right panels, trial 7 of Weiss and Flanders 2004). On the anatomical illustration (lower left panel), the bipolar electrode
spacing (1 cm) is drawn to scale. Thus, the APB and FPB recording locations were separated by 2 cm.
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fiber fields as well as the close distance). However, the other channels

appeared to be well separated. For the present study, to quantify the

extent to which our APB electrode recorded FPB units (and vice versa),

we reanalyzed data from 7 units previously isolated from the surface

EMG with a template-matching algorithm (listed in Table 3 of Weiss and

Flanders 2004). In 4 of the 7 cases, the identified unit could not be seen

in the (less than 2 cm distant) EMG recording from the adjacent muscle.

In the other 3 cases, the amplitude decrement was on average 84% (±8%
standard deviation). A representative example of this level of cross talk is

shown in the lower right panel of Figure 2.

We defer further comments on EMG technical considerations to the

Discussion, but note here that the number of independent EMG

channels (8, 7, or 6) had no bearing on the main results of this analysis.

This is because the temporal synergy analysis combined data from each

EMG channel separately across the 27movements (instead of combining

data across the 8 EMG channels).

Data Analysis

Processing Cyberglove Data

The Cyberglove data were used in 2 ways. First, we checked that the

words were spelled correctly, that is, that the right sequence of hand

shapes was produced. For viewing images of the recorded hand shapes,

we rendered the Cyberglove data using Persistence of Vision Ray Tracer

(copyrighted freeware). Second, because subjects paused for each

letter, we segmented the signals into letter transitions using the minima

of the summed, rectified joint angular velocity traces (see Jerde and

others 2003b). This is illustrated in the upper part of Figure 3. After

recording the actual transition times, each letter transition was time

normalized to 100 samples. The time-normalized velocity traces of the 7

consecutive trials of the same word were then correlated with one

another, and the best 5 trials (i.e., the ones having the highest mean

correlation to the other trials) were selected for the subsequent EMG

analysis. This allowed us to remove the occasional error trials while

maintaining the same number of trials in each EMG average.

Processing EMG Signals

For the dynamic spelling trials, the EMG signals were rectified and then

the sample frequency was reduced by taking the average values of each

5 consecutive data points (i.e., each 5 ms). Next, the signal was digitally

smoothed using a 2-sided exponential filter with a time constant of 5 ms.

For each static (control) trial, the average rectified EMG amplitude

was calculated. As in our previous study (Weiss and Flanders 2004), the

average values of the static trials were used to insure that there were no

sudden changes in the amplitude of the EMG signal across the 1- to 2-h-

long experimental session. Unfortunately, this did happen in 5 of the 72

cases (8 EMGs 3 9 subjects) and was usually a single event (probably

triggered by sweating in the glove, followed by a movement that broke

the closest seal of the adhesive around the gel-covered 2-mm conduc-

tive surface). Four of the 5 cases were thumbmuscles (APB or FPB). The

change in static EMG levels before and after the dynamic block was then

used to correct the amplitude gain of the EMG from the dynamic trials

(average scale factor = 7.0 ± 4.7).

The dynamic EMG signals from each letter transition were time

normalized (by resampling to 100 data points) between each of the

transition points measured from the Cyberglove data. (We also used

a fixed time shift of 36 ms to account for the electromechanical delay.)

As shown in Figure 3 and documented previously (Jerde and others

2003b), letter transitions occur at regular intervals. Thus, the time

normalization corrected for the small amount of variability across letters

(about 20 ms) as well as the variability across repeat trials (about 10 ms

after practice).

For each of the 9 subjects, we then averaged the time-normalized

EMG signals of the best 5 repeat trials (selected based on the Cyberglove

data, as described above), resulting in a single smooth EMG signal for

each muscle, for each letter/word, in each block. For each smooth EMG

signal (i.e., for each of the 8 channels), the minimum value over the

entire experiment was subtracted and the maximum value over the

entire experiment was used to normalize the peak. This resulted in

signals ranging from 0 to 1 for each muscle.

For the analysis of skill acquisition, we examined the EMG pattern in

each of the 7 practice blocks. In all other cases, a grand mean EMG signal

was calculated by averaging the last 5 blocks, where a relatively stable

EMG pattern was observed. Before analyzing the pattern across muscles,

the grand mean for each muscle was normalized to its maximum value

(see Figs 3 and 4).

Principal Component Analysis

We used principal component (PC) analysis to find the most common

multimuscle burst patterns across the 27 letter transitions (the

‘‘temporal synergies’’). As mentioned in the Introduction, patterns of

covariation across primate hand muscles have previously been found

Figure 3. Cyberglove and EMG data from one trial where the subject spelled the word
ABYSS. The bottom row shows the target sequence of hand shapes. The top panel
shows the rectified joint angular velocity (rad/s), summed over all joints for one trial;
subjects typically paused for each letter. Based on the minima of this trace, the trial
was segmented (dashed vertical lines) into transitions between letters. The next panel
shows the muscle activity recorded from 6 of the 8 EMG channels, for this trial. The
muscles were DIT, APB, FPB, ADM, flexor digitorum superficialis (FD), and ED. The
lower panel also shows EMG data from a second channel on FDS (FD2) and shows
processed EMG data from all 9 subjects, for 3 EMG channels. These EMG data were
rectified, smoothed, time normalized based on the velocity segments, and then
averaged (across trials and blocks). Notice the difference between FD and FD2 during
the A to B transition and the reciprocal relation between FD/FD2 and ED activity.
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using a synchronous synergy analysis (Holdefer and Miller 2002;

Brochier and others 2004; Weiss and Flanders 2004). Thus, the main

goal of the present study was to focus on the temporal aspects of

bursting patterns (i.e., the temporal synergies). However, for compar-

ison (in Fig. 10), we also applied a synchronous synergy analysis.

To delineate the temporal synergies, we designed an analytical

approach aimed at revealing the main activation waveforms of the 8

muscles, linked by their concurrent presence in the 27 letter transitions.

We also tried independent component analysis for comparison (data not

shown) but settled on PC analysis without rotation to provide a ranked

orthogonal set of components. Our PC approach is similar to that

described by Santello and others (2002), except that the previous study

used 15 joint angles and 20 movements and the present study used 8

EMGs and 27 movements. We did a separate analysis for each of the 9

subjects. We did a separate analysis for each of the 7 blocks, and then we

also did the analysis using the grand mean from the last 5 blocks.

The input to our temporal synergy PC analysis was the averaged

smoothed EMG signal for each muscle, for each letter transition. As

illustrated in Figure 4a, each of the 27 letter-transition vectors was

composed of 8 single-letter EMG waveforms. Figure 4a shows the first 5

vectors (top) and last 4 vectors (bottom) that formed the columns of

a typical input matrix (5-block grandmeans from one subject). Figure 4b

shows the EMG waveforms of the first PC, for the data set in Figure 4a.

We did a PC waveform analysis of the type described by Glaser and

Ruchkin (1976), using the Matlab ‘‘princomp’’ function (see also

Flanders 1991; Santello and others 2002). This analysis results in 27

basic PC waveforms, computed from the 27 3 27 covariance matrix of

the 27 letter-transition vectors. The covariance calculation removes the

mean from each of the 27 columns of the input matrix. Thus, the 800-

point EMG waveforms for each letter (EMGletter, Fig. 4a) could be

perfectly reconstructed as the average EMG level for each letter (mean

EMGletter) plus a weighted sum of the 27 PC waveforms (PC1--PC27, see

Fig. 4b):

EMGletter = meanEMGletter +PC13W 1letter + � � � +PC273W 27letter; ð1Þ

where W1letter–W27letter are the weighting coefficients. The PCs are

ranked such that PC1 is most important in the reconstruction of the

EMG input data (accounting for the largest portion of the variance).

Note that mean EMGletter consists of a single value for each letter rather

than a time-varying waveform. Due to this separate term for the average

EMG level (mean EMGletter), the 27 PCs contain EMG waveforms that go

positive (bursts) and negative (silent periods) around zero (see inset in

Fig. 4b).

A synchronous synergy analysis is configured in a different manner. In

the temporal synergy analysis described by equation (1), each EMG

input vector contains the waveforms of all 8 muscles for one letter

transition (subscript letter). Thus, the PCs also contain waveforms for

each of the 8 muscles linked by their common occurrence in multiple

letter transitions. In contrast, in a synchronous synergy analysis, each

EMG input vector represents one muscle (subscript muscle, see Fig.

10a), and the synchronous muscle synergies are described by the 8

weighting coefficients (W1muscle–W8muscle, see Fig. 10c):

EMGmuscle = meanEMGmuscle +PC13W 1muscle + � � � +PC83W 8muscle: ð2Þ

Although the examination of the 8 weighting coefficient vectors (Fig.

10c) reveals coactive and reciprocal synergies (as in Weiss and Flanders

2004), we will show that the examination of the 8 PCs derived in this

manner (Fig. 10b) does not reveal invariant temporal patterns. Thus, the

2 types of synergy analysis are complementary.

Results

Overview

We used PC analysis to examine the temporal aspects of the

EMG pattern. Each of the 27 PCs contained a particular

temporal waveform for each muscle (Fig. 4b). To compare the

burst characteristics across muscles, in most figures we will

display the waveforms of the 8 muscles superimposed in the

time frame of a single-letter transition (inset to Fig. 4b). We will

refer to each of the twenty-seven 8-muscle PCs as a temporal

synergy, and because they are ranked by percent variance

explained, we will focus on the first few temporal synergies. For

example, in the first PC (Fig. 4b), it is clear that the 4-finger

extensor (ED, green line) became active first and the flexors

(dark blue and black lines) became active later, with bursts of

intermediate timing in the thumb muscles (red lines) and the

little finger muscle (turquoise line). This corresponds to the fact

that most letter transitions involved opening the hand, rear-

ranging the relative positions of the digits, and closing the hand

(see Fig. 1).

Although all 27 PCs are needed to perfectly reconstruct the

inputs, the first 4 PCs accounted for almost 80% of the variance,

with the first 2 together accounting for about 60% (Table 1). In

the sections below, we will demonstrate that PC1 showed

a consistent pattern across blocks and that the PC1 and PC2

Figure 4. (a) An example of the input to the PC analysis used to identify the most
common 8-EMG burst combinations (across-muscle temporal synergies). With 27
letter transitions as the input (WHI. . .OLA), the analysis resulted in 27 PCs. PC1 is
shown in (b), with the color-coded waveforms for the 8 muscles stretched across the
panel or (in the inset) overlaid, with 0 representing the average EMG level. The average
EMG level plus the weighted combination of the 27 PCs perfectly reconstructed the
EMG vector for each letter transition. The analysis was done separately for each
subject; these data are from subject 6.

Table 1
Percent variance explained (mean of 9 subjects ± standard error)

Block 1 Block 6 Blocks 3--7

PC1 32 ± 9 39 ± 10 37 ± 8
PC2 23 ± 8 21 ± 9 21 ± 7
PC3 12 ± 4 11 ± 2 11 ± 2
PC4 6 ± 1 8 ± 2 8 ± 1
PCs 1--4 combined 73 ± 4 79 ± 1 77 ± 2
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waveforms showed similarities across subjects. PC3 and PC4, as

well as the higher order components, were much more variable

across subjects. Because the main goal of our study was to

describe the most consistent features of the temporal patterns

in multimuscle burst components, we will focus on the steady-

state pattern in the last 5 blocks, for PC1 and PC2. In the final

section, for comparison with the temporal synergy analysis, we

will subject the EMG data from the last 5 blocks to a synchro-

nous synergy analysis.

Changes in Speed and Percent Variance Explained
across Blocks

Several aspects of fingerspelling were relatively stable over the

last 5 of the 7 blocks of trials (Fig. 5). In contrast, the speed of

the subjects’ hand movements improved rapidly across the first

2 blocks. This is quantified in Figure 5a (left panel) by showing

the grand mean letter-transition times (n = 9 subjects) for each

block. Transition times were about 850 ms in the first block, and

this was significantly different from the times of about 650 ms in

blocks 4--7 (analysis of variance [ANOVA] with Scheffé post hoc

test, P < 0.05).

A reduction in transition time, or an increase in speed, would

generally be expected to be accompanied by a marked increase

in the amplitude of EMG bursts (e.g., Gottlieb and others 1989).

However, as subjects began to spell more quickly, the peak EMG

amplitudes did not increase. As illustrated in the right panel of

Figure 5a, grand mean peak EMG amplitudes (averaged across

all letters and muscles and then all subjects) did not change

significantly. Because technical difficulties tended to produce

decreases rather than increases in the EMG gain (see Materials

and Methods), as a control, we separately quantified the data

from ED, a large forearmmuscle with very stable EMG signals. In

line with the data from all muscles in Figure 5a, ED peak

amplitude decreased by 12% from block 1 to block 7; it

decreased in 6 subjects and increased in 3 subjects. Thus, it

seems reasonable to conclude that peak EMG amplitude

generally did not increase with speed.

The fact that subjects began to spell words faster without

simply increasing peak EMG activity may suggest a change in

the overall EMG pattern. To examine this issue, we computed

EMG temporal PCs for each block individually. Figure 5b shows,

for a representative subject (same subject as in Fig. 4), the

progression of PC1 during practice. In blocks 3--7, the early

muscle activity clearly represented a reciprocal pattern, where

the extensor (ED, green line) contributed a positive burst to the

reconstruction of EMG data (activity peaks above the zero

mean), whereas the index finger muscle (DIF/DIT, blue lines)

and the extrinsic flexors (FD/FD2, black lines) contributed

a phasic silent period (activity lows below the zero mean). This

early reciprocal activation pattern is indicated by an arrow in

the plot for block 7. In contrast, at the very beginning of

practice (Fig. 5b, block 1), this early reciprocal activity was

lacking (arrow).

This tendency for an increase in reciprocal activation was

clearly present in the data from at least half of the subjects.

However, the exact pattern of waveform changes was quite

variable across subjects, and so we did not attempt further

quantification. For all subjects, the waveforms that constituted

the PC1 pattern appeared to stabilize after the first 2 blocks, and

therefore we directed further quantification of the PC1 tempo-

ral synergy at the average waveforms across the last 5 blocks.

For PC1, the percent variance explained increased across the

learning blocks; on average, the subjects showed a smooth

increase in the importance of PC1 across the first 6 blocks (Fig.

5c, left plot). The percent variance values (normalized to the last

block) for blocks 1 and 6 were significantly different from each

other (ANOVA with Scheffé post hoc test, P < 0.05). In contrast,

for PC2 (Fig. 5c, right plot), the change in percent variance

explained was much more variable. For PC1--PC4, Table 1 lists

the percent variance values for the first block, the sixth block,

and the last 5 blocks together. PC1 was the only component that

showed a clear change across skill acquisition; changes in PC2--

PC4 were more variable.

Temporal Synergies in the Last 5 Blocks

In subsequent sections, we will focus on the 2 main temporal

synergies (PC1 and PC2) derived from the grand mean EMG

waveforms of the last 5 blocks. However, we will first summa-

rize the contributions of all 27 temporal synergies to the

Figure 5. (a, left panel) Movement time for the transitions between letters (prior to
the time-base normalization). The data were averaged across letters for each subject
and then across subject means to produce a grand mean (n = 9) and standard error. In
the first block, transitions took significantly longer than in the last 4 blocks (*P < 0.05).
(a, right panel). Despite the increase in movement speed with practice, the peak EMG
amplitude did not increase. (b) The evolution of PC1 over time is shown using data
from one subject (subject 6). The arrows indicate that early reciprocal activity (positive
early burst of ED, APB, and FPB vs. negative period for all other muscles) became more
prominent after the first 2 blocks. (c) The variance explained by the first component
(left plot) increased over the blocks. The variance explained by PC2 (right plot) was
much more variable. These data were combined across subjects (n = 9) after being
normalized to block 7.
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reconstruction of the EMG waveforms. In Figure 6a, we show

the results of the temporal PC analysis on the grand mean EMG

waveforms from one subject, and in Figure 6b, we summarize

the percent variance explained for all subjects. In Figure 6a, the

burst waveforms are scaled according to the range of the

weighting coefficients used to reconstruct the EMG data. Thus,

PC1 had the largest amplitude, and it is clear that the highest

order PCs (e.g., PC27) contributed very little to the reconstruc-

tion of the EMG data. PC1 was a pattern where the 4-finger

extensor (ED, green line) and the thumb muscles (APB and FPB,

red lines) were active early and the other muscles were active

later. The higher order components displayed various other

temporal patterns, which were variable across subjects. How-

ever, it was common for the index finger muscle (DIF/DIT, dark

blue lines) and the little finger muscle (ADM, turquoise lines) to

show a relatively large amplitude waveform in some of the

higher order components (e.g., Fig. 6a, PC5 and PC7). In-

terestingly, in many cases the waveforms of PC1--PC7 resembled

sine waves.

The First 2 Temporal Synergies

In most subjects, PC1 contributed to the reconstruction of most

letter transitions with positive weighting coefficients. This is

shown for a representative subject in the top panel of Figure 7

(same subject as in Figs 4--6). In contrast, PC2 typically

contributed to the reconstruction with either a positive or

a negative weighting coefficient, depending on the particular

letter transition (Fig. 7, bottom panel). Thus, the EMG pattern

for the various letter transitions could be approximated as a sum

of PC1 with various positive weights and PC2 with various

positive or negative weights.

The subject featured in Figures 4--7 was subject 6. For this

subject, the number of positive weighting coefficients (out of

27 possible) was 27 for PC1 and 17 for PC2. As shown in Table 2,

for subjects 3--9, PC1 had 23--27 (average = 25) positive

weighting coefficients and PC2 had 6--18 (average = 12) positive
weighting coefficients. We also noticed common patterns in the

sign and value of the weighting coefficients for different letter

transitions. For example, for the 4 subjects with 23--25 positive

Figure 6. (a) Some of the 27 PCs, or across-muscle temporal synergies for subject 6,
that formed the output of our synergy analysis. PCs are ranked according to the
percent variance explained and are shown scaled by the range of weighting
coefficients. Each component consists of 8 EMG waveforms, superimposed to
facilitate comparison. (b) For each subject (different line styles), about 4 PCs were
needed to explain 80% of the variance.

Figure 7. The weighting coefficients for the reconstruction of EMG waveforms for all
letter transitions (subject 6). PC1 (top panel) contributed positively to all letter
transitions. PC2 (bottom panel) had positive coefficients for some of the letter
transitions and negative coefficients for others.

Table 2
Number of positive weighting coefficients (out of 27)

PC1 PC2

Subject 1 12 27
Subject 2 14 26
Subject 3 27 10
Subject 4 23 18
Subject 5 25 8
Subject 6 27 17
Subject 7 24 6
Subject 8 27 9
Subject 9 25 17
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values for PC1, one of the few negative values was always for the

I to T transition in WHITE. Unlike most letter transitions,

moving from I to T does not involve an initial extension of all

fingers (see Fig. 1). Furthermore, for the I to T transition, the

PC2 of subjects 3--9 always had a negative weighting coefficient.

Thus, there appeared to be some consistent aspects to the

weighting coefficients of the first 2 PCs for subjects 3--9.

However, for subjects 1 and 2, the pattern was reversed. In

contrast to subjects 3--9 where the average numbers of positive

weighting coefficients were 25/12 for PC1/PC2, subjects 1 and

2 had ratios of 12/27 and 14/26, respectively (Table 2). This

suggested that the bursting pattern of PC1 in most subjects

might be found in PC2 for these subjects (this would simply

indicate that the percent variance explained, and thus the

ranking, was reversed). We also noticed that PC2 waveforms of

subjects 1 and 2 more closely resembled the PC1 waveforms of

the other subjects. Therefore, to further examine the character-

istics of PC1 and PC2, we reversed the classification of these

components for subjects 1 and 2, in order to combine the data

across subjects. This created the 2 categories shown in Figure 8,

which we will refer to as PCa (Fig. 8, top) and PCb (Fig. 8,

bottom).

After this regrouping, for all 9 subjects, the weights of PCa

were predominantly positive and the weights of PCb were

about equally positive and negative. Furthermore, grouped in

this manner, there were similarities across all subjects in the

multimuscle bursting patterns. In order to provide a concise

description of the PCa and PCb patterns, we quantified these

patterns using the analysis presented in Figure 8.

In the top row of Figure 8, we have quantified the PCa pattern

for all subjects by correlating the waveform for each muscle

with the 2 portions of sine waves that begin and end near zero.

To capture both the polarity (positive or negative) and the

duration of each EMG burst, we computed its correlation with

a full sine wave (i.e., with a period equal to the full transition

time = ‘‘short’’ burst) and a half sine wave (i.e., with a half-cycle

period equal to the full transition time = ‘‘long’’ burst). These

values are plotted on the horizontal and vertical axes, re-

spectively. Each symbol represents one muscle for subject 1

(center panel) and for all subjects combined (right panel). For

pairs of muscles, a 180� separation would represent perfectly

reciprocal activation and a 0� separation would represent

coactivation. The radial distance from the center represents

the similarity of each muscle’s waveform to the 2 sine waves; if

this model fits perfectly, all the data would fall on the perimeter

of the unit circle.

The top center plot quantifies the PCa pattern of subject 1

(shown in the top left panel). The APB burst was long in

duration (red symbol near the pole representing a long positive

burst), and the DIT/DIF bursts were short negative and then

short positive (blue symbols at the negative end of the x axis).

The EMG waveforms for the other muscles were quantified as

being initially negative with intermediate durations (symbols in

the upper left quadrant).

A similar PCa pattern can be seen in the combined data from

all subjects (top right plot). All EMG waveforms except for

one (black symbol near origin) were well correlated with the 2

sine waves, yielding correlation coefficients near +1 or –1. The

Figure 8. Correlations of the EMG waveforms in PCa and PCb (as shown in the left panels) with sine waves and half sine waves for subject 1 (middle panels) and for all subjects
(right panels). The sine wave polarity and duration is indicated at the top, bottom, left, and right of each panel. Each symbol represents the correlation of a single EMG waveform
with a sine and a half sine, for example, the turquoise circle in the bottom middle panel shows that the PCb little finger muscle (ADM) of subject 1 had a positive correlation with
a half sine and a negative correlation with a full sine wave. Pairs of symbols 180� apart would represent instances of perfectly reciprocal activation. In the upper right panels, the
curved arrows represent the progression of burst timing, from a short/early positive burst to a long positive burst to a short/late positive burst.
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longest duration burst was positive (i.e., the symbols fell in the

upper half of the plot), and both the onset and the duration of

the positive burst varied across muscles in a highly consistent

manner. For most subjects, as indicated by the curved arrow, the

ED burst (green squares) was short and early, followed by

a much longer burst in APB (solid red circles), then short bursts

in FD/FD2 (black circles), and then DIT/DIF (blue diamonds).

The data for the little finger muscle (ADM, turquoise circles) fell

in the upper left quadrant, meaning that the waveform began

with a short negative period, followed by a positive burst of

intermediate duration (as in subject 1, top left panel).

PCb (Fig. 8, bottom row) was quite different from PCa (Fig. 8,

top row). Whereas PCa had predominantly positive weighting

coefficients (Fig. 7, top) and bursts (Fig. 8, top), PCb had positive

and negative weights (Fig. 7, bottom) and bursts (Fig. 8,

bottom). Although PCb was less well correlated with sine waves

and more variable across subjects (especially for the little finger

muscle, ADM, turquoise circles), one feature is particularly

noteworthy. As in PCa, data from DIT/DIF (blue diamonds) and

FD/FD2 (black circles) were similar to each other. However, in

PCb, these data fell in the lower right quadrant, indicating

a burst polarity that was usually opposite that of ED (green

squares), APB (filled red circles), and FPB (open red circles).

This is especially clear in subject 1 (lower left plots in Fig. 7),

and it would represent a simple reciprocal pattern, except for

the fact that the finger flexor (DIT/DIF, FD/FD2) bursts were

generally later and shorter in duration than the thumb muscle

and extensor bursts (APB and ED). Thus, in addition to the

overriding pattern of reciprocal (extensor--abductor vs. flexor)

activation previously noted for muscle synergies in general, our

analysis of burst components reveals a continuum of burst

onsets and durations.

Averaged PCa Waveforms

For PCa (Fig. 8, top row), our waveform quantification revealed

substantial similarity across subjects. The most variable data in

the ‘‘all subject’’ plot (right) were those representing ED (green

squares), which sometimes fell in the upper right quadrant

(indicating a short early burst) and sometimes fell in the upper

left quadrant (indicating a short late burst). Qualitative exam-

ination of the ED PCa waveforms for all subjects suggested

a double-bursting pattern. In most subjects, the first burst was

much larger and so the data fell in the upper right quadrant.

However, as was the case for subject 1 (Fig. 8, top row), if the

second burst was larger, the data fell in the top left quadrant.

Because the PCa waveforms were so similar across subjects,

we averaged the data to give a clearer picture of the main

temporal synergy. Averaging across subjects is expected to

overestimate burst durations but should preserve the relative

amplitudes and burst onsets across muscles. In Figure 9, we

present this average, plotted in colored lines (as in the previous

figures) and also on an intensity plot (middle panel) where blue

represents below-average EMG levels, yellow/green represents

average levels, and red represents above-average levels. It is

apparent that ED (green line and top row) has the longest

duration of positive activity and evidence for early and late

bursts. APB becomes active next, followed by FPB. The flexors

have shorter and later periods of positive activity. Note also that

ADM and DIF/DIT have relatively low levels of activity in PCa.

This implies that a relatively large positive contribution from the

higher order PCs was needed to reconstruct the EMG data from

these muscles.

The averaged PCA waveforms for each muscle were fit with

sine waves (bottom right panel of Fig. 9). This allowed us to

quantify the phase (the temporal location of the symbols at the

zero crossings), the frequency or period (half-wave durations

shown below the plot), as well as the amplitude and offset

(vertical lines).

There are 2 notable instances where the sine waves did not

provide good fits. First, in the case of ED (green lines), the

double-bursting pattern was poorly fit by a single sine wave.

Closer examination of APB and FPB (red lines) suggests the

possibility of small secondary bursts in these muscles as well.

Second, the initial negative bursts in the data waveforms were

not as deep as predicted by the sine wave fits (especially in DIF/

DIT, blue lines). This may be related to the inherent limitation of

using pauses in positive EMG activity to monitor inhibitory

phases in the central pattern (essentially producing a ‘‘floor

effect’’ in the data).

Comparison with a Synchronous Synergy Analysis

In the sections above, we used a temporal synergy analysis to

reveal the EMG waveforms that are linked by their invariant

occurrence together in most letter transitions. Previously, Weiss

and Flanders (2004) applied a synchronous synergy analysis to

the 26 static hand shapes of the ASL manual alphabet. The

results of this analysis were vectors containing the 8 weighting

coefficients that signified the contribution of each of the 8

muscles (or EMG channels) to each static (synchronous)

muscle synergy. In Figure 10, we present the results of a similar

analysis applied not only to the quasistatic hand postures at the

transition points but also to all points in time during the finger

spelling movements.

As illustrated in Figure 10a using data from one subject, the

input to this analysis was the 8 EMG signals (grand means in the

last 5 blocks) stretched across the normalized time points

representing the 27 letter transitions. Because there were 8

EMG vectors as inputs (Fig. 10a), there were 8 PCs; the first 3

(PC1, PC2, and PC3) are shown in Figure 10b. In each of the 9

subjects, the first 3 PCs together explained more than 80% of

the variance in the EMG data.

In Figure 10c, we show the extent to which each hand muscle

participated in each of the first 3 PCs. For example, for subject 7

(lower right plot), PC1 (solid line) represented coactivation:

each of the 8 muscles had positive weighting coefficients. In

contrast, PC2 (dashed line) represented a reciprocal pattern,

where the sign of the weighting coefficients for the index finger

muscle (DIT/DIF) was opposite the sign of the weighting

coefficients for the thumb muscles (APB and FPB). This implies

that above-average activation of index finger muscles was

coupled with below-average activation of thumb muscles. The

4 subjects shown in Figure 10c are representative in that we

commonly observed a coactivation synergy (all positive or all

negative coefficients) and an index finger/thumb reciprocal

activation synergy (coefficients with opposite signs) within the

first 3 PCs. The basic composition of these muscle synergies is

the same as recently reported for static grasping and ASL hand

shapes (Weiss and Flanders 2004).

Figure 10b also serves to illustrate that this synchronous

synergy analysis failed to reveal the temporal synergies. On the

right, we show an enlarged and overlaid viewof thewaveforms for

subject 7’s PC1 and PC2, for the word VOLCANO. It is apparent

that the PC1 and PC2 synergies were expressed with different

time courses for different letter transitions. For example, the
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Figure 9. The waveforms representing the main temporal synergy (PCa), averaged across the 9 subjects. In the top panels, the same data are plotted in line and intensity formats.
In the bottom panels, these same data are compared with the best-fit sine waves.
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coactive (PC1) synergy peaked near the half way point for rest-V,

L-C, and A-N but much later for C-A. The more reciprocal synergy

(PC2) showed a late, positive burst for the C-A and A-N transitions

but an early inversion for the L-C transition. If this analysis had

revealed the samewaveforms for each movement (e.g., a half sine

wave for PC1 and a full sinewave for PC2), it would be possible to

use the EMG weighting coefficients to compute the temporal

synergies. The failure of this analysis indicates that hand muscle

synergies are fundamentally asynchronous.

Discussion

We demonstrated that within a single hand shape transition (i.e.,

moving from one stationary hand shape to another), different

muscles become active at different times and for somewhat

different durations. Thus, as previously demonstrated for arm-

reaching movements (Flanders 1991, 2002; Flanders and others

1996), muscle activation waveforms are asynchronous and

cannot be adequately described in terms of a single-command

waveform acting as a common drive to groups of agonists and

antagonists. On the other hand, also in consonance with our

previous results for reaching movements (Flanders 1991;

Flanders and others 1994), defining EMG levels as above

(positive) or below (negative) the average level revealed

instances of coactivation and reciprocal activation of muscle

pairs. In the following sections, we will compare the present

approach with other methods of synergy extraction, consider

technical issues related to interpreting surface EMG signals, and,

finally, speculate on the implications of the present results for

the cortical control of hand movement.

Finding Muscle Synergies

Other investigators have sought to quantify synergies using

various forms of PC analysis (e.g., Holdefer and Miller 2002;

Brochier and others 2004; Ivanenko and others 2004), in-

dependent component analysis (e.g., Hart and Giszter 2004),

and nonnegative matrix factorization (e.g., Tresch and others

1999; d’Avella and others 2003; d’Avella and Bizzi 2005; Ting and

Macpherson 2005). We tend to prefer PC analysis because it

produces a ranked set of orthogonal components and incorpo-

rates reciprocal patterns. Independent component analysis is

well suited for studies where it is assumed that independent

premotor drives are mixed in the EMG output and need to be

untangled in the analysis. Nonnegative matrix factorization is a

powerful, iterative curve-fitting method. It does not incorporate

reciprocal patterns or assume the independence of premotor

drives but instead tests for a small number of drives by using a

search algorithm to extract specified numbers of muscle syner-

gies and then measuring the goodness of fit to the EMG pattern.

Although the various computational strategies make different

assumptions, the more important distinction between various

approaches is whether a synergy is defined in terms of a single

number for each muscle (synchronous synergy) or a temporal

waveform for each muscle. This latter type of synergy was

perhaps discovered by Nashner (1977), who showed a fixed

distal to proximal bursting pattern in human leg muscles during

a compensatory postural response. Much more recently,

d’Avella and others have made major advances in this approach

(d’Avella and others 2003; d’Avella and Bizzi 2005). An in-

teresting aspect to their analysis is that 3 temporal synergies

gave a good fit to data from frog leg movements if these

synergies were scaled in amplitude and shifted in time (relative

to one another) but not scaled in time. Hart and Giszter (2004)

have also reported that frog EMG data contain bursts of fixed

duration (about 275 ms), and although the temporal synergies

of d’Avella and Bizzi (2005) sometimes featured different

duration bursts for different muscles, it appears that the frog

spinal cord may be prone to generate bursts, or sequences of

bursts, of fixed duration.

Figure 10. A synchronous synergy analysis was done for comparison. (a) The input consisted of the grand mean EMG signals over the last 5 blocks (subject 7). (b) The left panel
shows the first 3 PCs (PC1, PC2, and PC3); they together explained more than 80% of the variance. The right panel is an enlarged view of a portion of these PC waveforms. (c) The
synchronous synergies are represented by the weighting coefficients of the 8 muscles (x axis) for these first 3 PCs (line styles) for subjects 1, 2, 5, and 7 (in separate panels). In
coactive synergies, all muscles were active together (e.g., all positive coefficients for PC1 in subjects 5 and 7, all negative coefficients for PC2 in subject 2). In reciprocal synergies,
some muscles had positive coefficients and some had negative coefficients (e.g., PC2 for subjects 5 and 7).
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In contrast, previous studies of arm EMG burst durations

clearly showed time-base scaling depending on movement

parameters such as speed (Gottlieb and others 1989; Buneo

and others 1994). Furthermore, the EMG time base must scale in

human gait because Ivanenko and others (2004) were able to

identify 5 robust drive waveforms for synchronous synergies,

only after EMG data from a wide range of locomotion speeds

were timescaled into a unit-step cycle (meaning that the EMG

bursts that result from the combination of these drives must

scale in duration with the speed of locomotion). Interestingly, in

a manner similar to the results of d’Avella and colleagues

(d’Avella and others 2003; d’Avella and Bizzi 2005), some of

the synchronous synergy waveforms of human locomotion

were shifted later in time for slower locomotion speeds

(Ivanenko and others 2004).

The temporal synergy approach employed in the present

study was essentially similar to that of d’Avella and others

(d’Avella and others 2003; d’Avella and Bizzi 2005). In fact,

d’Avella and others (2003) also found onemain temporal pattern

that was present irrespective of the number of synergies

specified in the extraction algorithm. In the present study, we

did not test for time shifts and could not address the issue of

timescaling. This is because even though we scaled letter-

transition data into a single normalized time frame, these move-

ments are naturally rhythmic,with a singlemain phase and nearly

identical transition durations. However, in a previous study of

reaching (Flanders 1991), we used an approach similar to that of

Ivanenko and others (2004) and did find evidence for time shifts.

We identified a single drive waveform that had to be scaled in

amplitude and sometimes inverted in polarity to reconstruct

EMG waveforms for arm movements in many different direc-

tions. However, it was only possible to derive this single robust

drive waveform after the EMG waveforms associated with

reaches in different directions were shifted in time to align

themwith one another. Thus, it appears that both time shifts and

timescaling are essential features of human EMG patterns.

Interpreting EMG Signals

As mentioned in Materials and Methods, we assume that our

bipolar surface electrodes record the units directly under the

electrode with the largest amplitudes and more distant units

with decrementally smaller amplitudes. Thus, it is important for

us to position the electrodes directly over the muscle of

interest. However, the motor units within that muscle do not

receive a homogeneous drive (Herrmann and Flanders 1998;

Weiss and Flanders 2004), and in fact during natural tasks, the

discharge of pairs of motor units across different muscles may

be as well correlated as pairs of motor units within the same

muscle (Hockensmith and others 2005). Thus, our working

hypothesis for the study of hand muscle synergies views the

motor unit, and not the anatomically defined muscle, as the

functional unit.

In our previous study (Weiss and Flanders 2004), we

confirmed that with our very small, closely spaced electrodes,

the chosen recording locations yield EMG data that are

representative of the anatomical muscle of interest. This was

done by discriminating single motor unit potentials from our

surface recordings and then showing that the tuning curves for

motor unit firing frequencies were similar to those for multiunit

activity levels in the parent muscle. However, our previous

study was on static hand shapes, and in the present study, EMG

levels were much higher. Therefore, we need to emphasize that

none of our present results or conclusions critically depend on

the isolation of individual motor pools. In fact, as expected, DIT

and DIF EMGs were very similar, and the 2 sets of electrodes

certainly recorded from overlapping groups of motor units. In

contrast, EMGs from the neighboring thumb muscles were

sometimes similar and sometimes different. For example, in the

nonrectified EMGs in the upper panels of Figure 3, APB and FPB

show distinct bursting patterns. Likewise, the data from FD and

FD2 were sometimes similar and sometimes distinct (rectified

averaged EMGs in the lower panels of Fig. 3), indicating a good

degree of isolation in the recordings.

Thus, we view the data recorded on each EMG channel as

representing a spatially identified sample from a highly distrib-

uted network of motoneurons. We hypothesize that the

network activity is directly shaped by peripheral sensory inputs

and represents the ultimate output of activity in motor cortical

areas. Thus, the temporal activation wave that we have

illustrated here (in Fig. 9) may have implications for the

organization of the hand area in motor cortex.

Speculating on Cortical Control

As mentioned in the Introduction, a major distinction between

locomotion and hand movement is the degree of cortical

involvement. A guiding concept in understanding motor corti-

cal control of hand movement is that of somatotopy. Within the

hand area of the somatotopic cortical map, there are multiple,

partially overlapping patches representing each of the fingers,

the thumb, and the wrist. This is true of both somatosensory and

motor cortical areas (Hlustik and others 2001; Schieber 2001;

Fitzgerald and others 2004). We have recently proposed that

this is the pattern that would be expected if muscle synergies

were mapped into a 2-dimensional (2D) space (Flanders 2005).

This was mainly based on the study of Weiss and Flanders

(2004), where we mapped 52 static hand shapes (17 joint

angles) and the corresponding 52 static EMG patterns (8

muscles) into the orthogonal 2D space of the first 2 PCs (the

postural and muscle synergies). We found a patchy, redundant

representation of individual muscles and individual motor units

within this 2D map.

Because these previous studies of somatotopic maps and

muscle synergies were based mainly on simple electrical

stimulation profiles or static postures, they now need to be

extended to explain temporal patterns. Spinal networks may

contribute to some of the temporal aspects of hand and arm

motor patterns (Bizzi and others 2000), but there is also

evidence for cortical involvement in generating patterned

sequences of phasic motor commands (Fetz and others 1989;

Graziano and others 2002; Park and others 2004). It may be that

the patchy redundant somatotopy representing static muscle

synergies is optimally organized to produce the appropriate

spatial--temporal sequences of motor commands.
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