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A leading hypothesis for the neural basis of autism postulates glob-
ally abnormal brain connectivity, yet the majority of studies report
effects that are either very weak, inconsistent across studies, or
explain results incompletely. Here we apply multiple analytical ap-
proaches to resting-state BOLD-fMRI data at the whole-brain level.
Neurotypical and high-functioning adults with autism displayed very
similar patterns and strengths of resting-state connectivity. We
found only limited evidence in autism for abnormal resting-state
connectivity at the regional level and no evidence for altered con-
nectivity at the whole-brain level. Regional abnormalities in func-
tional connectivity in autism spectrum disorder were primarily in
the frontal and temporal cortices. Within these regions, functional
connectivity with other brain regions was almost exclusively lower
in the autism group. Further examination showed that even small
amounts of head motion during scanning have large effects on
functional connectivity measures and must be controlled carefully.
Consequently, we suggest caution in the interpretation of apparent
positive findings until all possible confounding effects can be ruled
out. Additionally, we do not rule out the possibility that abnormal
connectivity in autism is evident at the microstructural synaptic
level, which may not be reflected sensitively in hemodynamic
changes measured with BOLD-fMRI.

Keywords: autism spectrum disorder, functional magnetic resonance
imaging, independent component analysis, resting-state networks, temporal
correlation

Autism spectrum disorders (ASDs) affect ∼1% of the popu-
lation, yet their neural basis remains unknown. It is now clear
that ASDs are complex and multigenic, and that divergent
phenotypes can emerge from even identical genetic variations
(Levitt and Campbell 2009; Geschwind 2011; State and Levitt
2011). The diagnosis “autism spectrum disorder” emphasizes
the breadth of impairments seen and the wide range of their
severity. Cognitive theories regarding the basic processing
deficits seen in autism include social dysfunction (Hinsby
et al. 2006), impaired global feature processing (Andersen
et al. 2011), impaired reward processing (Chevallier et al.
2012; Damiano et al. 2012; Lin et al. 2012), motivation (Che-
vallier et al. 2012), and sensorimotor impairment (Perry et al.
2007).

One attractive hypothesis for reconciling this diversity of
features is that autism is a generalized disorder of synaptic
connectivity, with consequent effects on the functioning of
distributed networks (Belmonte et al. 2004; Bourgeron 2009).
This idea is supported by gains in our understanding of
the genes implicated in autism, encoding cell adhesion and

path-finding molecules (Glessner et al. 2009; Sbacchi et al.
2010), synapse proteins (Garber 2007), and neurotransmitter
receptor function (Lee et al. 2002; Veenstra-VanderWeele
et al. 2012). Arguably, the leading current hypothesis is that
autism is a disease of abnormal connectivity and synapse for-
mation in the brain, an abnormality that could explain both
the ubiquitous neuroanatomical findings as well as the broad
range of processing impairments.

Structural magnetic resonance imaging (MRI) reveals both
increased (Herbert et al. 2004) and decreased (von dem
Hagen et al. 2011) white matter volume across development
in autism, as well as abnormal white matter microstructure
(Barnea-Goraly et al. 2004; Weinstein et al. 2011). With func-
tional MRI (fMRI), the most common finding in autism is de-
creased functional coupling between specific brain regions
(Just et al. 2004; Koshino et al. 2005; Kleinhans et al. 2008).
Functionally coupled regions exhibit spontaneous temporally
correlated low-frequency oscillations in blood oxygenation-
level–dependent (BOLD) signal that persist in the absence of
any explicit task (i.e., during the resting state) and provide a
comprehensive inventory of functional networks thought to
reflect an underlying functional anatomy of the brain (Biswal
et al. 2010).

Despite a flurry of recent resting-state functional connec-
tivity MRI (rs-fcMRI) studies in autism (Anderson, Druzgal
et al. 2011; Anderson, Nielsen et al. 2011; Di Martino et al.
2011; Ebisch et al. 2011; Gotts et al. 2012; von dem Hagen
et al. 2012), results are surprisingly mixed (Muller et al.
2011). Studies have generally focused on a small number of
brain regions or specific brain networks, so even when group
differences have been reported the specificity of those find-
ings to those particular regions or networks remains unclear.

Consequently, we took a whole-brain approach in high-
functioning individuals with autism, compared with well-
matched healthy controls, used multiple analysis methods,
and examined in detail the effects of motion. Our aims were
(1) to test at the whole-brain level the prevailing hypothesis
that there is globally altered functional connectivity in autism,
(2) to determine whether there is anatomical specificity to
such putative abnormal connectivity, and (3) to explore the
effects of head motion on the results.

Materials and Methods

Approach
There are 3 primary approaches to examining whole-brain resting-
state connectivity: data-driven methods, anatomical-region of interest
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(ROI), and functional-ROI analyses. Data-driven approaches are com-
monly implemented using independent component analysis (ICA),
which derives spatiotemporally independent components that can
then be compared across individuals and groups using a second-level
analysis. The second approach, an anatomical ROI-based analysis,
first parcellates the brain into distinct anatomical regions, determines
the mean time series from each of these regions, and calculates tem-
poral correlations in a pairwise manner, resulting in a large connec-
tivity matrix. Functional-ROI connectivity analyses are typically,
though not exclusively, used in task-based designs (Greicius et al.
2003) and were not employed in this study.

Each of these approaches has particular strengths and limitations
(Joel et al. 2011). In anatomical ROI-based temporal correlation analy-
sis, connectivity between specific regions is explicitly tested in a
hypothesis-driven framework, for example, the strength of BOLD
signal correlation between amygdala and ventral prefrontal cortex.
However, individual patterns of activation are unlikely to conform
exactly to atlas-based anatomical boundaries. The natural variation in
the atlas region volume across the brain may also introduce biases,
including signal interference from multiple sources within larger
regions and poorer mean signal estimation in smaller regions. These
concerns are mitigated in part by the use of probabilistic atlas regions
and the use of multiple connectivity estimation approaches.

ICA is primarily an exploratory tool that attempts to decompose
the observed resting-state BOLD signal into a set of maximally
independent sources or components. The number of independent
components must be estimated, generally either by inspection or by
principle component analysis (Beckmann and Smith 2004) as used
here. There is an increasing consensus regarding the characteristics of
ICA-derived networks in the healthy brain, with stable spatial com-
ponents reproduced across studies (Damoiseaux et al. 2006; Smith
et al. 2009; Shirer et al. 2012). Hypothesis testing on these resulting
components has historically proven difficult, but here we adopt an
approach that employs dual-regression of the group-level IC temporal
modes at the individual subject level, followed by conventional
second-level analysis with statistical inference (Filippini et al. 2009). It
has been established that both seed or ROI-based temporal corre-
lation and independent component analyses provide complementary
views of resting-state BOLD fMRI data (Joel et al. 2011) and together
provide a more comprehensive picture of whole-brain connectivity
than either does alone.

Subjects
Nineteen high-functioning adults with an ASD and 20 neurotypical
controls with no family history of autism were recruited from our reg-
istry under a protocol approved by the Human Subjects Protection
Committee of the California Institute of Technology. Diagnosis was
confirmed by DSM-IV-R, and all participants with ASD met criteria on
the Autism Diagnostic Observation Schedule (ADOS) (Lord et al.
2000) and Autism Diagnostic Interview-Revised (ADI-R) (Lord et al.
1994), the latter only when a caregiver was available (n = 15). We
excluded participants with full-scale IQ < 80 or comorbid psychiatric
or neurological conditions including but not limited to major depress-
ive disorder, schizophrenia, epilepsy and history of traumatic brain
injury. Controls were matched at the group level on age, sex, handed-
ness and full-scale IQ (Table 1).

Medication Status
All subjects were screened for current and prior prescription and rec-
reational or illegal drug use. Out of the 19 autism participants, 6 were
taking one or more psychotropic medications: 1 was taking an SSRI
(fluoxetine) for depressive symptoms, 2 were taking a stimulant
(Adderall) for attentional issues, 1 was taking an anxiolytic (buspir-
one), 1 was taking a tricyclic antidepressant (amitriptyline) in addition
to an atypical antipsychotic (risperidone) and the sixth was taking a
stimulant (Ritalin) for attentional issues in addition to an anxiolytic
(buspirone) and an SSRI (sertraline) for depressive symptoms. Of the
20 control participants, 1 was taking an SSRI (paroxetine) for depress-
ive symptoms.

Imaging
All MRI data were acquired using a 3 Tesla Magnetom Trio (Siemens
Medical Solutions, NJ, USA) with an 8-channel phased array head
receive coil and body coil transmission. Subjects were asked to lie still
within the scanner with eyes closed, think of nothing specifically and
to stay awake; all participants were accustomed to the scanner
environment. Post-scan questioning confirmed a state of relaxed wa-
kefulness in all participants. Two T1-weighted MP-RAGE volumetric
datasets were acquired as structural references (TR/TE/TI = 1590 ms/
2.7 ms/800 ms, 1 average, 1 mm isotropic voxel size, total imaging
time 7 min 26 s). The resting-state image acquisition consisted of 2
sessions of 5 min of T2*-weighted single-shot echo planar imaging
(EPI) (TR/TE = 2000/30 ms, flip angle = 75°, 2D multislice acquisition
with 3.5 mm isotropic voxels, fat suppression, slices angled 30° axial-
coronal relative to the main field). We adopted a resting-state session
length of 5 min as it has been demonstrated that resting-state corre-
lations stabilize by ∼5 min even with a much longer TR (5 s vs. the 2 s
used here) (Van Dijk et al. 2010). Two initial volumes (4 s) were dis-
carded to reduce magnetization equilibration effects. Gradient echo
field mapping data were acquired with identical geometry to the EPI
data for EPI off-resonance distortion correction (TR/TE = 600/3.6 ms,
6.1 ms, flip angle = 60°). Resting-state fMRI data were acquired during
a session in which no other functional tasks were performed; all
other acquisitions during the session were structural acquisitions.

Minimum Deformation Atlas Construction
While the adult brain in autism is grossly similar to the neurotypical
brain, numerous small differences are present (Abell et al. 1999;
Ecker et al. 2012). We took care to minimize structural biases by first

Table 1
Demographics, behavior, motion and structural statistics for autism and control groups

Autism Control Test (df ) P

Sample size 19 20
Fraction male 79% 84% χ2(1) = 0.099 0.75
Age at scan (years) 27.4 (2.4) 28.5 (2.5) t(37) = 0.32 0.75
Behavior

Fraction right handed 84% 80% χ2(1) = 0.008 0.93
Verbal IQ 107.7 (3.6)

[18]
113.9 (2.8) t(37) = 1.37 0.18

Performance IQ 107.4 (2.8)
[18]

111.3 (2.2) t(37) = 1.10 0.28

Full-scale IQ 108.2 (3.0)
[18]

114.1 (2.1) t(37) = 1.64 0.11

ADOS communication 4.4 (0.4) — — —

ADOS reciprocal social
interaction

9.1 (0.8) — — —

ADI A 21.3 (1.3)
[15]

— — —

ADI B 17.0 (1.0)
[15]

— — —

ADI C 5.7 (0.7) [15] — — —

ADI D 2.8 (0.4) [14] — — —

SRS A 94.0 (7.6)
[12]

— — —

EQ 24.4 (2.4)
[17]

44.3 (4.6)
[5]

t(6) = 3.78 0.0091

Motion
Mean F-F displacement (µm) 74.6 (9.4) 59.6 (5.3) t(37) = 1.42 0.17
Mean F-F rotation

(millidegrees)
31.1 (2.7) 31.3 (2.7) t(37) = 0.05 0.96

Fraction of ICs classified as
nuisance

57.2% (3.4%) 49.0%
(3.7%)

t(37) = 1.63 0.11

Variance explained by nuisance
ICs

53.9% (3.5%) 46.2%
(3.6%)

t(37) = 1.52 0.14

Fraction of slices repaired 0.28%
(0.12%)

0.02%
(0.01%)

U= 127.0 0.04

Structure
Mean within brain warping to

MDA
0.318 (0.014) 0.299

(0.006)
t(37) = 1.31 0.20

Where shown, values are mean (SEM) [sample size when different from group size]. All t-tests
were two-tailed and unpaired, assuming equal variance. Chi-squared with Yate’s correction was
used to test differences in proportions (fraction male, right handed) and Mann–Whitney U was
used to test differences in fractions of slices repaired.
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estimating a Minimum Deformation Atlas (MDA) which minimizes the
deformation required to map any one of the individual’’s brain to the
atlas template. The MDA was estimated using an iterative nonlinear
registration approach similar to that proposed in MacKenzie-Graham
et al. (2007) and employed previously in Tyszka et al. (2011). In an
initial pass, both control and autism structural data were registered
using FNIRT (Andersson et al. 2008) to the MNI152 1 mm whole-head
T1-weighted template. The average of all registered volumes became
the template for the second pass. This process was repeated for a
total of 4 passes, resulting in an estimated of the MDA closely aligned
to the MNI152 space that was used as a registration template for all
subsequent voxel-wise ICA and anatomical ROI segmentation
analyses.

Preprocessing
Preprocessing was carried out using FEAT (v5.98) and MELODIC
(v3.10), within FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/
fsl). Transient artifacts were removed using ArtRepair with an outlier
threshold of 5, automatic signal masking and per-slice correction by
temporal linear interpolation (Mazaika et al. 2005). In 5 of the 19
autism subjects, only one session could be acquired due to participant
tolerance or time constraints. To avoid bias associated with this
missing data, all further analysis of both groups was restricted to a
single session selected on the basis of lower number of transient arti-
facts identified by ArtRepair. No subject was excluded due to exces-
sive transient artifacts; no session required more than 1.6% of slices to
be repaired. Conventional preprocessing consisted of rigid-body
motion correction, slice-timing correction, field map-based geometric
distortion correction, nonbrain removal, and grand-mean intensity
normalization. Finally, high pass temporal filtering was performed by
subtraction of a local Gaussian-weighted least-squares straight-line fit
with σ = 50s, comparable, but not equivalent, with traditional linear
high pass filtering with a cut-off frequency of 0.01 Hz. No spatial
smoothing was performed at this stage. Off-resonance geometric dis-
tortions in the EPI data were corrected using the PRELUDE and
FUGUE toolboxes in FSL, using B0 field maps derived from the
dual-echo gradient echo dataset acquired with identical slice angle
and voxel size to the EPI data. Nonbrain voxels were then masked,
the data were demeaned and variance normalized on a voxel-wise
basis.

In place of linear low pass filtering, which introduces additional
temporal noise autocorrelation, nuisance ICs with broad frequency
content were identified and removed at the single-subject level using
an ICA-based approach. Individual subject ICs with more than 33% of
the estimated spectral power in frequencies >0.1 Hz were removed
from the time series, resulting in a cleaned, prefiltered dataset
(Tyszka et al. 2011).

Finally, cleaned, prefiltered BOLD EPI data were registered to the
MDA template in 2 steps: an initial affine registration to the T1-
-weighted structural image, using the magnitude data from the field
map as a proxy for the EPI space, and a nonlinear registration of the
T1-weighted structural image to the MDA template. EPI data were re-
sampled in the MDA space at an isotropic spatial resolution of 3 mm.
The same preprocessed data were used for both group-level ICA and
region-based correlation analysis.

Atlas-based Inter-Regional Correlation
Functional connectivity reflected by temporal BOLD signal correlation
was analyzed on signal time-series extracted from anatomically defined
regions, together covering the entire cortex and subcortical regions in
each subject. An additional 3 initial volumes were discarded to avoid
driving correlations with residual equilibration effects. Gray matter,
white matter, and cerebrospinal fluid (CSF) partial volume estimates
(PVEs) were generated from each subject’s T1-weighted structural data
using the FSL FAST tool (Zhang et al. 2001) and transformed to the
MDA. For each subject, global nuisance signals derived from white
matter and CSF time-courses were removed from the preprocessed
BOLD time-series using a general linear model (GLM) approach de-
scribed previously (Fox et al. 2009; Anderson, Druzgal et al. 2011).
Individual subject GLMs were constructed with regressors constructed

from mean signal time courses for the white matter PVE map and the
ventricular CSF PVE map, each eroded by 4 mm. Finally, the 6 rigid
body motion correction parameter time courses were added as motion
confound regressors. The residual of this model, subsequently referred
to as the corrected BOLD signal, was then used for inter-regional corre-
lation analysis. Both cortical and subcortical regions were defined
probabilistically using the Harvard-Oxford Atlas, co-localized to the
MDA used in this study. The cortical labels in this atlas are ordered
hierarchically, first by surface (lateral, medial, ventral, etc.) and then,
where possible, by lobe, following the scheme proposed in Radema-
cher et al. (1992). A joint probabilistic mask was formed from the
product of the individual gray matter PVE and atlas cortical region and
used to weight the calculation of the mean signal from each subject’s
preprocessed BOLD time-course data.

Pearson’s product–moment correlation coefficients were calculated
for all pairs of atlas ROI time-courses, resulting in a 110 × 110 element
symmetric interregional correlation matrix for each subject. All corre-
lation coefficients within the matrix were Fisher z-transformed prior
to subsequent statistical analysis. Group differences between the
Fisher z matrices in their entirety were assessed by t-tests of each
matrix element using false discovery rate (FDR) correction (q = 0.05)
(Fig. 1a,b). In addition, elements corresponding to the 48 homotopic
pairings were extracted from the correlation matrix and assessed for
group differences with a nested 3-way ANOVA and post-hoc t-tests
with FDR correction. Effect sizes are reported as Cohen’s d for un-
paired t-tests and η2 (η2p) for variance explained by main effects and
interactions in the analysis of variance.

Group comparisons of the distributions of correlations across the
whole and subregions of the correlation matrix were performed by
statistical inference on the parameters of a fitted model distribution at
the individual subject level (Fig. 2a,b). Three analytic distributions
(Student’s t location-scale, gamma location-scale-shape, and general-
ized extreme value) were compared with Gaussian mixture modeling
(GMM) with between 2 and 6 components using Bayes information
criteria (BIC). GMM was strongly supported over analytical modeling,
with 3 Gaussian components supported for the majority of individual
subject correlation distributions. This support fell to 2 components
for the majority of subjects at the subregion level. Consequently, for
greater generality, a 2-component GMM fitted to both whole matrix
and subregion correlation distributions (Fig. 1c). The 2 modeled
Gaussian components represent the large number of low-correlation
region-pairs and the smaller number of high, positive-valued corre-
lations (e.g., homotopic correlations) in the matrix, respectively. Indi-
vidual subject means for both Gaussians (μ0 and μ1) and the
proportion of the lower Gaussian (p0) were passed to a second-level
analysis (unpaired t-test). All distribution modeling was performed
using the Statistical Toolbox in Matlab R2011b (The Mathworks, Inc.,
Natick, MA, USA).

Motion Effects on Interregional Correlations
Recent studies have shed light on subject motion as a potentially sig-
nificant source of bias in resting-state BOLD correlation studies
(Power et al. 2012). We have attempted to address sources of bias
arising from physiological pulsatility and gross, rigid body motion
when looking at intergroup differences. As a second check, we com-
pared interregional correlations between the 10 subjects with the
highest and 10 subjects with the lowest mean displacement and
rotational motion parameters derived from rigid body motion correc-
tion during preprocessing. Each motion group contained an equal
number of ASD and control subjects and was therefore unbiased in
terms of diagnosis.

Group ICA
A single group-level ICA (grand ICA) was performed across all subjects
from both ASD and control groups using temporally concatenated
probabilistic ICA (Calhoun et al. 2001). Probabilistic principal com-
ponent analysis (PCA) was used to estimate the number of indepen-
dent components supported by the data (Beckmann and Smith 2004).
The whitened observations were decomposed into sets of vectors that
describe signal variation across the concatenated subject-time domain,
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and across the spatial domain by optimizing for non-Gaussian spatial
source distributions. Estimated IC spatial maps were normalized to the
standard deviation of the residual noise and thresholded at a false-
discovery rejection rate of 95% for visualization purposes by fitting a
mixture model to the histogram of intensity values (Beckmann and
Smith 2004). Grand ICs associated with motion-by-magnetic field
interactions at tissue-bone or tissue-air interfaces, or which were loca-
lized primarily in the white matter or CSF spaces, were classified by
visual inspection using criteria suggested in Kelly et al. (2010) and
excluded from further analysis.

Dual-regression and Group-level Inference
Voxel-wise group analysis of the ICA results was performed using the
dual-regression approach described in Filippini et al. (2009). Dual-
regression of the grand temporally concatenated ICA results was per-
formed using scripts provided by the FSL toolbox (Madsen et al.
2004). In summary, dual-regression proceeds as follows: 1) Temporal
modes for each grand IC are derived using a GLM with grand spatial
modes as regressors. This results in single-subject time-courses corre-
sponding to each of spatial components generated by the grand ICA
over all subjects. 2) The temporal modes are normalized to unit var-
iance. 3) The set of normalized individual temporal modes are used
as regressors in a first-level GLM to derive individual subject spatial
maps corresponding to each of the grand spatial maps. Finally, a
second-level group analysis (i.e., ASD vs controls) is performed by
nonparametric permutation testing on all single-subject spatial maps
corresponding to each of the grand spatial ICs, and the between-
subject group differences and consistencies derived. Second-level
inference was thresholded at a family-wise error (FWE) corrected
probability of 0.05 with threshold-free cluster-enhancement (TFCE)
which provides both strong Type I and Type II error control (Madsen
et al. 2003).

Results

Preprocessing Measures of Image Quality
Rigid-body motion correction parameters calculated during
preprocessing were analyzed for group differences between
ASD and control subjects. The frame-to-frame Euclidean dis-
placement (Δrff ) and total frame-to-frame angular rotation
(Δθff ) were chosen as measures of subject motion most likely
to cause artifactual BOLD signal correlations. No significant
between-group differences were observed in either metric
and effect sizes were small to negligible. For frame-to-frame

displacements, mean ± SEM Δrff was 60 ± 5 μm in controls and
75 ± 9 μm in ASD subjects (t(37) = 1.416, P = 0.1651, unpaired
t-test, equal variance). For frame-to-frame rotations, mean ±
SEM Δθff was 0.031 ± 0.003° in controls and 0.031 ± 0.003° in
ASD subjects (t(37) = 0.051, P = 0.960, unpaired t-test, equal
variance). No significant between-group differences were ob-
served in any of the preprocessing metrics, including total
number of ICs, fraction of ICs considered nuisance com-
ponents, variance explained by physiological ICs, or mean
within-brain warping to the MDA template (Table 1).

Atlas-based Inter-regional Correlation
Taken as a whole, the mean correlation matrices calculated
for autism and control groups were strikingly similar (r = 0.97,
P < 0.0001) (Fig. 1a,b). Two-sample unpaired t-tests (equal
variance) between autism and control correlations were run
for each upper triangle element of the correlation matrix.
No individual pair-wise tests survived FDR control (q = 0.05).
In addition, between-group t-tests performed on whole-matrix
Gaussian mixture model parameters revealed no significant
group differences (μ0: P = 0.368, Cohen’s d = 0.300, μ1:
P = 0.260, Cohen’s d = 0.376, p0: P = 0.261, Cohen’s d = 0.375)
(Fig. 2c).

When correlation matrices were grouped based on motion
rather than diagnosis, whole-brain differences between the
correlation distributions for small and large motion groups
appeared and were more pronounced than those due to diag-
nosis (Fig. 3). A very large, significant difference in the whole-
matrix mixture model parameter μ0 was observed between
the high and low frame-to-frame rotation groups (unpaired
t-test, t(18) = 3.36, P = 0.003, Cohen’s d = 1.584). A medium,
but non-significant difference was observed in μ0 for the large
versus small displacement comparison (unpaired t-test,
t(18) = 1.36, P = 0.191, Cohen’s d = 0.641). Both of these effect
sizes were larger than that observed in μ0 for the ASD versus
control group comparison (Cohen’s d = 0.300). Mean ± SEM
frame-to-frame displacement, Δrff, was 113 ± 10 μm in
the high-motion group and 37 ± 1 μm in the low-motion
group (t(18) = 7.42, P < 0.0001, unpaired t-test, equal variance).
For frame-to-frame rotations, mean Δθff was 0.047 ± 0.003°

Figure 1. Atlas-based temporal coherence analysis. Interregional correlation matrices (Fisher z-transformed) for (a) controls (n=20) and (b) autism subjects (n=19). The
correlation matrix can be divided into conventional connection families as shown in (c). Both group matrices show essentially identical patterns of correlation, reflected in the low
residuals of the difference matrix. Strong homotopic correlations are evident in both cortical and subcortical sub-matrices. No individual pair-wise comparisons survived FDR
control (q= 0.05). Note that these matrices are upper triangle symmetric. (a and b) are shown with identical scale limits. The row ordering within each hemisphere for the
correlation matrices follows the surface-lobe hierarchy of the Harvard-Oxford atlas. Non-gray matter regions (white matter, CSF) and the brain stem are excluded from the
subcortical regions.
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in the high-motion group and 0.019 ± 0.001° in the low-
motion group (t(18) = 10.4, P < 0.0001, unpaired t-test, equal
variance).

Gaussian mixture modeling of the correlation distributions
for homotopic region pairs was precluded by the small
sample size (48 region pairs) per subject. Instead, a 3-way
ANOVA over region, subject and group was performed. Sub-
jects were nested within group since individual subjects
cannot cross between groups, and subject was treated

as a random effect. There was a main effect of region
(F47,1739 = 65.91, P < 0.0001, η2 = 0.555), but no effect of
group (F1,37 = 0.300, P = 0.589, η2 = 0.001) or region × group
interaction (F47,1739 = 1.20, P = 0.172, η2p = 0.031, η2 = 0.010).
In post hoc testing, only one of the 48 homotopic correlations
was found to be significantly different between groups
(two-sample t-test, P = 0.036) and this failed to survive
correction for multiple comparisons (FDR correction with
q = 0.05) (Fig. 4).

Figure 2. Two-component Gaussian mixture modeling example for all correlation matrix elements in (a) the control and (b) autism groups. (c) Comparison of mixture model
means (μ0, μ1) and proportion (p0) between autism (red) and controls (blue). No group differences survived FDR control (q= 0.05).
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Although no single pair-wise correlations survived global
FDR correction, abnormal patterns of correlations were appar-
ent at the region level (i.e., across a given row or column of
the correlation matrix) (Fig. 5). In order to assess this for-
mally, the number of significantly different pair-wise corre-
lations in each row was compared with that expected by
chance at a Bonferroni-corrected probability of 0.05/
110 = 0.00045. Positive and negative pair-wise group corre-
lation differences were analyzed separately. This corrected
probability corresponded to 14 or more pair-wise correlations
per row (using the cumulative binomial distribution). The fol-
lowing regions exhibited significantly high numbers of posi-
tive between-group differences (Control > ASD) when
analyzed this way: Left frontal pole, left superior frontal
gyrus, left middle frontal gyrus, left inferior frontal gyrus
(Pars Opercularis), left temporal pole, left middle temporal
gyrus (temporal–occipital part), left inferior temporal gyrus
(temporal–occipital part), left angular gyrus, and left and
right temporal fusiform cortex (posterior division). However,
it should be kept in mind that temporal and frontal poles are

regions of significant EPI signal dropout, making interpret-
ation of findings in these 2 regions unclear. No significantly
high counts of negative between-group differences were
observed.

A supplementary analysis was performed in order to
assess the impact of better matching the ASD and control
groups on mean frame-to-frame motion. We excluded 2 sub-
jects from the control group that had the least amount of
movement, and 2 from the ASD group that had the greatest
amount of motion. Following this procedure, groups were
well matched on the mean levels of frame-to-frame displace-
ment (autism: 65 ± 7 µm control: 62 ± 5 µm t(33) = 0.30,
P = 0.760). Group differences in the mean correlation
matrices were analyzed as before, with very similar results.
Minor differences were accounted for by some regions near
threshold becoming significant, and others dropping slightly
below significance. Overall, 7 of the 10 regions in the orig-
inal analysis remained significantly different, suggesting that
residual group differences in motion have only a minor
effect on this analysis.

Figure 3. Normalized histograms of all correlations for (a) autism (red) versus controls (blue), (b) high (red) versus low (blue) translational motion groups and (c) high (red) and
low (blue) angular motion groups. An equal number of autism and control subjects were included in each of the motion groups.
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Independent Component Analysis
Temporally concatenated ICA over both ASD and control
groups (grand ICA) yielded 43 components; of which, 23

were classified by inspection as neural in origin (Fig. 6). The
remaining 20 components were made up of CSF-localized
signal (3 of 20), Motion-by-field interactions (5 of 20), white
matter-localized signals (6 of 20), and other non-neural cardi-
ovascular signals (6 of 20). The 23 presumptive neural com-
ponents can be assigned either directly or in combination
with neurotypical components frequently observed in other
resting-state BOLD fMRI studies (Table 2) (Smith et al. 2009;
Shirer et al. 2012). Dual regression revealed essentially no
between-group differences in networks identified by ICA
(Fig. 7). There is some concern with temporally concatenated
spatial ICA that grand ICs may be driven by a small number of
subjects. However, the similarity of the dual regression group
mean spatial maps (Fig. 7), both between groups and to the
original grand spatial ICs (Fig. 6), suggests that these com-
ponents are relatively consistent across subjects and not
driven by outliers. No voxels in any component survived at an
few-corrected probability of 0.05 in the second-level group
analysis for the ASD > Control contrast. For the Control > ASD
contrast, 16 voxels survived correction in component 16 but
were located in white matter and 1 voxel survived in com-
ponent 21. Taken together, no meaningful differences were
detected by dual regression of group ICA results between
ASD and control resting-states.

Discussion

In this study of high-functioning adults with autism, we find
only limited evidence of abnormal connectivity at the regional
level and no evidence at all for altered connectivity at the

Figure 4. Scatterplot of homotopic z-transformed correlations for control and autism
groups across all 48 regions. No significant between-group differences were
observed following correction for multiple comparisons. Crosses indicate standard
errors of the means for each group (control horizontal, autism vertical).

Figure 5. Thresholded t-map of regions that have significantly different pair-wise correlation between autism and control groups. The threshold is P< 0.05 with green indicating
controls > autism and blue indicating autism > controls. The graph at right shows the total count of significantly positive group differences (control > autism) in each row of
the correlation matrix. A region is identified as abnormal if the number of significantly different pair-wise correlations exceeds a Bonferroni-corrected threshold of 14 (P< 0.05/
110 = 0.00045) with chance being 6. No significant counts of negative differences (autism > control) in each row were observed.
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whole-brain level. Regional abnormalities in functional con-
nectivity in ASD were specific to particular brain regions
within the frontal and temporal cortex (Fig. 5). Within these
regions, functional connectivity with other brain regions was
almost exclusively lower in the autism group. Our lack of
global effects was bolstered by the use of 2 independent ap-
proaches: an anatomical ROI-based temporal correlation
analysis and a data-driven ICA. Patterns and strength of tem-
poral correlation illustrated by both methods showed a re-
markable between-group similarity regardless of the type of
connection, including interhemispheric (both heterotopic and
homotopic), intrahemispheric, cortical–subcortical and sub-
cortical, as well as at the network level. We paid careful atten-
tion to the control of motion artifacts and other non-neuronal
confounds and also demonstrated that the residual effect of
subject motion is larger than the effect of diagnosis.

These findings challenge the theory that the autistic brain
is globally underconnected (Just et al. 2004). Recent

refinements of the general underconnectivity theory in autism
suggest that subnetworks such as frontal–parietal connections
are particularly abnormal (Just et al. 2007; Minshew and
Williams 2007). These theories and associated studies,
however, tend to emphasize only the differences found
between autism and neurotypical control groups, and deem-
phasize the similarities. We would argue that understanding
the group similarities is just as important as understanding
group differences, since both are necessary to inform a model
of brain organization and functioning in autism. Below, we
discuss the similarities identified in our study, and ask why
such similarities have not been highlighted before.

One reason that similarities in functional connectivity are
often not identified is that researchers generally have targeted
brain regions or brain networks either thought to be or
already known to be abnormal in autism, such as the default
network (Cherkassky et al. 2006; Kennedy and Courchesne
2008; Monk et al. 2009; Assaf et al. 2010; Weng et al. 2010).

Figure 6. Spatial modes of the grand ICA over all subjects rank ordered by explained variance. Only neuronal ICs are shown for clarity. Tentative assignments for each spatial
mode are listed in Table 2. MNI slice coordinates in mm are indicated below each image; sagittal slices with negative coordinates are within the left hemisphere.
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This can lead to the perception that the brain in autism is ab-
normally connected as a whole, although regions that might
be expected to be typical in autism are largely ignored.

A second possible explanation for the overemphasis of
group differences may be the context in which resting-state
scans are acquired. First, the majority of studies exploring
functional connectivity in autism do so in the context of a par-
ticular task (Just et al. 2004, 2007; Koshino et al. 2008). In
some of these studies, the residual signal after regressing out
the task time-course is used as a proxy for the resting-state
(for review, see Muller et al. (2011)). However, the overlying
tasks generally target cognitive processes that are thought to
be difficult for individuals with autism (e.g., theory of mind,
executive functioning, etc.), and by doing so, they are more
likely to generate significant group differences in the proxy
resting-state. Given the ease of acquisition, it is likely that
many researchers simply add a resting-state scan to a larger
task-based session. An earlier study by one of us identified
reduced functional connectivity in autism between regions of
the default network, but this resting-state scan was acquired
immediately following scans asking participants to make self-
and other-person judgments (Kennedy and Courchesne
2008). It is possible that the preceding task primed introspec-
tive cognitive processing differentially between the autism
and control groups, influencing subsequent default network
activity. Influences from prior tasks on resting-state activity
have been reported for language tasks (Waites et al. 2005)
and, more recently, in category-specific visual regions

(Stevens et al. 2010). In our current study, resting-state scans
were acquired only following task-free structural scans mini-
mizing any task-based priming of our results. It is still poss-
ible that cognitive, attentional, and arousal differences could
account for the regional differences that we did observe; if
that was the case, then it is possible that the underlying func-
tional architecture of autism is even more similar to typical
controls than described here.

A third possible reason that prior studies have less often
identified group similarities than group differences may be
partly explained by group differences in the amount of head
motion exhibited during scanning. Several recent reports em-
phasize careful control of gross motion effects in resting-state
correlation analyses (Power et al. 2012; Van Dijk et al. 2012).
This is especially important when comparing 2 different
populations, such as children and adults or autism and con-
trols, as different amounts of motion may be expected within
each group. In addition, the effect of motion is not necessarily
uniform for all brain regions and connection types. Greater

Table 2
Group-level neuronal-independent components identified over all subjects, percent of explained
variance, functional/anatomical assignment and correspondence to neurotypical ICs described in
Smith et al. (2009) and Shirer et al. (2012)

IC
#

% Explained
variance

Assignment Corresponding IC in
Smith et al. (2009)

Corresponding IC in
Shirer et al. (2012)

5 4.30 Retrosplenial—lateral
occipital

— M (part)

6 4.16 Right parietal—dlPFC 920 K
9 3.40 Sensorimotor 620 (part) G (part)
12 3.12 Dorsal primary visual

(V1)
I20 (part) J (part)

14 2.92 Left cerebellum 520 (part) —

15 2.69 SMG—SPL — —

16 2.46 Interparietal sulcus — N (part)
19 2.05 Ventral primary visual

(V1)
I20 (part) J (part)

20 1.89 Dorsal precuneus — I (part)
21 1.85 Precuneus — I (part)
22 1.83 MTG—lateral

prefrontal
— E

23 1.79 Lateral prefrontal — —

25 1.61 Precuneus-lingual
gyrus

— —

26 1.45 Sensorimotor 620 (part) G (part)
27 1.37 Caudate-Putamen — B
30 1.06 Insula-dACC 820 L
32 0.82 Right cerebellum 520 (part) —

34 0.72 Secondary visual
(V2)

320 D

35 0.71 DMN (parietal) 420 (part) C (part)
37 0.54 Lateral sensorimotor 620 (part) —

40 0.25 Primary auditory 720 A
42 0.49 DMN (medial) 420 (part) C (part)
43 1.45 Left parietal—DLPFC 1020 F
Total 42.93

DMN, Default Mode Network; dlPFC, dorsolateral prefrontal cortex; MTG, middle temporal gyrus;
SMG, supramarginal gyrus; SPL, superior parietal lobule.

Figure 7. Group mean spatial maps for dual-regression of the 23 grand ICs to
individual subjects demonstrating the between-group similarities. No meaningful
between-group differences were observed for any grand IC. Slice locations for each
IC are identical to those in Figure 6.
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amounts of motion are thought to result in increased short-
range and decreased long-range temporal correlations (Power
et al. 2012).

Interestingly, this increased short-range and decreased
long-range pattern has been postulated as a model for brain
organization in autism (Courchesne and Pierce 2005), and so
it will be necessary to see whether functional connectivity
studies continue to lend support for this theory when
methods that better account for motion are developed and
used. In the present study, to determine how motion might
affect our results, we show that both translational and
rotational motions during scanning have a larger effect on
measured correlations than does diagnosis (i.e., high-
functioning autism vs. neurotypical controls). Furthermore,
this large effect of motion was observed after attempting to
control such effects at all levels of the preprocessing and
analysis. This presents a major challenge for this type of re-
search, but one that can hopefully be overcome through the
development of new methods to deal with motion-related arti-
facts and careful consideration of how motion may impact
one’s results.

A fourth possible reason for the similarity observed
between autism and controls is that this study is the compo-
sition of our participant sample (i.e., high-functioning adults).
It is quite possible that effects would be more pronounced in
younger and lower-functioning individuals. At least 1 study
has suggested that altered functional connectivity may be
more pronounced at younger ages (Anderson, Druzgal et al.
2011), but it is unclear whether motion was matched across
groups and across the different ages in that study. We might
speculate that in high-functioning adults with autism, near-
typical patterns of functional connectivity are the result of
plastic reorganization of brain networks, possibly resulting
from many years of therapeutic intervention. In earlier work,
we showed that typical organization of functional networks
emerges even in the absence of a major anatomical pathway
that normally supports typical network functioning (Tyszka
et al. 2011). That study found that individuals with agenesis
of the corpus callosum (a congenital condition where the
fibers of the corpus callosum fail to cross the midline) still
showed the normal complement of resting-state networks,
and even exhibited the same level of functional connectivity
between homotopic regions of the left and right cerebral cor-
tices. Thus, the emergence of these resting-state networks is
remarkably resilient to early developmental perturbation,
perhaps more so than anyone may have thought was pre-
viously possible. Furthermore, we might speculate that those
individuals who are best able to respond to the demands of
their environment (the so-called high-functioning individuals,
such as those included in the present study) are those that
were able to establish typical neural networks. This remains
an open but testable question.

A final reason for the lack of emphasis on similarity is a
positive publication bias towards differences between groups,
a broad problem in scientific publication that has received
considerable recent attention (Johnson and Dickersin 2007;
Bennett et al. 2009; Jennings and Van Horn 2012). As more
studies are being published and more data are being gener-
ated and analyzed, it is becoming clear that a useful descrip-
tion of functional connectivity in autism must be more
nuanced than simply under-connected or over-connected
(Anderson, Nielsen et al. 2011; Muller et al. 2011). Whatever

that the outcome may be, our present findings suggest that
the effect size is small, and in particular that it is smaller than
residual effects of head motion in the scanner.

This study has some limitations, most notably that the
sample size is relatively small. The advent of data-sharing plat-
forms such as the Autism Brain Imaging Data Exchange
(ABIDE) and the National Database for Autism Research
(NDAR) open up the possibility of extending this analysis to
larger groups of subjects (including younger participants with
autism), providing better Type II (False Negative) error
control than that could be achieved here. Relatedly, larger
sample sizes will allow for better group-level matching on
psychotropic drug use. Although we believe that this factor is
unlikely to have accounted for our results, especially given
the high degree of similarity of the correlation distributions
between groups (Fig. 2), we cannot conclusively rule out this
possibility. Additional studies that disentangle the effects of
psychotropic drugs on resting state functional connectivity
will be necessary.

In conclusion, this study finds support for abnormal brain
connectivity in ASD at the regional level only in a limited set
of frontal and temporal cortical regions. No significant differ-
ences were observed at the whole-brain level between ASD
and control groups using atlas-based regional correlation or
group ICA analysis of BOLD RSNs. Most importantly, group
differences between the subjects demonstrating the most and
least motion during the fMRI acquisition were more signifi-
cant than those seen between ASD and control groups.
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