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Abstract
One of the grand challenges faced by neuroscience is to delineate the determinants of interindividual variation in the
comprehensive structural and functional connectionmatrices that comprise the human connectome. At present, this endeavor
appears most tractable at the macroanatomic scale, where intrinsic brain activity exhibits robust patterns of synchrony that
recapitulate core functional circuits at the individual level. Here, we use a classical twin study design to examine the heritability
of intrinsic functional network properties in 101 twin pairs, including network activity (i.e., variance of a network’s specific
temporal fluctuations) and internetwork coherence (i.e., correlation between networks’ specific temporal fluctuations). Five of 7
networks exhibited significantly heritable (23.3–65.2%) network activity, 6 of the 21 internetwork coherences were significantly
heritable (25.6–42.0%), and 11 of the 21 internetwork coherences were significantly influenced by common environmental
factors (18.0–47.1%). These results suggest that the source of interindividual variation in functional connectome has amodular
architecture: individual modules represented by intrinsic connectivity networks are genetic controlled, while environmental
factors influence the interplays between themodules. This work further provides network-specific hypotheses for discovery of
the specific genetic and environmental factors influencing functional specialization and integration of the human brain.
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Introduction
The neuroscience community has embraced the challenges
of delineating functional interactions within the human con-
nectome (Kelly et al. 2012; Van Essen et al. 2013). From one indi-
vidual to the next, strikingly similar patterns of temporally
correlated spontaneous activity (i.e., functional connectivity)
are noted within the connectome, along with substantial vari-
ation (Biswal et al. 2010; Tomasi and Volkow 2010; Zuo et al.
2012). In attempting to explain the potential origins of such
variation, researchers are increasingly highlighting the need
for twin and family study designs, which were successfully
used in themorphometric imaging literature to differentiate be-
tween genetic and environmental effects (Bartley et al. 1997;
Chiang et al. 2009; Kaymaz and van Os 2009; Kochunov et al.
2010, 2011; Chiang et al. 2011; Blokland et al. 2012; Jahanshad
et al. 2013).

Initial resting state fMRI-based (rfMRI) investigations have re-
vealed genetic contributions to interindividual variation. First,
focusing on the brain’s proposed default network (Raichle et al.
2001; Buckner et al. 2008; Andrews-Hanna et al. 2010), an rfMRI
study of 333 Mexican American individuals from 29 extended
pedigrees found functional connectivity within the default net-
work to be significantly heritable (estimated heritability = 42%).
While age was accounted for in their analyses, the authors
noted that this value was likely an underestimate due to the
wide age range of their participants (Glahn et al. 2010). Using
graph theory approaches, in a small sample of twins (N = 58, 16
monozygotic [MZ], 13 dizygotic [DZ] pairs), Fornito et al. (2011)
observed highly heritable (60%) cost-efficiency balance of the
functional connectome. Most recently, the global efficiency of
intrinsic brain networks was also found to be significantly her-
itable (N = 86, 21 MZ, 22 DZ pairs) in children (van den Heuvel
et al. 2013).

However, a burgeoning literature has expanded our apprecia-
tion of the intrinsic brain architecture (Smith et al. 2009; Bressler
and Menon 2010; Zhang and Raichle 2010) beyond the default
network, to include a growing number of large-scale function-
al modules in the brain connectome (Sporns 2013; van den
Heuvel and Sporns 2013)—commonly referred to as intrinsic
connectivity networks (ICNs). Disentangling whether genetic
and/or environmental factors influence the activities of ICNs
and the interplays among ICNs is essential to understand the
intrinsic functional architecture of the brain and the neural
substrates of individual variations in both behavioral and
mental states.

Here, we use a substantial rfMRI dataset obtained in twins
(N = 272: 78 MZ pairs; 58 DZ pairs) to examine genetic and envir-
onmental contributions to individual variability in fluctuation
of ICNs and coherence between ICNs. We first generated a set
of ICN templates consisting of 7 commonly identified networks
in a separate sample (N = 105) for whom rfMRI was acquired on
the same scanner. Applying the ICN templates to the data from
272 twins, we obtained ICN-specific representative time series
for the 7 ICNs, based onwhichwe characterized the fluctuations
of ICNs using temporal variance (Kaneoke et al. 2012) and char-
acterized the inter-ICN coherences using correlation coeffi-
cients between the ICN-specific representative time series.
Cross-twin correlation and structural equation modeling
(SEM) were performed to examine the genetic and environmen-
tal effects on fluctuation of each ICN and coherence between
each pair of ICNs. Age and sex were carefully controlled in the
analyses.

Methods
Participants

A total of 200 twin pairs, including 86 monozygotic (MZ) and 114
dizygotic (DZ) pairs, were recruited from unrelated Australian
families as part of the Queensland Twin Imaging (QTIM) study
(de Zubicaray et al. 2008; Chiang et al. 2009; Blokland et al. 2011;
Couvy-Duchesne et al. 2014). The participants were originally re-
cruited from the primary and secondary schools in South East
Queensland, Australia, and had participated in the Brisbane
Twin Cognition study at 16 years of age (Wright and Martin
2004). Zygosity of the twins was assessed objectively with 9 inde-
pendent DNA microsatellite polymorphisms and crosschecked
with blood group (ABO, MNS, and Rh) as well as phenotypic
data (hair, skin, and eye color). An overall probability of correct
assignment on zygosity is >99.99%. All twinswere screened to ex-
clude cases of pathology known to affect brain structure and re-
ported no significant head injury, neurological or psychiatric
conditions, or history of substance abuse/dependence or had a
first-degree relativewith a psychiatric disorder. Informedwritten
consent was obtained from the twins. Ethical approval was ob-
tained from the Human Research Ethics Committee, Queensland
Institute of Medical Research.

To avoid the potential confound from the gender difference in
brain structure (Ruigrok et al. 2014), we selected only same
sex, adult twin pairs who alsomet an upper limit on headmotion
measures (see Quality Control Procedure below) from the initial
sample of 400 individuals. This criterion required co-twins for
each twin pair to have little head motion, so that if one of the
co-twins had excessive head motion, the other was excluded.
As a result, we included 272 twins in the main analyses (referred
to as main dataset, mean age = 22, range 18–28, 75% female),
consisting of 78MZ and 58 DZ pairs. From among those excluded,
we used 105 individuals (referred to as template dataset, mean
age = 22, range 19–29, 51% female) with mean frame-wise dis-
placement <0.2 mm to generate a set of ICN templates. Eighty
of these were opposite-sex DZ twins (40 pairs), the remainder
were nonpaired twins (individuals). The following image acquisi-
tion, preprocessing, and quality control procedures were identi-
cal to both datasets.

MRI Image Acquisition

All twins completed 5′15″ rfMRI scans on a 4 T Bruker Medspec
scanner (Bruker Medical) comprising 150 echo-planar imaging
(EPI) volumes of whole-brain T2*-weighted blood oxygenation
level-dependent (BOLD) contrast: echo time = 30 ms, repetition
time = 2100 ms, flip angle = 90, field of view = 230 mm, slice
thickness = 3.6 mm, acquisition matrix = 64 × 64 × 36. High-reso-
lution T1-weighted images were also acquired for each pair of
twins using the magnetization-prepared rapid gradient echo
(MP-RAGE) sequence (echo time = 3.83 ms, repetition time = 2500
ms, inversion time = 1500 ms, flip angle = 15°, slice thickness =
0.9 mm, acquisition matrix = 256 × 256 × 256).

Image Preprocessing

Image processing steps were performed using the Connectome
Computation System (CCS, Xu et al. 2015; https://github.com/
zuoxinian/CCS), which integrates the functionalities of AFNI
(Cox 1996), FSL (Jenkinson et al. 2012), and FreeSurfer (Fischl
2012) with shell and MATLAB scripts. The structural images
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were first de-noised using a spatially adaptive nonlocal means
filter (Xing et al. 2011; Zuo and Xing 2011) and further processed
to reconstruct the brain cortical surface (Dale et al. 1999; Fischl
et al. 1999, 2001; Segonne et al. 2004, 2007). The rfMRI functional
images were preprocessed with the following steps: 1) deleting
the first 5 EPI volumes; 2) de-spiking time series; 3) correcting
slice timing; 4) aligning each volume to the mean EPI image; 5)
normalizing the 4D global mean intensity (10 000); 6) band-pass
(0.01–0.1 Hz) filtering the time series; 7) estimating a rigid trans-
formation from individual functional images to the individual
anatomical image using the GM-WM boundary-based registra-
tion (BBR) algorithm (Greve and Fischl 2009), and 8) a nonlinear
transformation between individual anatomical space to the
MNI152 template (FNIRT in FSL, 1 mm isotropic).

Quality Control Procedure

CCS includes a quality control procedure to verify the quality of
images processed, which produces various screenshots of brain
extraction, brain tissue segmentation, pial and white surface re-
construction, and BBR-based functional image registration for
visual inspections. The following quantitative measures of
headmotion and registration qualitywere computed: 1) themax-
imum distance of translational head movement (maxTran), 2)
the maximum degree of rotational head movement (maxRot),
3) the mean frame-wise displacement (meanFD) (Power et al.
2012), 4) the minimal cost of the BBR co-registration (mcBBR),
and 4) the error of the FNIRT spatial normalization (errFNIRT).
All participants with poor brain extraction, tissue segmenta-
tion, and surface construction were excluded from subsequent
analysis. Further, all datasets entering into the subsequent
analysis met the following criteria: 1) maxTran ≤2 mm, 2) max-
Rot ≤2°, 3)meanFD ≤ 0.2 mm, and 4) errFNIRT < 0.2. More details
on these steps can be found at the CCS website (http://lfcd.
psych.ac.cn/QC.html). Among the original 400 subjects, 21
had excessive head motion (meanFD > 0.2 mm) and 57% of them
were females.

Generation of Template ICNs

The analytic pipelines are illustrated in Figure 1. First, general-
ized ranking and averaging independent component analysis
by reproducibility (gRAICAR) (Yang et al. 2008, 2012) was applied
to the template dataset (N = 105), with all participants having a
mean FD < 0.2 mm. This provided a set of unbiased templates
that reflected common ICNs that would be detectable in the
main dataset. In this way, the registration accuracy of the ICNs
between the templates and the main dataset was maximized,
since the 2 datasets were acquired using the same imaging
parameters such as field strength and resolution. Specifically,
after preprocessing and quality control procedures described
above, spatial independent component analysis was applied to
the rfMRI dataset using the MELODIC module of FSL software
(Beckmann and Smith 2004). The numbers of components were
automatically estimated by MELODIC runs. The resultant spatial
components from individual participants were pooled, and gRAI-
CARmatched the components fromdifferent participants and al-
located them into clusters based on their spatial similarity
measured using mutual information. For each cluster, a partici-
pant could contribute at most one component. A total intersub-
ject spatial similarity among the member component maps
(each representing a subject) was calculated to indicate the
cross-subject consistency of the cluster. Themember component
maps in the clusterwereweighted averaged to generate a cluster-

wise component map. The weights in the averaging were deter-
mined by the degree centrality of the individual component
maps in the cluster. The degree centrality significancewas deter-
mined using permutation tests in which components from indi-
vidual participants were randomly matched, yielding probability
values that reflect contributions of individual participants to the
clusterwise components. The effectiveness of gRAICAR has been
demonstrated in multiple studies (Yang, Chang et al. 2014; Yang,
Xu et al. 2014; Kyathanahally et al. 2015). Ranking the clusterwise
component maps by their cross-subject consistency, we identi-
fied 7 ICNs that represented distributed areas in gray matter
and were significantly contributed to by at least 60% of the tem-
plate subjects.

Spatial Regression of ICN Maps

Spatial regression was used to project the rfMRI data of the main
dataset (N = 272) to the ICN template maps, yielding estimated
time-varying contributions of the ICNs to the fMRI data. This
approach fulfills our assumption that the ICNs estimated from
ICA can overlap in space. An example in this study is that the
precuneus network (also referred to as posterior default mode
network) and the default mode network overlap in posterior cin-
gulate cortex (see Fig. 2, also observed in Zuo et al. 2010; Jones
et al. 2011; Kim and Lee 2011; Knyazev 2012; Yang, Chang
et al. 2014). Compared with the mean time series within ROIs,
spatial regression not only enables us to disentangle the time ser-
ies representing the spatially overlapped ICNs detected by ICA,
which has been shown to be more sensitive to network changes
in aging study (Koch et al. 2010), but also overcomes potential
limitations of using seed ROIs to extract representative time ser-
ieswithin regions showinghighly functional heterogeneity (Jiang
et al. 2015; Jiang and Zuo 2015) by taking the whole-brain spatial
variability into consideration in the spatial regression model. It
has been used as the first half of the “dual regression” model
(Beckmann et al. 2009; Zuo et al. 2010). In details, the fMRI dataset
was reformed into a Matrix X with v rows and t columns, where
v is the number of voxels and t the number of volumes. The 7 ICN
templatemaps plus a constantmap (in which all voxels are set to
1 to represent the constant term in the regression model) were
formed into a Matrix S, where each of the 8 columns represents
a template map (a vector of length v). The intensity of the 7 tem-
plate maps was standardized so that they had zero mean and
unit variance across all voxels. The data matrix X can then be ex-
pressed using a linear model: X = SM. The matrix M represents
how the ICN template maps, S, are mixed to form X. M is an
8 × t matrix, and each row of M is the representative time series
for an ICN. Solving M using a maximal-likelihood approach, we
obtained the representative time series for each ICN, reflecting
time-varying contribution of the ICN to a given participant (as il-
lustrated in Fig. 1). In Supplementary Figure 1, we showed that
the representative time courses were highly correlated with the
mean time series from the core regions of the ICNs, supporting
the validity of the representative time course.

Genetic and Environmental Influence on ICN
Fluctuations

As demonstrated in Figure 1, the fluctuation level of individual
ICNs was quantified using variance of the corresponding repre-
sentative time courses. Temporal variance has been demon-
strated to be closely relevant to the functioning of ICNs (Garrett
et al. 2010; Samanez-Larkin et al. 2010; Kaneoke et al. 2012). For
each of the ICNs, we first calculated the cross-twin correlation
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of the variance metrics for MZ and DZ twin pairs separately. The
resultant cross-twin correlation coefficients were compared to
provide an indication of the relative contribution of genetic and
environmental factors to the ICN fluctuations (Fulker and Jinks
1970; Plomin et al. 2000).

Further, we used an ACE model to quantify the genetic and
environmental contributions to the ICN fluctuations. In a stand-
ard ACE model, the variance of a trait can be decomposed into
additive genetic (A), shared or common (C) environment, and
nonshared (unique) environmental (E) effects, the latter of
which includes measurement error (Neale and Cardon 1992).
This model takes advantage of the differences in genetic related-
ness between MZ twins who share 100% of their genes, and DZ
twins who share, on average, 50% of their genes (Silberg et al.
1990; Rijsdijk and Sham 2002). Based on these assumptions,
one can derive the contributions of A and C effects using
SEM, as implemented in OpenMx (Boker et al. 2011), with covari-
ates of age and sex modeled as regressions or deviation effects
on the mean. In SEM, A, C, and E are represented by latent vari-
ables, and their relative variances (denoted as a2, c2, and e2,
respectively) reflect the proportion of their contributions to the
cross-subject covariance of the observed variables (i.e., variance
metrics of ICNs).

Since the variance metric of ICNs may not follow a normal
distribution, we used a nonparametric approach to examine the
significance of A and C effects (Fornito et al. 2011). The first step is
model identification,which is used to examine the significance of
the A and C contributions in the model. Besides the ACE model,
the path coefficients for 2 submodels, AE and CE, were estimated.

The differences in likelihoods between the full model and the 2
submodels were calculated. A significant likelihood difference
between ACE and CEmodels indicated that the A factor is critical
in the full model, while a significant likelihood difference be-
tween ACE and AE model suggested a significant contribution
of C factor.

Null distributions of the likelihood difference were generated
by permuting the MZ/DZ labels and the composition of the twins
with constraints on exchangeability. Specifically, if a twin from
twin pair A was randomly paired with a twin from twin pair B,
then the other twins from twin pairs A and Bwere paired. In add-
ition, the sex and age of the 2 twins forming a twin pair were con-
strained to be the same, so that age and sex could still be included
as covariates in the ACE model. This permutation was repeated
5000 times, and the ACE model, as well as AE and CE submodels,
was estimated. The likelihood differences between the fullmodel
and submodels were collected to form 2 null distributions, one
for ACE-AE and the other for ACE-CE.

The significance ofA and C factors for the original dataset was
then evaluated within the null distributions. Under the rule of
parsimony in model identification, if the C factor was significant
but A was not, we used the CE model to estimate the C effect; if
the A factor was significant but C was not, we used the AE model
to evaluate the A effect. If neither A nor C was significant in
these tests, we used the ACEmodel. For each of the 7 ICNs, we sep-
arately conducted the above procedure for model identification.
The threshold for significance was P < 0.005 (single-tail test).
Once the model was selected, the relative variance of A, C, and E
factors (a2, c2, and e2) was evaluated from the identified model.

Figure 1. A flowchart of the analysis pipeline. The analysis pipeline consists of 5 steps. (1) Before the main analysis, an independent dataset containing 105 participants,

who had same imaging protocol as in the main analysis, was used to generate common ICN templates (unthresholded spatial maps representing ICNs); (2) For each

participant in the main analysis (N = 272), the rfMRI dataset was projected to the ICN spatial templates to yield mixing time courses of the ICNs; (3) The temporal

variance of the mixing time courses of the ICNs were computed to represent the level of fluctuations for individual ICNs; (4) The mixing time courses of the ICNs were

correlated to generate inter-ICN coherence metrics, as the upper-triangle elements in the inter-ICN correlation matrix; (5) Structural equation modeling was applied to

estimate genetic and environmental influence on the each of the ICN fluctuations (variance values) and inter-ICN coherences (correlation coefficients). The capital letters

“A,” “C,” and “E” in the model represent additive genetic effect, shared (common) environmental effect, and un-shared (unique) environmental effect, respectively.
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Genetic and Environmental Influence on Individual
Inter-ICN Coherences

Using the samemethodology, we investigated genetic and envir-
onmental influence on individual inter-ICN coherences. The
inter-ICN coherence was characterized using temporal correl-
ation between the representative time courses from a pair of
ICNs. For each of the inter-ICN coherence metrics, we compared
cross-twin correlations for MZ and DZ twins, and further quanti-
fied the contribution of genetic and environmental factors using
the ACE model (see above section for details).

Results
ICN Templates

Using 105 individuals whose scan parameters were identical to
those in the main analysis, we generated 7 spatial templates,
each representing a commonly observed ICN. Figure 2 depicts
the spatial ICN templatemaps. Thesemapswere not thresholded
in subsequent spatial regression analysis. Ranked by cross-sub-
ject consistency (the sum of spatial similarity among the mem-
ber component maps, each representing a subject), these 7
ICNs were the precuneus-dorsal posterior cingulate network
(PCN, some studies referred to this as posterior defaultmode net-
work), the visual network (VN), the defaultmode network (DMN),

the fronto-parietal network (FPN), the salience network (SN), the
somatosensory-motor network (SMN), and the dorsal attention
network (DAN). These networks have been commonly reported
in previous studies (Power et al. 2011; Yeo et al. 2011), proved to
be reliable (Zuo et al. 2010), and have been associatedwith behav-
ioral and cognitive taxonomy (Laird et al. 2013).

Genetic and Environmental Influence on ICN
Fluctuations

Table 1 presents cross-twin correlation coefficients for MZ and
DZ twins. PCN, VN, DMN, FPN, and DAN showed significant

Figure 2. Template maps of 7 common ICNs. Spatial maps showing the 7 common ICNs detected in 105 individuals. For visualization purpose, the spatial maps are

threshold at |Z| > 2.0, but in the following analysis, these spatial maps were not thresholded. Clockwise, the ICNs are the precuneus-dorsal posterior cingulate network

(PCN, some studies referred to as posterior default mode network), the visual network (VN), the default mode network (DMN), the fronto-parietal network (FPN), the

salience network (SN), the somatosensory-motor network (SMN), and the dorsal attention network (DAN).

Table 1 Cross-twin correlation of ICN fluctuations

Inter-ICN coherence MZ DZ

r 95% CI r 95% CI

PCN 0.478** 0.286/0.633 0.111 −0.151/0.359
VN 0.410** 0.206/0.579 0.049 −0.212/0.304
DMN 0.248* 0.026/0.445 0.063 −0.198/0.316
FPN 0.448** 0.251/0.610 0.107 −0.155/0.356
SN 0.139 −0.086/0.351 0.222 −0.039/0.454
SMN 0.342** 0.129/0.525 0.409** 0.168/0.603
DAN 0.360** 0.149/0.539 0.074 −0.188/0.326

Note: * indicates P < 0.05; ** indicates P < 0.005.
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cross-twin correlation in MZ twins (P < 0.05 for DMN, P < 0.005 for
the other ICNs) and close-to-zero cross-twin correlation in DZ
twins, suggesting a major influence of genetic factors. SMN
showed significant cross-twin correlation in both MZ and DZ
twins (P < 0.005), and the correlation coefficient was similar in
the 2 types of twins, suggesting that the level of fluctuations of
this ICN is significantly influenced by common environmental
factors. SN showed nonsignificant and relatively low cross-twin
correlation in both MZ and DZ twins, indicating lack of evidence
for genetic and common environmental effects on it.

Results from the SEM analyses echoed the above indications.
Table 2 presents estimations of genetic (a2), common environ-
mental (c2), and unique environmental effects (e2) from the
ACE, AE, and CE models. PCN, VN, DMN, FPN, and DAN showed
significant A effect (p(A) < 0.005) and nonsignificant Ceffect (p(C)
> 0.05), and thus, weusedAEmodel to derive the relative variance
of A and E. As a result, we obtained a2 values of 51.0%, 34.9%,
23.3%, 65.2%, and 32.7% for the fluctuation levels of PCN, VN,
DMN, FPN, and DAN, respectively. On the other hand, SMN
showed significant C effect but not A effect. The CE model was
then used to derive a c2 value of 34.5% for the fluctuation level
of this ICN.

Genetic and Environmental Influences on Individual
Inter-ICN Coherences

The results of cross-twin correlation for MZ and DZ twins are
summarized in Table 3. All inter-ICN coherences showed signifi-
cant cross-twin correlation in MZ twins (P < 0.05 for PCN-DAN,
DMN-DAN, FPN-SN, FPN-SMN, and SMN-DAN, P < 0.005 for the
other pairs). The inter-ICN coherences PCN-VN, PCN-DMN,
PCN-FPN, VN-DMN, VN-SN, and VN-DAN showed significant
cross-twin correlation in DZ twins at P < 0.005, and PCN-SN,
PCN-DAN, VN-FPN, DMN-FPN, DMN-SN, and DMN-DAN showed
significant cross-twin correlations in DZ twins at P < 0.05. For
these inter-ICN coherences, the cross-twin correlations in MZ
twins were less than 2 times of the correlation in DZ twins, indi-
cating influence from both genetic and common environmental
factors. On the other hand, the inter-ICN coherences PCN-SMN,
VN-SMN, DMN-SMN, FPN-SN, FPN-SMN, FPN-DAN, SN-SMN,
SN-DAN, and SMN-DAN showed nonsignificant cross-twin corre-
lations in DZ twins (P > 0.05), indicating that these inter-ICN co-
herence could be influenced mainly by genetic factors.

Results from the further SEM analyses are summarized in
Table 4. The inter-ICN coherences DMN-SMN, FPN-DAN, and
SN-SMN showed significant A effect but nonsignificant C effect

in model selection (P < 0.005). The a2 for these inter-ICN coher-
ences estimated from the AE model was 39.4%, 42.0%, and
29.3%, respectively. The inter-ICN coherences PCN-VN, PCN-
DMN, PCN-FPN, PCN-DAN, VN-DMN, and VN-SN showed signifi-
cant Ceffect but nonsignificant A effect inmodel selection. The c2

for these inter-ICN coherences estimated from the CEmodel was
45.3%, 47.1%, 38.1%, 29.0%, 41.7%, and 39.7%, respectively. The
other inter-ICN coherences did not survive the P < 0.005
threshold for adopting AE or CE submodels, and their a2 and c2

were estimated using the ACE model. Among these inter-ICN co-
herences, PCN-SN showed significant c2 = 30.8%, PCN-SMN
showed significant c2 = 18.0%, VN-DAN showed significant c2 =
28.5%, and DMN-DAN showed significant c2 = 25.9%, while VN-
FPN showed significant a2 = 25.6%, VN-SMN showed significant
a2 = 30.3%, DMN-FPN showed significant a2 = 23.4%, SN-DAN
showed significant a2 = 31.1%, and SMN-DAN showed significant
a2 = 29.0%. No inter-ICN coherence showed both significant A and

Table 3 Cross-twin correlation of inter-ICN coherences

Inter-ICN coherence MZ DZ

r 95% CI r 95% CI

PCN-VN 0.511** 0.326/0.659 0.436** 0.200/0.624
PCN-DMN 0.521** 0.338/0.666 0.391** 0.148/0.590
PCN-FPN 0.369** 0.160/0.547 0.434** 0.198/0.622
PCN-SN 0.360** 0.149/0.539 0.294* 0.038/0.513
PCN-SMN 0.317** 0.102/0.504 0.201 −0.061/0.436
PCN-DAN 0.274* 0.055/0.468 0.344* 0.094/0.553
VN-DMN 0.418** 0.216/0.586 0.453** 0.221/0.637
VN-FPN 0.368** 0.159/0.546 0.256* 0.002/0.483
VN-SN 0.449** 0.252/0.611 0.366** 0.119/0.570
VN-SMN 0.324** 0.109/0.510 0.108 −0.155/0.356
VN-DAN 0.453** 0.256/0.614 0.365** 0.118/0.570
DMN-FPN 0.415** 0.212/0.584 0.336* 0.085/0.547
DMN-SN 0.336** 0.123/0.520 0.245* −0.015/0.473
DMN-SMN 0.437** 0.238/0.601 0.069 −0.193/0.322
DMN-DAN 0.272* 0.053/0.466 0.299* 0.044/0.517
FPN-SN 0.287* 0.069/0.479 0.140 −0.123/0.384
FPN-SMN 0.260* 0.040/0.456 −0.207 −0.442/0.054
FPN-DAN 0.441** 0.242/0.604 0.223 −0.038/0.455
SN-SMN 0.402** 0.197/0.573 0.029 −0.231/0.285
SN-DAN 0.356** 0.145/0.536 0.120 −0.142/0.367
SMN-DAN 0.284* 0.066/0.477 0.149 −0.113/0.392

Note: * indicates P < 0.05; ** indicates P < 0.005.

Table 2 Results of ACE modeling on ICN fluctuations

ACE AE CE

a2 (%) c2 (%) e2 (%) p(A) a2 (%) e2 (%) p(C) c2 (%) e2 (%)

PCN 51.0 0.0 49.0 0.000 51.0* 49.0 0.210 18.6 81.4
VN 34.9 0.0 65.1 0.000 34.9* 65.1 0.254 24.2 75.8
DMN 23.3 0.0 76.7 0.003 23.3* 76.7 0.289 11.4 88.6
FPN 65.2 0.0 34.8 0.000 65.2* 34.8 0.316 10.3 89.7
SN 17.7 4.2 78.1 0.047 23.4 76.6 0.071 15.5 84.5
SMN 2.2 33.0 64.8 0.132 41.3 58.7 0.003 34.5* 65.5
DAN 32.7 0.0 67.3 0.000 32.7* 67.3 0.218 19.0 81.0

Note: p(A) < 0.005 or p(C) < 0.005 indicates that theA or C factor has a significant contribution in fitting the data. For cases with significantA but nonsignificant C factors, we

used AE submodel to estimate the variance explained by A factor (a2); for cases with significant C but nonsignificant C factors, we used CE submodel to estimate the

variance explained by C factor (c2). The models selected for the estimation of a2 or c2 are highlighted using bold font.

*Corresponding a2 or c2 is significant at P < 0.005. All P values in this table are single-tailed statistics.
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C effects. Figure 3 provides a summary of the SEM analyses on
both ICN fluctuations and inter-ICN interplays.

Discussion
Systematic investigation of the intrinsic functional networks in
the largest twin sample to date quantified genetic and environ-
mental influence on the functional connectivity architecture of
the human brain. We examined the activity level of individual
ICNs and the interplays between ICNs, providing a full picture
of the genetic and environmental effects on large-scale brain
networks (Fig. 3). This study extends previous studies on task-
based brain activations (Koten et al. 2009; Blokland et al.
2011), because ICNs and their interplays reflect more funda-
mental or intrinsic architecture of brain function (Fox and
Raichle 2007), and it is hypothesized that the ICNs are recruited
and combined to facilitate various tasks (Deco and Corbetta
2011; Buckner et al. 2013). Among the 7 ICNs explored, 5 showed
significant genetic effects on the amplitude of fluctuations, and
genetic factors were estimated to explain up to 65% of the indi-
vidual variability. In contrast, 11 of the 21 inter-ICN coherences
exhibited significant common environmental effects, and up to
47.1% of the individual variability in inter-ICN coherences can
be explained by common environmental factors. These obser-
vations suggest that genetic factors play an important role in
the activity of individual ICNs, and most of the environmental
influence are reflected on the interplays between ICNs. This
implication outlines a highly modular organization of the func-
tional connectivity architecture, in which the individual mod-
ules represented by ICNs are genetically controlled, while the
interplays between themodules are influenced by environmen-
tal factors.

Table 4 Results of ACE modeling on ICN fluctuations

ACE AE CE

a2 (%) c2 (%) e2 (%) p(A) a2 (%) e2 (%) p(C) c2 (%) e2 (%)

PCN-VN 10.5 37.4 52.1 0.066 52.2 47.8 0.000 45.3* 54.7
PCN-DMN 21.4 30.2 48.4 0.024 53.7 46.3 0.003 47.1* 52.9
PCN-FPN 0 38.1 61.9 0.791 39.8 60.2 0.000 38.1* 61.9
PCN-SN 0 30.8* 69.2 0.779 33.2 66.8 0.019 30.8 69.2
PCN-SMN 11.8 18.0* 70.2 0.123 31.5 68.5 0.058 27.8 72.2
PCN-DAN 0 29.0 71.0 0.527 31.7 68.3 0.000 29.0* 71.0
VN-DMN 0 41.7 58.3 0.476 45.3 54.7 0.000 41.7* 58.3
VN-FPN 25.6* 11.7 62.7 0.027 38.5 61.5 0.081 32.3 67.7
VN-SN 0 39.7 60.3 0.281 42.8 57.2 0.001 39.7* 60.3
VN-SMN 30.3* 0 69.7 0.014 30.3 69.7 0.719 24.8 75.2
VN-DAN 21.7 24.1* 54.2 0.028 48.4 51.6 0.011 40.7 59.3
DMN-FPN 23.4* 17.3 59.2 0.027 42.4 57.6 0.049 36.1 63.9
DMN-SN 0 28.5* 71.5 0.251 30.9 69.1 0.015 28.5 71.5
DMN-SMN 39.4 0 60.6 0.001 39.4* 60.6 0.782 30.3 69.7
DMN-DAN 1.3 25.9* 72.9 0.235 31.4 68.6 0.010 26.8 73.2
FPN-SN 14.9 9.5 75.6 0.060 25.6 74.4 0.080 21.5 78.5
FPN-SMN 19.3 0 80.7 0.006 19.3 80.7 0.772 9.8 90.2
FPN-DAN 42.0 0 58.0 0.001 42.0* 58.0 0.279 32.7 67.3
SN-SMN 29.3 0 70.7 0.004 29.3* 70.7 0.275 21.8 78.2
SN-DAN 31.1* 0 68.9 0.013 31.1 68.9 0.486 24.3 75.7
SMN-DAN 29.0* 0 71.0 0.014 29.0 71.0 0.985 21.5 78.5

Note: p(A) < 0.005 or p(C) < 0.005 indicates that theA or C factor has a significant contribution in fitting the data. For cases with significantA but nonsignificant C factors, we

used AE submodel to estimate the variance explained by A factor (a2); for cases with significant C but nonsignificant C factors, we used CE submodel to estimate the

variance explained by C factor (c2). The models selected for the estimation of a2 or c2 are highlighted using bold font.

*Corresponding a2 or c2 is significant at P < 0.005. All P values in this table are single-tailed statistics.

Figure 3. Summary of SEM results for ICN fluctuation and inter-ICN coherence.

The genetic (blue) and common environmental (red) contributions to the

fluctuation of individual ICNs (a2 and c2 values in Table 2) are visualized using

areas of the rings. The genetic (blue) and common environmental (red) effects

on the inter-ICN coherences are visualized using the belts linking individual

ICNs. The width of the belts represents the contributions (a2 or c2 values in

Table 4).
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Genetic Factors Control Modules of the Connectivity
Architecture

ICNs have been hypothesized to be subsystems in the functional
brain network (Damoiseaux et al. 2006; Biswal et al. 2010) and
have been associated to various cognitive components (Smith
et al. 2009; Laird et al. 2011). Our findings that the PCN, VN,
DMN, FPN, and DAN are sensitive to genetic mediation indicate
that major portions of the subsystems in the intrinsic organiza-
tion of the brain are controlled by genetic factors. The heritability
of the activity level of the individual ICNs supports that ICNs de-
tected with rfMRI are useful mediators to connect brain function
to genes. Furthermore, our findings of the intermediate to high
heritability (23.3–65.2%) of the ICNs support the hypothesis that
the ICNs are more fundamental functional modules that are re-
cruited and combined to perform tasks (Deco and Corbetta 2011),
and further provide critical information for associating genes to
various cognitive functions. For instance, our results showed that
genetic factors explain 65.2% of the interindividual variance in the
activity level of FPN. Given that previous studies have associated
high-level cognitive tasks such asworkingmemory, reasoning, in-
hibition, and attention to FPN (Laird et al. 2011), our results predict
the heritage of these cognitive control functions, which has been
reported separately (Fan et al. 2001; Blokland et al. 2011; Schachar
et al. 2011; Mosing et al. 2012). Combining previous findings and
our results, it is likely that the high-level cognitive control func-
tions are facilitated by the same FPN network. More importantly,
it is reasonable to hypothesize that the same set of genes control-
ling the activityof FPN is the commonsourceof the individual vari-
ability of these high-level cognitive control functions.

Similarly, the significant genetic influences on the PCN, VN,
DMN, and DAN suggest that their associated brain functions are
heritable. In particular, as the central region of the PCN, precu-
neus, is thought to be a key connectome hub (Hagmann et al.
2008; van den Heuvel and Kahn 2011; Zuo et al. 2012) that is high-
ly functional heterogeneous and is commonly considered to play
a central role in the integration of auditory, somatosensory-
motor, and visual information, as well as spontaneous cognition
(Greenwood et al. 1993; Cavanna and Trimble 2006; Margulies
et al. 2009; Zhang and Li 2012; Park et al. 2013; Jiang et al. 2015).
The high heritability of PCN suggests that the internal mechan-
ism for integrating multi-modal sensory information (does not
include the amount andways of connections to unimodal cortex)
is controlled by genetic factors. This argument is further sup-
ported by the relevance of this ICN to drug-naive, first-episode
early-onset schizophrenia (Yang, Xu et al. 2014) and to healthy
aging (Yang, Chang et al. 2014).

Comparing to previous findings on the heritability (42.4%) of
DMN (Glahn et al. 2010), our results showed a lower genetic con-
tribution to DMN (23.3%). This difference does not conflict the
previous finding, but rather reflects a difference in the definition
of DMN. In our study, the PCN was functionally separated from
the DMN, while the DMN template in Glahn et al. (2010) includes
PCN. The PCN has been referred as posterior DMN in some stud-
ies (Jones et al. 2011; Kim and Lee 2011; Knyazev 2012), exhibited
different cross-lifespan dynamics than DMN (Jones et al. 2011;
Yang, Chang et al. 2014), and has been related to high-order
memory function termed as a parietalmemory network (Gilmore
et al. 2015). In fact, based on the connectional anatomy, Buckner
et al. (2008) have suspected the involvement of precuneus in
DMN. Echoing these evidences, our ICN templates generated
using a fully data-driven approach revealed separate PCN and
DMN. Given the difference in heritability estimates for DMN
and PCN, we speculate that the activity level of both DMN and

PCN is influenced by genetic factors, but the activity of PCN
may receive more genetic control than that of DMN. This specu-
lation explains the 42.4% heritability of DMN estimated by Glahn
et al. (2010), since in the current study, the mean heritability of
DMN and PCN is around 40%.

Environmental Factor Influence Interplays Between
Modules

Plasticity is an essential property of our brain that allows us to
learn. Our results enrich our understanding of the plasticity in
brain networks by mapping the environmental influence on
specific coherences between ICNs.We showed that a large portion
(11 of 21) of the interplays between ICNs are modulated by com-
mon environmental effects, highlighting the contribution of envir-
onment in the functional architecture of the brain connectivity.

Six inter-ICN coherences between PCN and the other ICNs are
significantly influenced by common environmental effects.
These observations generated an important hypothesis that
helps to disentangle themain source of the plasticity in the neur-
al system, that is, the interplays between PCN and other ICNs, in-
stead of the PCNper se, underpin the brain network plasticity due
to environment. This hypothesis explains the observed beha-
viors of the precuneus. This region has been reported to involve
in a wide range of high-level cognitive processing, such as visuo-
spatial imagery (Hanakawa et al. 2003), episodic memory re-
trieval (Henson et al. 1999), and self-processing (Kircher et al.
2000). These behaviors exhibit strong relationships to environ-
ment. For instance, studies have indicated the relationship be-
tween spatial imagery and visual experience (Gandhi et al.
2014), the relationship between episodic memory and specific
training (Brehmer et al. 2007), and the relationship between
self-perception and teaching strategy (Penick 1982). Importantly,
when involving in various functions, the precuneus never acti-
vates alone, but is accompanied by regions in other systems,
such as visual, auditory, andmotor systems, as well as prefrontal
cortex (Cavanna and Trimble 2006). These behaviors make the
precuneus a functional “router” in the brain—highly flexible pro-
cessing of various information flow by connecting to the corre-
sponding brain networks (Cole et al. 2013). Given this context,
our results provide an interpretation, at the large-scale neural
network level, of the plasticity of precuneus-relevant behaviors
and further hypothesize that the main sources of the plasticity
originated from the interplays between PCN and other ICNs.

The other inter-ICN coherences showing significant environ-
mental influences are from either DMN or VN. The visual system
processes the major portion of the external information, and
DMN is the largest consumer of the “dark energy” in the brain.
Recent studies on brain network reorganizations after meditation
(Kemmer et al. 2015) and arm amputation (Makin et al. 2015) have
echoed the plasticity of the functional connectivity between these
networks and other ICNs, althoughmore investigations are needed
to verify the plasticity of the inter-ICN coherence and its cause. It
should be noted that here we discuss the environmental influence
based on significant influence from common environmental ef-
fects, but theuniqueenvironmental effect couldalso likelyattribute
to environmental influence. Thus, the above discussions donot ex-
clude the environmental contribution to the inter-ICN coherences
that did not exhibit significant common environmental effect.

Genetic Factors Influence Interplays Between Modules

We found 8 inter-ICN coherences that exhibit significant genetic
effect, and the estimated genetic contribution ranged between
25.6% and 42.0%. These findings call for an expansion of the
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search space for heritable ICN-derived endophenotypes for
neuropsychiatric illness. A growing literature has implicated
abnormal network properties in neuropsychiatric illness and
suggested their potential utility as endophenotypes (Hasler
and Northoff 2011). Our findings regarding the heritability of
inter-ICN coherence provide support for this notion, and further
shed light on interplays between ICNs as promising endopheno-
type candidates.While it is possible that a pathologic process can
specifically impact a single functional system (e.g., stroke),
neuropsychiatric illnesses appear to be associated with more
widespread abnormalities, affecting multiple networks and
their interactions (Jafri et al. 2008; Stephan et al. 2009; Park and
Thakkar 2010; Menon 2011). Recent studies have highlighted
inter-ICN coherence as an important feature in brain abnormal-
ities underlying various mental disorders (Kaiser and Feng 2015;
Nomi and Uddin 2015). For instance, Kaiser and Feng (2015) re-
ported that teenagerswith autism spectrumdisorder did not differ
from typical developing subjects in within-ICN connectivity, but
showed significantly decreased inter-ICN coherence (). Heritability
is a critical property for inter-ICN coherence features to be consid-
ered as potential endophenotypes representing genetic vulnerabil-
ity to neuropsychiatric illness. Our findings provide evidence for
this possibility. The estimation of heritability for the individual
inter-ICNcoherences further provides a reference for screening po-
tential endophenotypes for neuropsychiatric illness.

The FPN-DAN coherence is themost heritable inter-ICN inter-
play according to our estimation. The FPN is relevant to executive
control, memory encoding, and speech (Miller and Cohen 2001),
and the DAN is associated with top-down orienting of attention
(Fox et al. 2006). The interplay between these 2 ICNs may serve
to provide greater specificity in efforts to develop diagnostic indi-
ces or biomarkers than individual ICN properties themselves. A
meta-analysis containing 25 studies provided strong support
for this argument by highlighting that decreased coherence be-
tween the FPN and DAN is a remarkable deficit in major depres-
sive disorder patients (Kaiser and Feng 2015). Another study also
reported decreased FPN-DAN coherence in Parkinson’s disease
(Baggio et al. 2015). The intermediate heritability (0.42) in FPN-
DAN coherence observed in our study adds support for this
inter-ICN coherence to be considered as an effective endopheno-
type of mental disorders. At the system neuroscience level, her-
itable FPN-DAN coherence complements our understanding of
the prefrontal cortex. The prefrontal cortex is generally believed
to be shaped largely by environmental influences (Cerqueira et al.
2007; McEwen and Morrison 2013). Studies have emphasized
the impact of stress and environmental enrichment, as well as
suggested the ability of cognitive training to impact prefrontal
function (Olesen et al. 2004; Klingberg 2010; Soderqvist et al.
2012). Our finding that FPN-DAN coherence is substantially herit-
able provides support for genetic contribution of prefrontal func-
tioning and bolsters recent discussions indicating that the
functions of prefrontal cortex are shaped by a combination of
genetic and environmental factors (Colizzi et al. 2015).

The SN-SMN, DMN-SMN, and VN-FPN represent interplay
between unimodal (SMN and VN) and cross-modal cognitive net-
works (SN, DMN, and FPN). Functional parcellation studies com-
monly show that unimodal ICNs and cross-modal cognitive
networks are separable (Power et al. 2011; Yeo et al. 2011), indicat-
ing that the functions of these networks may be divergent. How-
ever, this does not mean that the individual variability in
inter-ICN interplay is not due to genetic factors.With the increas-
ing attention to inter-ICN interactions (Steffener et al. 2012;
Cerliani et al. 2015; Diez et al. 2015), we expect that future studies
investigating inter-ICN interactions in psychiatric disorders

will likely detect biomarkers based on the interplay between uni-
modal ICNs and cross-modal cognitive networks. Similarly, those
examining age-related genetic influences (Lenroot et al. 2009;
Gao et al. 2014) will likely find development-related changes in
such inter-ICN interactions.

Limitations

In considering the magnitude of genetic or common environ-
mental effects in the present work, it is important to note the im-
pact of the sample size and data quality. Our results are
conservative in that they are based on a moderate sample size
for a classical twin study. Additionally, the quality of the data
has limited the power to detect significant genetic and environ-
mental effects. This is relevant to the estimates from the full
ACE models, where we failed to find an inter-ICN coherence
that showed both significant genetic and common environmen-
tal effects, as a large amount of variance was explained by the
nonshared environmental effects and measurement error (E).
We are optimistic that future studies using newly optimized
data acquisition protocols (e.g., the Human Connectome Project,
Van Essen et al. 2013), which have been demonstrated to have
satisfactory reliability (Zuo and Xing 2014), will have the power
to reveal whether an even greater proportion of the variance in
the connectome is due to genetic factors or others interfering
both reliability and reproducibility (Zuo et al. 2014), than has
been possible in the present work. In addition, the imaging sam-
ple used in this study is from Australia, and the generalization of
the findings to eastern population should be cautious and can be
further tested using easterner twins in future.

Conclusions
Systematic investigation of the activity level of individual ICNs
and the interplays between ICNsprovides a full characteristic pic-
ture of the genetic and environmental effects on large-scale brain
networks.While the activity levels ofmost ICNs are influenced by
genetic factors, large portions of the interplays between ICNs are
modulated by common environmental effect. These findings
outline a highly modular organization of the functional connect-
ivity architecture, in which the individual modules represented
by ICNs are genetically controlled, while most of the interplays
between the modules could be influenced by environmental fac-
tors. These findings initiate the process of detecting the genetic
and environmental sources of individual variability of the
human connectome.
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