Abstract

The developing human cerebral cortex is distinguished by a particularly wide subplate, a transient zone in which crucial cell-cell interactions occur. To further understand the role of the subplate in human brain development, we have studied the immunohistochemical expression of certain neuronal (GAP-43, MAP-2 parvalbumin) and astroglial (vimentin, GFAP} markers in the developing visual cortex from gestational ages of 14 weeks to 9 months post-term. At 14–22 weeks, immunoreactivity to GAP-43, a protein involved in axonal outgrowth, was most prominent in the subplate and marginal zone neuropil and in the fibers of the radiations running near the ventricular zone; at 22–42 weeks, GAP-43 immunoreactive fibers were observed in the maturing cortical plate. Immunoreactivity for the microtubule-associated protein MAP-2 was present in the differentiating cortical plate at 14 weeks, but at 22–42 weeks was most prominent in the somata and dendrites of differentiated neurons, particularly the Cajal-Retzius neurons of the marginal zone, in neurons of the subplate and in those forming cortical layer 5. Parvalbumin immunoreactivity did not appear until 26 weeks, when stained neurons were in a sparse band of cells in layer 6 and upper subplate. Vimentin and GFAP did not stain differentiated neuronal cells. Vimentin immunoreactivity appeared early in neuroepithelial and radial glial cells, decreasing after 35 weeks, with a concomitant increase in GFAP immunoreactivity in radial glial and maturing astrocytic cells. Our results show that despite the greater complexity of the developing human neocortex, molecular markers are expressed in spatial and temporal patterns similar to those observed in non-human primates, carnivores and rodents. These protein markers should prove useful in developmental staging, and in providing a framework in which to examine congenital disorders of cerebral development.