We compared cortical reactivity to pattern and luminance stimuli by recording evoked responses and spontaneous brain rhythms from 10 subjects with a whole-scalp neuromagnetometer. Hemifield patterns (black-and-white checkerboards) elicited strong contralateral transient activation of the occipital V1/V2 cortex, maximum at 65-75 ms, followed by sustained activation during the 2 s stimulus. Responses to hemifield luminance stimuli also had an occipital component, but they were dominated by activation of the medial parieto-occipital sulcus (POS) 60-70 ms later. The POS region was equally well activated by foveal and extrafoveal stimuli. The occipital responses to hemifield luminance stimuli differed from those to pattern stimuli in two main aspects: the sustained activation was significantly weaker, and the responses were almost symmetrical, indicating a surprisingly bilateral occipital activation. These effects were similar with foveal and extrafoveal stimuli. The spontaneous 10 Hz alpha rhythm, originating predominantly in the POS region, was suppressed after both stimulus onsets and offsets, more strongly for luminance than pattern stimuli. Activation of the occipital cortex dominated after pattern stimuli, whereas the effect of luminance stimulation was stronger in the parieto-occipital region. The distinct signal distributions in the occipital and POS regions suggest that the two types of stimuli activate the magno- and parvocellular pathways to a varying degree. These findings are also in line with a stronger attention-catching value of the luminance than pattern stimuli.