Abstract

Extracellular recordings obtained from the extrastriate cortex of the California ground squirrel, a diurnal sciurid, show that large receptive fields and a strong direction selectivity are present in the middle lateral area (ML) and the lateral area (L), located laterally to V2 and V3. Direction selectivity was tested by presenting stimuli of varying dimensions, shapes and speeds at different locations in the visual field. Most cells in ML and L (84%) were direction selective, with a preference for fast speeds, indicating that these areas share a role in motion processing. Areas ML and L may be homologous to area MT or may represent a case of homoplasia. A directional anisotropy for motion towards the vertical meridian was found in ML and L cells, suggesting that these areas may be involved in detecting predators and other moving objects coming from the periphery, rather than in processing flow fields caused by forward locomotion, for which a centrifugal bias might be expected.