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Abstract

Developmental dyslexia (DD) and developmental coordination disorder (DCD) are distinct diagnostic disorders. However, they
also frequently co-occur and may share a common etiology. It was proposed conceptually a neural network framework that
explains differences and commonalities between DD and DCD through impairments of distinct or intertwined
cortico-subcortical connectivity pathways. The present study addressed this issue by exploring intrinsic cortico-striatal and
cortico-cerebellar functional connectivity in a large (n = 136) resting-state fMRI cohort study of 8–12-year-old children with
typical development and with DD and/or DCD. We delineated a set of cortico-subcortical functional circuits believed to be
associated with the brain’s main functions (visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal
control, and default-mode). Next, we assessed, using general linear and multiple kernel models, whether and which circuits
distinguished between the groups. Findings revealed that somatomotor cortico-cerebellar and frontoparietal cortico-striatal
circuits are affected in the presence of DCD, including abnormalities in cortico-cerebellar connections targeting
motor-related regions and cortico-striatal connections mapping onto posterior parietal cortex. Thus, DCD but not DD may be
considered as an impairment of cortico-subcortical functional circuits.

Key words: cortico-subcortical networks, developmental coordination disorder, developmental dyslexia, machine learning,
resting-state fMRI,

Introduction
Developmental dyslexia (DD) and developmental coordination
disorder (DCD) are neurodevelopmental disorders that impede
the child’s ability to learn reading and to master motor skills,

respectively. There is firm evidence of an overlap between these
two disorders, with rates of comorbidity ranging from 30% to
50% (Chaix et al. 2007; Haslum and Miles 2007; Flapper and
Schoemaker 2013a). This significant overlap has led researchers
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to believe in a common etiology, with shared causes to motor
and speech-language abnormalities. An attractive hypothesis
states that DD and DCD have impairments of the procedural
learning system (Nicolson and Fawcett 2007), which subserves
the learning of new, and the control of established, sensorimotor
and cognitive skills, rules and habits (Ullman 2004; Knowlton
et al. 2017). Impairment of this system would therefore explain
deficits found in an extremely wide range of motor and percep-
tual skills in DCD children (Wilson et al. 2013, 2017; Adams et al.
2014), as well as secondary motor symptoms widely reported in
DD (Nicholson and Fawcett 1994; Ramus et al. 2003, 2004). The
procedural learning system is also proposed to subserve rule-
based procedures that govern language (‘the mental grammar’),
including aspects of phonology (Ullman, 2004). As such, impair-
ments of the procedural learning system may also account for
the phonological deficit, which is known to play a primary causal
role in DD (Ramus 2003, 2004).

Human brain-imaging research has demonstrated that the
procedural learning system in the motor domain is subtended by
cortico-striatal and cortico-cerebellar networks. Cortico-striatal
networks are crucial to learning and retention of sequences of
new movements, while cortico-cerebellar networks are involved
in motor adaptation to environmental constraints (Doyon and
Benali 2005; Doyon et al. 2009; Debas et al. 2010). There also exists
a dynamic reconfiguration of the activity/connectivity of these
networks during the course of learning. Early to advanced visuo-
motor learning involves a shift from cognitive to sensorimotor
cortico-striatal circuits (Lehéricy et al. 2005; Amiez et al. 2012).
In the same vein, the spatial representation of a motor sequence
undergoes a reorganization from the dorsomedial (cognitive con-
trol) to the dorsolateral (sensorimotor) striatum as the sequence
consolidates (Pinsard et al. 2019). Cerebellar activation during
motor adaptation to a new tool spans first over posterior and
anterior lobes and becomes confined to anterior lobe with time
(Imamizu et al. 2000). This suggests disengagement of cognitive
cerebellar territories in favor of sensorimotor ones as learning is
completing. Hence, motor procedures, regardless of whether they
relate to motor sequence or motor adaptation, begin as rather
abstract action plans within cognitive cortico-subcortical circuits
before they translate into purely motor procedures over time
within sensorimotor cortico-subcortical circuits. This view is also
supported by animal studies (Ashby et al. 2010). Furthermore,
different types of procedural learning (e.g., motor or cognitive
skills, habits) may be instantiated in different functional cortico-
subcortical circuits. It is therefore important to emphasize the
functional segregation of cortico-subcortical circuits as a pivotal
principle underlying procedural learning.

It remains unclear whether or not impaired functional
cortico-subcortical connectivity is a core hallmark of DD and/or
DCD. In DD, there is direct and strong evidence of altered activity
and functional connectivity within the cortical reading network,
roughly a left fronto-temporo-parietal network (e.g., Shaywitz
et al. 2002; Richlan et al. 2011; Richlan 2012; Finn et al., 2014;
Norton et al. 2014; Schurz et al. 2015). In comparison, there is only
indirect evidence of altered cortico-striatal and cortico-cerebellar
network functioning. A meta-analysis found hyperactive regions
in the striatum of individuals with reading disorder, and also
indicated that these regions overlap mostly with a motor cortico-
striatal network involved in articulatory processing (Hancock
et al. 2017). Another meta-analysis reported that lobule VI and
crus I of the cerebellum have decreased gray matter volume in
dyslexia and that these regions mapped onto cognitive, ventral
attention and frontoparietal, functional cortico-cerebellar
circuits (Stoodley 2014). Hence, DD may show abnormalities

in specific, motor and cognitive, cortico-subcortical functional
circuits, but this is conjecture at the moment. As regards DCD,
data suggest alterations in the structure and function of the
cerebellum as well as a ‘disconnection syndrome’ within a large-
scale cortico-subcortical functional network (e.g., Biotteau et al.
2016; Wilson et al. 2017, for reviews). However, studies are too
sparse and suffer several limitations (e.g., few studies, small
and inhomogeneous samples, uncontrolled comorbidities, weak
neuroimaging standards; Biotteau et al. 2016) to reach more
than a tentative conclusion. Finally, some authors even went
one step further by formulating a neural system topography for
learning disorders, in which DD and DCD are mainly related to
anomalies in cortico-cerebellar and cortico-striatal circuitries,
respectively (Nicolson and Fawcett 2007). However, once again,
this proposition has been conjectured (i.e., deduced from
behavioral symptoms) but is not based on real brain evidence.

Based on the aforementioned grounds, we built on the pro-
cedural learning deficit theory of DD and DCD and have accord-
ingly studied cortico-subcortical functional connectivity in these
disorders. We sought to determine whether different cortico-
striatal and cortico-cerebellar circuits are impaired in these two
disorders, and whether impairment is exacerbated when both
disorders are combined (comorbidity; COM). Indeed, a number
of conceptual models (Kaplan et al. 2006) and empirical studies
(Jongmans et al. 2003; Ramus et al. 2003; Flapper and Schoe-
maker 2013b; Rao and Landa 2014) on the relationships between
developmental disorders support the idea that comorbidity of
disorders results in more severely affected children.

We answered these questions by examining intrinsic (rs-
fMRI) functional connectivity (iFC) of multiple cortico-striatal
and cortico-cerebellar networks within a large sample (n = 136)
of 8–12-year-old typically developing children (TYP; n = 42) and
children with DD (n = 45), DCD (n = 20), and COM (n = 29) scanned
over two French MRI centers. iFC maps were derived from a seed-
to-voxel approach that assessed correlation between the time
course of striatal and cerebellar seed regions and the time course
of all other voxels in the brain. We have opted for the ‘seven-
network’ striatal and cerebellar seeds (Buckner et al. 2011; Choi
et al. 2012), which correspond to striatal and cerebellar regions
predominantly linked to the most common large-scale cere-
bral (visual, somatomotor, dorsal attention, ventral attention,
limbic, frontoparietal control, and default-mode) resting state
networks (Yeo et al. 2011). This seed-to-voxel framework enabled
us to delineate the main cortico-striatal and cortico-cerebellar
networks (Figs 1 and 2), especially sensorimotor and cognitive
(frontoparietal) control ones, and test between-group difference
for each through univariate general linear model (GLM). Fur-
ther, we determined which networks discriminate the groups
the most using a multivariate, sparse multiple-kernel learning
(MKL; Schrouff et al. 2018), classification of the iFC maps. This
method identified a subset of circuits that carried predictive
information for group classification. Finally, we have undertaken
a consensus analysis that uses both univariate/GLM and mul-
tivariate/MKL findings in conjunction (Varoquaux et al. 2018),
with the aim of reaching the most reliable conclusion as regards
specific cortico-striatal and cortico-cerebellar functional circuits
that are affected in DD and/or DCD.

Materials and Methods
Participants

About 136 right-handed children between the ages of 8 and
12 years participated in this study, including 42 TYP children
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Figure 1. Estimated cortico-cerebellar functional circuits. (A) Cerebellar seeds used in the seed-to-voxels analysis. (B) Map of the cerebral regions functionally connected

to the seeds in all children. Significant regions were obtained by applying a cluster-forming threshold P < 0.001 and cluster-extent threshold P-FDR < 0.05. (C) Map of the

original 7 cerebral networks provided for (qualitative) comparison purposes (Buckner et al. 2011; Yeo et al. 2011). Heuristic name labels associated with the networks

in the parentheses are taken from the study of Yeo et al. (2011). This should not be taken to mean that the estimated networks correspond exactly to those of Yeo

et al. (2011), despite clear similarities, or that the networks code only for functions associated with their assigned name. Abbreviations: PFCla: lateral anterior prefrontal

cortex; PFClp: lateral posterior prefrontal cortex; PFCdm: dorsal medial prefrontal cortex; PFCm: medial prefrontal cortex; VFC: ventral frontal cortex; FEF: frontal eye

field; M1: primary motor cortex; S1: primary somatosensory cortex; AG: angular gyrus; SMG: supramarginal gyrus; SPL: superior parietal lobule; PCC: posterior cingulate

cortex; LTC: lateral temporal cortex; VCA: anterior visual cortex; and PHC: para-hippocampal cortex.

Figure 2. Estimated cortico-striatal functional circuits. (A) Striatal seeds used in the seed-to-voxels analysis. (B) Map of the cerebral regions functionally connected to

the seeds in all children. Significant regions were obtained by applying a cluster-forming threshold P < 0.001 and cluster-extent threshold P-FDR < 0.05. (C) Map of the

original 7 cerebral networks provided for (qualitative) comparison purpose (Buckner et al. 2011; Yeo et al. 2011). Heuristic name labels associated with the networks in

the parentheses are taken from the study of Yeo et al. (2011). We changed the labels of some of our estimated networks due to clear topographic differences with those of

the original networks (straight black arrows). Estimated networks related to stria1, stria3, and stria4 do not correspond to visual, dorsal attention, and ventral attention

networks but instead are similar to the sensorimotor network. Labeling should not be taken to mean that the networks code only for functions associated with their

assigned name. Abbreviations: PFCla: lateral anterior prefrontal cortex; PFClp: lateral posterior prefrontal cortex; PFCdm: dorsal medial prefrontal cortex; PFCm: medial

prefrontal cortex; VFC: ventral frontal cortex; PFCdp: dorsal posterior prefrontal cortex; M1: primary motor cortex; and S1: primary somatosensory cortex.
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(10.10 years ± 1.16 year, 20 girls), 45 DD children (10.22 years
± 1.09 year, 20 girls), 20 DCD children (9.96 years ±1.23 year, 6
girls), and 29 COM children (10.19 years ± 1.31 year, 10 girls).
About half of the children were recruited in Toulouse area and
the other half in Aix-Marseille area (Toulouse/Aix-Marseille; TYP:
21/21; DD: 25/20; DCD: 11/9; COM: 15/14).

All children underwent neuropsychological assessment,
including tests of intellectual abilities (WISC-IV; Wechsler,
2005), reading skills (Alouette test, Lefavrais 2005; ODEDYS-1
battery, Jacquier-Roux et al. 2005), and motor skills (Movement
Assessment Battery for Children, M-ABC French translation,
Soppelsa and Albaret 2004). DCD children all met the DSM-
V diagnostic criteria for discrete motor disorder: (1) M-ABC-
1 was below the fifth percentile; (2) treated for a motor
coordination problem by a pediatric physical therapist due to
a persistent interference with activities of daily living; (3) no
sign of intellectual disability (IQ score > 70 or subtest similarities
and picture concepts scaled scores > 7 in WISC-IV); and (4) no
visual impairments or neurological conditions that could affect
their motor abilities. Children with DD met the DSM-V diagnostic
criteria for specific learning disorder with impairment in reading:
(1) their accuracy and speed when reading were significantly
low, that is a performance for reading isolated irregular words or
logatoms (ODEDYS-1) 1.5 standard deviation (SD) below the mean
and an Alouette text reading speed score or accuracy score 1 SD
below the mean; (2) they were treated for a reading problem
by a pediatric speech therapist; and (3) they had no diagnosis
of any significant medical or social condition known to affect
reading abilities and they did not have any sign of intellectual
disability (WISC total IQ > 70 or/and subtest similarities and
picture concepts scaled scores > 7). To avoid any overlap between
children with DD and DCD, additional inclusion criteria included
an M-ABC total percentile score > 20th percentile for DD children
and reading (accuracy and speed) scores above 0.5 SD below the
mean on both the Alouette and ODEDYS-1 (irregular words or
logatoms) tests for DCD children. These criteria also applied for
TD children, who were also screened on intellectual abilities
(IQ score > 70 or subtest similarities and picture concepts
scaled scores > 7 in WISC-IV). COM children combined DSM-
V diagnostic criteria for both discrete motor disorder and
learning disorder with impairment in reading mentioned
above. DD children received multicomponent interventions
targeting fluency, reading comprehension, phonological skills,
and vocabulary study. Treatments for DCD children involved
process-oriented, task-oriented, and conventional physical and
occupational therapies. Children with suspicion of attention
deficit hyperactivity disorder (ADHD) were excluded from the
study as assessed through parent and clinician ratings on the
DSM-V diagnostic criteria for ADHD (< six inattention and six
hyperactive/impulsive symptoms). This exclusion criterion was
particularly important to consider given the aggravating impact
of ADHD on DD and DCD (Crawford et al. 2006; Chaix et al. 2007).

The study was approved by local ethics committees (CPP) in
Toulouse and Aix-Marseille and was conducted in accordance
with the Declaration of Helsinki. We obtained written informed
consent from the parents and their children.

MRI Acquisition

Toulouse: MRI images were acquired at the Toulouse Neu-
roImaging Center using a Philips Achieva dStream 3.0 T MRI
scanner equipped with a 32-channel head coil. Rs-fMRI scans
were collected using an echo planar imaging (EPI) sequence:

Time repetition (TR)/time echo (TE) = 3000/40 ms, flip angle
(FA) = 90◦, field of view (FOV) = 240 mm, matrix = 80 × 80, voxel
size = 3.0 × 3.0 × 3.0 mm, 46 axial slices. The scan session was
600 s long and included 200 volumes. Participants received
instructions to keep their eyes closed, to think nothing
in particular, and to not move. T1-weighted images were
acquired using a fast field echo sequence: TR/TE = 8.1/3.7 ms,
FOV = 240 mm, matrix = 240 × 240 × 170, voxel size = 1 × 1 × 1 mm,
and 170 sagittal slices.

Aix-Marseille: MRI images were acquired at the radiology
department of the University Medical Centre La Timone using
a Siemens Magnetom Skyra 3.0 T MRI scanner equipped with
a 32-channel head coil. Rs-fMRI scans were collected using
an EPI sequence: TR/TE = 2540/30 ms, FA = 90◦, FOV = 192 mm,
matrix = 64 × 64, voxel size = 3.0 × 3.0 × 3.0 mm, and 45 axial
slices. A scan session was 635 s long and included 250
volumes. Participants received similar instructions as in
Toulouse for rs-fMRI. T1-weighted images were acquired
using a magnetization-prepared rapid gradient echo (MPRAGE)
sequence: TR/TE = 1900/2.5 ms, inversion time = 993 ms, FA = 9◦,
FOV = 230 mm, matrix = 256 × 256, voxel size = 0.9 × 0.9 × 0.9 mm,
and 192 sagittal slices.

Image Preprocessing

Rs-fMRI images were preprocessed using functions of SPM12
(Wellcome Trust Centre for Neuroimaging; www.fil.ion.ucl.ac.uk/
spm) including the following steps: 1/realignment and unwarp,
2/slice-timing correction, 3/direct normalization to functional
MNI space, 4/detection of functional outliers (ART-based cen-
soring; www.nitrc.org/projects/artifact_detect), and 5/smoothing
with an 8-mm kernel. Direct normalization (via segmentation)
to the T1 MNI template image was also applied to the struc-
tural image as part of preprocessing. In step 4, an image was
identified as an outlier if the framewise displacement (FD) of
the head position was greater than 0.5 mm from the previ-
ous frame, or if the global mean intensity in the image was
greater than 3 SDs from the mean image intensity for the entire
resting session. These conservative threshold values have been
used in previous developmental studies (i.e., children cohorts)—
whose preprocessing/denoising procedures were very similar
to ours—to attenuate motion-related artifacts (e.g., Chai et al.
2014, 2016; Cignetti et al. 2018a; Whitfield-Gabrieli et al. 2019).
This censoring strategy identified on average 18% of invalid
volumes in our entire sample and yielded a reduction in FD of
the head at a value close to 0.2 mm in any groups (Table 1).
These values roughly correspond to generally accepted norms
(e.g., Power et al. 2012, 2014).

Denoising

BOLD time series were denoised using the aCompCor method
(Behzadi et al. 2007; Chai et al. 2012, 2014) of the CONN toolbox
(www.nitrc.org/projects/conn; Whitfield-Gabrieli and Nieto-Cas-
tanon 2012). This consisted in regressing out from the BOLD
time series at each voxel temporal confounds, including five
principal components of the signals from white matter and cere-
brospinal masks with partial volume correction applied. Head
motion parameters (three translation and three rotation param-
eters, plus another six parameters representing their first-order
temporal derivatives), and outlier images were also regressed out
from the BOLD time series. The BOLD time series were finally
band-pass filtered (0.008–0.09 Hz).
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Table 1. Summary statistics of motion censoring

% Invalid scans FD before censoring (mm) FD after censoring (mm)

ART Power Jenkinson ART Power Jenkinson

TYP 16 (24) 0.41 (0.59) 0.45 (0.54) 0.24 (0.31) 0.15 (0.07) 0.19 (0.09) 0.09 (0.04)
DD 14 (16) 0.28 (0.21) 0.32 (0.23) 0.17 (0.13) 0.14 (0.04) 0.17 (0.04) 0.08 (0.02)
DCD 26 (23) 0.60 (0.67) 0.65 (0.68) 0.34 (0.35) 0.17 (0.04) 0.21 (0.06) 0.11 (0.03)
COM 18 (18) 0.30 (0.25) 0.34 (0.28) 0.18 (0.15) 0.15 (0.04) 0.18 (0.06) 0.09 (0.05)

ART’s FD measure has been used to censor invalid scans. Power (Power et al. 2012) and Jenkinson (Jenkinson et al. 2002) FDs are also provided for comparison purposes.
Values are mean (SD).

Functional Connectivity

Functional connectivity was calculated as the Pearson’s corre-
lation coefficient between denoised average BOLD time series
computed across all the voxels within each seven-network
cerebellar (Buckner et al. 2011) and striatal (Choi et al. 2012)
seeds and every other voxel in the brain (seed-to-voxel analysis).
These seeds have been previously delineated using a winner-
takes-all algorithm that associated each voxel of the cerebellum
and of the striatum with a cortical network (defined in Yeo
et al. 2011) with the most similar profile of connectivity.
Accordingly, names of the seeds have been originally assigned
based on the cortical networks best corresponding to them,
namely visual, somatomotor, dorsal attention, ventral attention,
limbic, frontoparietal, and default-mode. However, some of our
estimated cortico-cerebellar and cortico-striatal networks did
not correspond to these reference labels, which led us to change
the nomenclature. This is explained in the results, section
‘Cortico-cerebellar and cortico-striatal estimated functional
networks’ and illustrated in Figures 1, 2, S1, and S2. Finally,
correlation coefficients were converted to normally distributed
z-scores using the Fisher transformation.

GLM Analysis

T-tests and F-tests were run on the first-level correlation maps.
One-sample T-tests produced group level correlation maps for
each seed in the entire sample (i.e., all groups combined), with
the aim of delineating the cortico-striatal and cortico-cerebellar
functional circuits and comparing them (qualitatively) with pre-
vious results from the literature (Buckner et al. 2011). ANCOVA
F-tests examined between-group differences for each seed-based
correlation map, including age, gender, and GCOR (average global
correlation) as covariates. Correction for GCOR at the group level
is a conservative approach to reduce global variations in BOLD
signal due to noise and nuisance sources (Saad et al. 2013), like
the factor center in our experiment. Note that we did not judged
necessary to include motion-related measures in group-level
analysis because neither the percentage (arcsin transformed) of
invalid scans (F(3,135) = 1.58; P = 0.19) nor the mean FD after censor-
ing (F(3,135) = 1.63; P = 0.18) significantly differed between groups.
Furthermore, we tested through bivariate regression any associ-
ation between functional connectivity of the cortico-striatal and
cortico-cerebellar functional maps and behavioral scores that
capture motor and reading skills. These scores were the M-ABC
(expressed as percentile) and the first principal component (99%
of the total variance explained) of a set of reading scores (i.e.,
Alouette text reading speed and accuracy and reading isolated
irregular words and logatoms in ODEDYS-1). All analyses were
thresholded by applying cluster-forming threshold P < 0.001 and
cluster-extent threshold P-FDR < 0.05. FDR was also adjusted on
the entire set of seeds (n = 14) using the Benjamini and Hochberg

procedure. Both adjusted and nonadjusted P-values are reported
in the manuscript.

MKL Analysis

We performed MKL analysis using PRoNTo toolbox (http://www.
mlnl.cs.ucl.ac.uk/pronto; Schrouff et al. 2013, 2018). This machine
learning approach is based on the formulation of a support vector
machine (SVM) classifier, but rather than relying on a single
kernel to separate the data into classes, it forms an optimal
kernel from a linear combination of kernels (Rakotomamonjy
et al. 2008; Gönen and Alpaydin 2011; Schrouff et al. 2018), here
corresponding to our connectivity maps. To determine whether
and which correlation maps distinguished between the four
groups of children, we implemented six binary MKL models (i.e.,
TYP vs DD, TYP vs DCD, TYP vs COM, DD vs DCD, DD vs COM,
and DCD vs COM), thus transforming the four-class problem
into six binary learning problems (i.e., class binarization). In
all MKL models, the first step consisted of building as many
kernel matrices of size n x n (n being the number of subjects)
as seed-based correlation maps (i.e., 14), which represented the
similarity between subjects for each map. To this end, signal in
voxels of each correlation map was extracted and concatenated
in a feature vector of size d x 1, with d the number of voxels,
for each individual. Each vector was then associated to a label
(here a categorical value, given the above binary classification).
Finally, a linear kernel (i.e., dot product) was then built from the
feature vectors for each correlation map. Kernels were mean-
centered and normalized before entering the MKL model. The
built kernels and their associated labels were then submitted to
an SVM classifier that defined a decision boundary separating
the labels per kernel (Schrouff et al. 2018). More specifically, this
classifier estimated/optimized model parameters (wm) to deter-
mine decision boundaries for classification, one per kernel m,
and weighted them (by a parameter dm) to provide a final decision
function. Regularization constraints in the considered classifier
enforced sparsity on the kernels, so that only some kernels had
non-null contribution dm to the final decision function. Details
on regularization and optimisation of MKL can be found else-
where (Rakotomamonjy et al. 2008, Schrouff et al. 2018). In sum,
the classifier identified which kernels (here connectivity maps)
contributed the most to the classification. In addition, the models
weights wm were mapped onto brain volume to display the
decision function at the voxel level (i.e., weight maps). Model per-
formance was assessed through a leave-one-subject-per-class-
out crossvalidation scheme, which consisted in leaving out a
single subject from each class at a time for testing and training
with the remaining subjects. This crossvalidation scheme was
the most appropriate given that we have matched subjects across
groups based on MRI center, gender, and age, to avoid unbal-
anced datasets and biasing our prediction models towards the
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Table 2. Model performance for the MKL model distinguishing between the different classes of children

Model MKL Balanced accuracy (%) True positives/Total positives True negatives/Total negatives AUCROC

[TYP] vs. [DD] 44.05 (P = 0.75) 18/42 19/42 0.41
[TYP] vs. [DCD] 57.50 (P = 0.27) 14/20 9/20 0.60
[TYP] vs. [COM] 75.86 (P = 0.005) 23/29 21/29 0.80
[DD] vs. [DCD] 45.50 (P = 0.76) 9/20 8/20 0.51
[DD] vs. [COM] 46.55 (P = 0.67) 13/29 14/29 0.52
[DCD] vs. [COM] 47.50 (P = 0.61) 11/20 8/20 0.41
[TYP] vs. [DCD-COM] 71.43 (P = 0.001) 30/42 30/42 0.75
[TYP] vs. [DD-COM] 63.10 (P = 0.04) 28/42 25/42 0.67

All significant MKL models survived FDR correction. Binary classifier performance is summarized through 3 measures: balanced accuracy, true positives/negatives
that represent the number of children classified correctly as belonging to class1/class2, and the AUC of the receiver operator characteristic curve (1 represents perfect
performance, 0.5 represents random performance).

more common classes. Thus, subject matching involved under-
sampling the largest groups, including 42 samples for the TYP vs
DD model, 20 samples for the TYP vs DCD model, 29 samples for
the TYP vs COM model, 20 samples for the DD vs DCD model,
29 samples for the DD vs COM model, and 20 samples for the
DCD vs COM model (see Table 2). Balanced accuracy served as the
model performance metric, computed as the mean of the class
accuracies (corresponding to the sensitivity and specificity). A
P-value associated with balanced accuracy was estimated using
1000 permutations of the training labels, with any value smaller
than 0.05 reported as being significant. However, given that we
implemented several MKL models, we also controlled FDR using
the Benjamini and Hochberg procedure, and reported adjusted
P-value when primary P-value was below 0.05.

GLM–MKL Consensus

Multivariate approaches, such as MKLs, are thought to be more
specific (more localized outcomes) and sensitive (easier detec-
tion of significant outcomes) than univariate approaches, such
as the GLMs. But there is also an interpretability issue with
multivariate approaches due to the contribution of noise in
the decoding process of linear classifiers (Haufe et al. 2014).
Therefore, several authors recommend using both approaches
in conjunction to come up with more robust and interpretable
conclusions (Schrouff et al. 2016, 2018; Varoquaux et al. 2018).
However, performing conjunction analysis between data that use
different statistics (in our case F-values and SVM weights) is
not straightforward and requires some rescaling to bring those
statistics into a comparable scale. In our case, the conjunction (or
consensus) focused on weight maps of MKL models having per-
formed significantly above chance level and F-maps of GLM hav-
ing demonstrated significant between-group differences. First,
we computed z-scores for the weight maps by dividing the classi-
fier weights by their standard error (obtained by crossvalidation).
Then, we normalized z-scores of the weight maps and F-scores of
the F-maps by rescaling them on the same [0–1] range, using the
formula (x – xmin)/(xmax – xmin). Finally, we thresholded the maps
using a 95% percentile threshold and intersected them to identify
common voxels.

Results
Cortico-Cerebellar and Cortico-Striatal Estimated Functional
Networks

Cerebellar seeds showed segregated functional connectivity
pathways with cortical regions (Fig. 1), including connections to

association visual cortices (visual network; purple), connections
to primary motor and somatosensory cortices (somatomotor
network; blue), connections to superior parietal lobules and
frontal eye fields (dorsal attention network; green), connections
to temporo-parietal junction and ventral frontal regions (ventral
attention network; violet), connections to para-hippocampal
cortices (limbic network; cream), connections to lateral pre-
frontal cortices and inferior parietal lobules (frontoparietal
network; orange), and connections to ventromedial prefrontal
and posterior cingulate cortices and angular gyri (default-mode
network; red). Overall, the topography of the above cortico-
cerebellar networks matched well the original seven network
topography (Buckner et al. 2011; Yeo et al. 2011), although there
were also some regional differences. First, occipital regions
figured surprisingly in all our estimated functional networks.
Second, the cortico-cerebellar ventral attention network was not
limited to temporo-parietal and ventral frontal regions but also
included motor and somatosensory cortical regions (Fig. S1). As
such, the ventral attention network does not correspond exactly
to his assigned name but embeds also a clear sensorimotor
dimension. This underlines that the reference labels associated
with the networks are only heuristic labels and should not be
taken to mean that the networks code solely for these functions.

The topography of our cortico-striatal networks was different
from that of the original seven networks (Fig. 2). Only the cortico-
striatal somatomotor network (blue) corresponded well to that
in the literature, spanning primary motor, and somatosensory
cortical regions. We also identified cortico-striatal frontoparietal
(orange) and default-mode (red) networks, yet incompletely. The
frontoparietal network spanned both lateral prefontal cortices,
but not posterior parietal cortices. The default mode network
involved ventromedial prefrontal regions but lacked classical
posterior parietal and posterior cingulate regions. The limbic net-
work (cream) was almost inexistent, with only a few voxels span-
ning the parahippocampal gyrus. Finally, striatal seeds assigned
to vision (purple), ventral attention (violet), and dorsal atten-
tion (green) all connected to motor and somatosensory regions,
hence revealing overlapping sensorimotor cortico-striatal con-
nectivity patterns (Fig. S2). Thus, the topographic distribution of
the cortico-striatal functional connectivity was expressed in a
few separate networks, mainly sensorimotor, frontoparietal, and
default-mode networks.

Impact of DD and DCD on Cortico-Cerebellar and
Cortico-Striatal Functional Circuits

We found main effects of group in somatomotor cortico-
cerebellar and frontoparietal cortico-striatal circuits (Fig. 3). With
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Intrinsic Cortico-Subcortical Functional Connectivity in DD and DCD Cignetti et al. 7

Figure 3. Cerebral regions of the cortico-subcortical functional circuits that expressed any difference between TYP, DD, DCD, and COM children. All results were obtained

using a cluster-forming threshold P < 0.001 and a cluster-extent threshold P-FDR < 0.05 for whole brain, and survived FDR correction on the entire set of networks. Effect

sizes are provided as mean ± 90% CI. ∗ : group means are significantly different. PMC: premotor cortex; SMA: supplementary motor area; ACC: anterior cingulate cortex;

and AG: angular gyrus.

respect to the somatomotor cortico-cerebellar connectivity, there
was a significant cluster (P-FDR = 0.0035; adjusted P-FDR = 0.025)
in the right dorsal premotor cortex (MNI X, Y, Z coordinates: 36,
−10, 54) and another significant cluster (P-FDR = 0.0038; adjusted
P-FDR = 0.026) at the boundary between the supplementary
motor area and the dorsal anterior cingulate cortex (MNI
X, Y, Z coordinates: 6, −2, 46). For both, posthoc pairwise t-
tests revealed a stronger iFC (hyperconnectivity) in DCD and
COM children compared with TYP and DD children. Regarding
the frontoparietal cortico-striatal connectivity, there was a
significant cluster (P-FDR = 0.000391; adjusted P-FDR = 0.0055) in
the left angular gyrus (MNI X, Y, Z coordinates: −46, −56, 42),
where iFC was also stronger (hyperconnectivity) in DCD and
COM children compared with TYP and DD children. Note that
connectivity about this posterior parietal region was close to
zero-level in both TYP and DD children, which explains the fact
that the region was not previously identified as being part of
the frontoparietal cortico-striatal circuit at the entire sample
level. In sum, somatomotor cortico-cerebellar and frontoparietal
cortico-striatal network hyperconnectivity sets apart conditions
with DCD from DD and TYP conditions. Besides, there was no
additive effect of comorbidity on hyperconnectivity.

Interestingly, we further found that two of the functional
connectivity pathways that expressed a group effect, namely
the one established between the cerebellum and the border
region between the supplementary motor area and dorsal
anterior cingulate cortex and the one linking the striatum and
the left angular gyrus, also showed significant correlations (P-
FDR = 0.028; adjusted P-FDR = 0.16 and P-FDR = 0.000028; adjusted
P-FDR = 0.0004, respectively) with the M-ABC score (Fig. 4). For
both relationships, the higher the iFC the poorer the children
motor control (i.e., the lower the M-ABC). Hence, somatomotor
cortico-cerebellar and frontoparietal cortico-striatal network

connectivity indexes motor control capabilities. We further
found a significant negative correlation between functional
connections established between the cerebellum and the right
angular gyrus (MNI X, Y, Z coordinates: 50, −55, 52) and the
M-ABC (P-FDR = 0.000087; adjusted P-FDR = 0.0012), indicating
that not only the left angular gyrus but also the right angular
gyrus is associated with motor control. Altogether, the above
findings paint the consistent picture that some somatomotor
cortico-cerebellar and frontoparietal cortico-striatal functional
connections are central to motor control, which once altered
(here, overconnected) are hallmarks of DCD disorder. Note that
correlation analysis between connectivity in these regions and
the reading score did not reveal any significant result.

Decoding Children Populations from Cortico-Cerebellar
and Cortico-Striatal Functional Connectivity

Among all models, only the one classifying TYP and COM
children was found to be significant (P = 0.005) with accuracy
and area under curve (AUC) values of 75.86% and 0.8, respectively
(Table 2). This result remained significant (adjusted P-FDR = 0.03)
when correcting P-value using the Benjamini and Hochberg
procedure to address multiple testing across MKL models. There
were four kernels that contributed the most to the decision
function of the TYP-COM MKL model, including three cortico-
cerebellar iFC maps—default-mode (∼44%), dorsal attention
(∼13%), and ventral attention (∼11%)—and the frontoparietal
cortico-striatal (∼12%) iFC map (Table 3). At first sight, it may
seem surprising not to find somatomotor cortico-cerebellar iFC
map among the kernels that contributed the most to the TYP-
COM MKL model while GLM identified difference between TYP
and COM children in this functional pathway. However, it should
be recalled that ventral attention cortico-cerebellar network
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Figure 4. Cerebral regions of the cortico-subcortical functional circuits that expressed a significant correlation with M-ABC score. All results were obtained using a

cluster-forming threshold P < 0.001 and a cluster-extent threshold P-FDR < 0.05 for whole brain. Only correlations between M-ABC and frontoparietal cortico-striatal

connections survived FDR correction on the entire set of networks. Circle: TYP; Square: DD; Diamond: DCD; Triangle: COM. SMA: supplementary motor area; ACC:

anterior cingulate cortex; and AG: angular gyrus.

Table 3. Kernel contribution (dm) to the MKL models performing significantly above chance level, along with the expected ranking, across folds

Model MKL [TYP] vs. [COM] Model MKL [TYP] vs. [DCD-COM] Model MKL [TYP] vs. [DD-COM]

ROI# dm (%) ER ROI# dm (%) ER ROI# dm (%) ER

Cereb7 (‘default-mode’) 44.4370 14 Cereb7 (‘default-mode’) 39.8886 14 Cereb7 (‘default-mode’) 46.3638 14

Cereb3 (‘dorsal attention’) 13.4819 12.4103 Cereb4 (‘ventral attention’) 13.1845 12.2619 Cereb6 (‘frontoparietal’) 14.7626 12.5476

Stria6 (‘frontoparietal’) 12.4501 11.7586 Stria6 (‘frontoparietal’) 12.2180 11.9048 Stria6 (‘frontoparietal’) 13.8192 12.3571

Cereb4 (‘ventral attention’) 11.0945 11.1379 Cereb3 (‘dorsal attention’) 10.4024 11.0952 Cereb3 (‘dorsal attention’) 7.0694 10.2857

Stria7 (‘default-mode’) 8.1143 9.8966 Cereb2 (‘somatomotor’) 7.7157 9.6667 Cereb4 (‘ventral attention’) 7.0532 9.9762

Stria4 (‘somatomotor’) 6.1296 8.7931 Cereb6 (‘frontoparietal’) 6.0691 8.9524 Cereb2 (‘somatomotor’) 4.0890 8.0714

Cereb1 (‘visual’) 3.9389 7.6552 Stria4 (‘somatomotor’) 5.9496 8.4048 Cereb5 (‘limbic’) 3.2966 7.6667

Cereb6 (‘frontoparietal’) 0.3346 1.4828 Stria7 (‘default-mode’) 3.4399 6.7619 Stria7 (‘default-mode’) 3.1173 7.2381

Cereb5 (‘limbic’) 0.0191 0.2414 Cereb5 (‘limbic’) 0.4929 2.3810 Stria5 (‘limbic’) 0.3052 2.0476

Cereb2(‘frontoparietal’) 0 0 Cereb1 (‘visual’) 0.3341 2.3571 Stria4 (‘somatomotor’) 0.1237 1.0714

Stria1 (‘somatomotor’) 0 0 Stria5 (‘limbic’) 0.3052 2.0476 Cereb1 (‘visual’) 0 0

Stria2 (‘somatomotor’) 0 0 Stria1 (‘somatomotor’) 0 0 Stria1 (‘somatomotor’) 0 0

Stria3 (‘somatomotor’) 0 0 Stria2 (‘somatomotor’) 0 0 Stria2 (‘somatomotor’) 0 0

Stria5 (‘limbic’) 0 0 Stria3 (‘somatomotor’) 0 0 Stria3 (‘somatomotor’) 0 0

Expected ranking was computed as the average of the ranking across folds, thus evaluating the stability of the kernel contribution. Only the kernels that carry the most
predictive information about group classification (>10% of contribution to MKL) are discussed in the text.

aggregated both ventral attention and somatomotor regions
(see also weight maps results below). Accordingly, the true
conclusion from MKL should be that several cortico-cerebellar
functional circuits believed to be associated with default-
mode, somatomotor, dorsal attention, and ventral attention
functions and a cortico-striatal circuit likely to be associated with
frontoparietal control mostly contribute to differentiate TYP and
COM children. As such, it is interesting to note that MKL revealed
a much more complex picture of cortico-subcortical connectivity
differences between TYP and COM than the one derived from the
GLM, suggesting a complementarity between the two methods
that we further capitalize on below (see Consensus between GLM
and MKL approaches).

We also built extra MKL binary models distinguishing TYP chil-
dren and either DD-COM children or DCD-COM children (Table 2).
The idea behind mixing COM children with either DD or DCD
children was to tease out which of the DD or DCD disorder
was the most contributing to the differentiation between TYP
and COM children reported above (i.e., posthoc testing within
the MKL framework). Mixtures of DD-COM and DCD-COM chil-
dren included the same number of DD or DCD children (n = 16)
grouped with the COM children (n = 26). DD-COM and DCD-COM

children were matched with TYP children based on MRI center,
gender and age. Both models were significant (P and adjusted P-
FDR = 0.04 for TYP-[DD-COM] model and P = 0.001 and adjusted
P-FDR = 0.002 for TYP-[DCD-COM] model). The differences were
in prediction accuracy and contributing kernels to the mod-
els. Accuracy and AUC values for the classification of TYP and
DCD-COM children remained very close to those of the TYP-
COM model (71.43% and 0.75 versus 75.86% and 0.8, respectively;
Table 2). Likewise, kernels with the most important contribu-
tion to the TYP-[DCD-COM] model were the same as those of
the TYP-COM model, including the default-mode (∼40%), dorsal
attention (∼10%), and ventral attention (∼13%) cortico-cerebellar
iFC maps as well as the frontoparietal cortico-striatal (∼12%) iFC
map (Table 3). Therefore, the same conclusion is reached, saying
that cortico-cerebellar functional circuits believed to be associ-
ated with multiple functions (default-mode, dorsal attention/so-
matomotor, ventral attention) and a cortico-striatal circuit likely
associated with frontoparietal control mostly differentiate TYP
and DCD-COM children. On the other hand, accuracy and AUC
values for the TYP-[DD-COM] model decreased compared with
those of the TYP-COM model (63.10% and 0.67 versus 75.86%
and 0.8, respectively; Table 2). There were also some changes
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Intrinsic Cortico-Subcortical Functional Connectivity in DD and DCD Cignetti et al. 9

Figure 5. Weight images at the voxel level for the TYP-COM, TYP-[DCD-COM], and TYP-[DD-COM] MKL models. Only images for kernels (cortico-subcortical circuits)

with the greatest contribution (>10%) to the models are presented. Voxels increasing the signed distance from the classification boundary the most, either toward TYP

(voxels in warm colors) or COM, DCD-COM, and DD-COM (voxels in cold colors), have been circled. Voxels in green have null contribution to the model. Abbreviations:

PFCm: medial prefrontal cortex; M1: primary motor cortex; S1: primary somatosensory cortex; SMA: supplementary motor area; ACC: anterior cingulate cortex; AG:

angular gyrus; IPS: intraparietal sulcus; SPL: superior parietal lobule; and POS: parieto-occipital sulcus.

in the kernels that contributed the most to the MKL model, in
that only default-mode cortico-cerebellar iFC map (∼46%) and
frontoparietal cortico-striatal iFC map (∼14%) still conveyed most
of the predictive information, altogether with the frontoparietal
cortico-cerebellar iFC map (∼15%). Both dorsal and ventral atten-
tion cortico-cerebellar iFC maps still conveyed some predictive
information, but to a lower extent (∼7%). In sum, the distinction
between TYP and COM appears to be driven more by the DCD
condition than by the DD condition. As such, DCD rather than
DD may be characterized by impaired connectivity in multiple
cortico-cerebellar (default-mode, dorsal attention/somatomotor,
ventral attention) and cortico-striatal (fronto-parietal) networks.

Weight maps representing the relative contribution of voxels
to all predictive models (i.e., TYP-COM, TYP-[DCD-COM], and
TYP-[DD-COM]) attributed high negative weights to voxels in
right and left posterior parietal and medial prefrontal cortices for
the cortico-striatal connectivity (Fig. 5; frontoparietal map) and
high positive weights to voxels close to the parieto-occipital junc-
tion as regards the cortico-cerebellar connectivity (Fig. 5, default-
mode map). This means that increase in signal at these regions
increases the distance from the classification boundary the most,
moving towards either COM, DCD-COM or DD-COM children for
the fronto-parietal regions and moving towards TYP children
for the parieto-occipital junction. In addition, weight maps of
TYP-COM and TYP-[DCD-COM] models attributed high negative
weights to voxels in medial (supplementary motor area/anterior
cingulate cortex) and lateral (premotor and primary motor and
somatosensory cortices) central regions (Fig. 5, ventral attention
map) and in the superior parietal lobule (Fig. 5, dorsal attention
map), with any increase in signal at these regions increasing the
probability of being class COM and DCD-COM.

Consensus Between GLM and MKL Approaches

As a final step, we captured the consensus between the GLM
and MKL approaches. Results showed that COM children differ
from TYP children mainly at (i) sensorimotor cortico-cerebellar
connections projecting onto the left primary somatosensory cor-
tex, the right motor cortex and the right and left supplemen-
tary motor and anterior cingulate areas, and (ii) frontoparietal
cortico-striatal connections projecting onto the left angular and
supramarginal gyri and the right and left medial prefrontal cor-
tices (Fig. 6). Results were exactly the same for the differentia-
tion between TYP and DCD-COM children while only the fron-
toparietal cortico-striatal connections still differentiated TYP
and DD-COM children. This leads to the conclusion that impaired
sensorimotor cortico-cerebellar connections and frontoparietal
cortico-striatal connections is characteristic of DCD, and that
impairments in frontoparietal cortico-striatal connections may
also be shared by DD.

Discussion
Our study investigated whether intrinsic cortico-subcortical
functional circuits are impaired in DD and/or DCD and whether
some impairments in these circuits are more related to either
of the disorders. The goal was to address the assumption
according to which any neurodevelopmental disorder, including
DD and DCD, would have impairments in cortico-subcortical
circuits (Nicolson and Fawcett 2007). Our findings demonstrated
for the first time that intrinsic cortico-subcortical functional
connectivity is affected in children with DCD and DD-DCD (i.e.,
COM), including abnormalities in cortico-cerebellar connections
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Figure 6. Maps for consensus between GLM and MKL. These maps single out a set of cerebral regions associated to cortico-subcortical circuits that distinguishes between

groups of children. Abbreviations: S1: primary somatosensory cortex; M1: primary motor cortex; SMA: supplementary motor area; AG: angular gyrus; SMG: supramarginal

gyrus; and PFCmp: medial posterior prefrontal cortex.

targeting sensorimotor regions (S1, M1, SMA/ACC) and cortico-
striatal connections mapping onto posterior parietal cortex (AG,
SMG). On the other hand, we did not find clear evidence of a
functional connectivity deficit in DD, although our data cannot
totally exclude the possibility that frontoparietal cortico-striatal
functional network is marginally affected in DD. As such, our
study supports the proposal of impaired cortico-subcortical
functional circuits as a core feature of DCD phenotype, but this
may not apply as a general rule for any neurodevelopmental
disorder. For DCD, this finding complements previous studies
that foreshadowed atypical functional brain networks involving
cortical (e.g., parietal) and subcortical (cerebellum, basal ganglia)
regions (Biotteau et al. 2016; Wilson et al. 2017; Fuelscher
et al. 2018). In contrast, the null outcome is startling for DD
given that previous studies reported impaired regions in the
striatum and the cerebellum, which also overlapped with known
cortico-striatal (motor) and cortico-cerebellar (ventral attention,
frontoparietal control, default-mode) functional pathways
(Stoodley 2014; Hancock et al. 2017). However, this was not direct
evidence of impaired cortico-subcortical functional connectivity.
Besides, these previous studies considered DD children on the
single basis of their performance in reading while we also
controlled for motor deficits. This is critical given that 30–
50% of DD children also show difficulties in fine and/or gross
motor coordination (Chaix et al. 2007; Haslum and Miles 2007;
Flapper and Schoemaker 2013a). It is therefore possible that they
included a significant proportion of comorbid, DD-DCD, children
who may have biased the results.

Functional connectivity impairments in sensorimotor
cortico-cerebellar and frontoparietal cortico-striatal networks
in the presence of DCD altogether with the relationship found
between functional connectivity of these pathways and M-
ABC offer an explanatory framework to the disease clinical
picture. Pathways linking the cerebellum, the basal ganglia and
precentral /postcentral cortical regions are common pathways of

goal-directed motor actions (Scott 2004). As such, performance
difficulties exhibited by DCD children in a wide range of
movements, in particular eyes movements, reaching, grasping,
bimanual lifting, manual interception, posture, and gait (Wilson
et al. 2013, 2017), could stem from the reported connectivity
impairments. Relatedly, a growing literature reports atypical
predictive motor control in DCD, which impacts negatively
both motor planning and online control of movements (Jover
et al. 2010; Adams et al. 2014; Wilson et al. 2013, 2017; Cignetti
et al. 2018b). Internal models subtending predictive motor
control have been linked to the cerebellum (Wolpert et al.
1998; Blakemore et al. 1999, 2001; Imamizu et al. 2000), the
somatosensory cortex (Shergill et al. 2013), and the posterior
parietal cortex (Wolpert et al. 1998; Desmurget and Sirigu 2009).
Accordingly, abnormalities in functional cerebellar and striatal
connections projecting onto sensorimotor and posterior parietal
regions, respectively, are compatible with the internal modeling
hypothesis in DCD. Besides, DCD children have difficulties
in learning new motor skills, and both skill acquisition and
retention processes seem to be affected (King et al. 2011;
Biotteau et al. 2015). In recent years, brain studies have shown
dynamic reconfiguration of the activity/connectivity of cortical-
subcortical networks during the course of motor learning, from
cognitive control to sensorimotor networks as learning moves
from acquisition to retention (Lehéricy et al. 2005; Amiez et al.
2012; Pinsard et al. 2019). As such, difficulties in acquisition
and retention of motor skills in DCD may be engendered by
impaired cortico-subcortical functional connections projecting
onto sensorimotor and posterior parietal regions as reported in
the present study.

Interestingly, a previous study on individuals with autism
spectrum disorder (ASD) reported resting state overconnectiv-
ity in cortico-subcortical (both cerebellum and basal ganglia)
pathways targeting sensorimotor regions (Cerliani et al. 2015).
The authors related this finding to the atypical sensorimotor
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behavior commonly reported in ASD. Hence, cerebellar and stri-
atal overconnections with the sensorimotor (motor/somatosen-
sory) cortical regions may be the hallmark of neurodevelopmen-
tal disorders characterized by sensorimotor dysfunction, either
DCD or ASD. The authors further proposed that overconnectiv-
ity might be due to disrupted GABAergic functioning. Cortico-
cerebellar overconnectivity could stem from a disinhibition of
the deep cerebellar nuclei due to the loss of GABAergic Purk-
inje cells. Cortico-striatal overconnectivity could result from a
loss of GABAergic projection neurons within the striatum. For
instance, studies on Huntington’s disease showed loss of striatal
projection neurons in the indirect pathway, and this is thought
to tip the balance in favor of the direct pathway whose role
is excitatory on cortex and hence cause abnormal involuntary
movements (Reiner et al. 1988; Albin et al. 1992). Thus, we can
speculate that GABAergic dysfunction may also underlie cortico-
striatal overconnections reported in the presence of DCD. Local-
ized proton magnetic resonance spectroscopy, which measures
in vivo neurochemical information and has already been used in
ASD children to show reduced GABA concentration (e.g., Gaetz
et al. 2014; Rojas et al. 2014), may be useful to test this hypothesis
and uncover the neurobiology of DCD.

A point which is worth mentioning is that default-mode
cortico-cerebellar connectivity map contributed importantly to
the decision function in all MKL models (TD-COM, TD-[DCD-
COM], and TD-[DD-COM]). In particular, the results suggested
atypical cerebellar connectivity targeting mainly the parieto-
occipital sulcus in DD and/or DCD children. To our knowledge,
this result is without precedent in DCD while there are studies
that already reported disrupted connectivity with occipito-
temporal areas in dyslexia (Shaywitz et al. 2003; van der Mark
et al. 2011; Finn et al. 2014; Schurz et al., 2015). The parieto-
occipital sulcus is known to be involved in tasks requiring
visuo-spatial attention and working memory (Richter et al. 2019),
domains where both DD and DCD children demonstrate deficits
(Valdois et al. 2004; Ahissar 2007; Biotteau et al. 2017; Wilson et al.
2017). Hence, atypical cerebellar functional connectivity with the
posterior occipito-temporal sulcus might be a defining feature of
both diseases. In addition, MKL also identified particularities in
cerebellar functional connectivity targeting the superior parietal
lobule (i.e., dorsal attention cortico-cerebellar connectivity) as
part of the DCD phenotype. Given that the dorsal attention
network enables top–down cognitive selection of stimuli and
actions (Corbetta et al. 2008), this deficit may relate to difficulties
in executive function reported in DCD (Wilson et al. 2017). But,
again, these are secondary outcomes that did not survive the
consensus analysis. As such, they should only be considered as
avenues for future research.

Finally, although our findings support the notion of a deficit
in cortico-subcortical circuits that applies to DCD but not to DD,
some limitations should be mentioned. First, our conclusion has
been obtained in an indirect way with regards to MKL, mixing
COM children with either DCD or DD children. Using it, we
demonstrated that TYP vs [DCD-COM] model led to the same
classification and kernels as TYP vs COM model, while accuracy
decreased and some kernels get lost for TYP vs [DD-COM] model.
Hence, the addition of DD children decreased the distance from
COM children and brought the diseased children closer to the
TYP children. We had to go through these posthoc MKL models
to interpret TYP vs COM results given that direct classification
of TYP vs DD or DCD did not reach significance (likely because
of the low sample size for DCD). Of course, one has to keep in
mind that our overall interpretation has also been established
based on the GLM that identified atypical cortico-subcortical

connectivity profiles in DCD and COM children compared with
DD and TYP children. Another limit has to do with our parcella-
tion strategy, which involved template-based parcels and seed-
to-voxels methododology. Using this strategy, we were not able to
reproduce the entire set of cortico-cerebellar and cortico-striatal
networks reported in the original studies in adults (Buckner
et al. 2011; Choi et al. 2012). Although the estimated cortico-
cerebellar networks corresponded well to the adults seven net-
works, with the exception of an overlap between the somato-
motor and ventral attention networks, the estimated cortico-
striatal networks included only the sensorimotor network and
incomplete default-mode and frontoparietal control networks.
Hence, our template-based parcellation strategy have ‘missed’
some cortico-subcortical, especially cortico-striatal, functional
networks. This may be because the segregation of these circuits
is still underway by age 8–12 years, so that templates derived
from adults were suboptimal. There is evidence that cortico-
cerebellar and cortico-striatal functional connectivity is still far
from having reached maturity by end childhood (Supekar et al.
2009; Cerliani et al. 2015; Cignetti et al. 2017; van Duijvenvo-
orde et al. 2019). Accordingly, it cannot be excluded that DD
and/or DCD children may show abnormalities in other functional
connectivity pathways than those revealed here. Some of the
cortico-cerebellar networks may have also been slightly biased
because of the seed-to-voxel approach. It has been documented
blurring of fMRI signal across the cerebellar–cerebral boundary
that leads especially to artifactual correlations between seeds
spanning the cerebellum and the occipital cortex (Buckner et al.
2011). We believe that such a blurring issue may be responsible
of the unexpected presence of occipital regions in our estimated
cortico-cerebellar networks (Figs 1 and S1). Fortunately, group
differences were not located in these regions, thus allowing us
to exclude the possibility that our main findings may be biased.
Beyond these methodological elements, we would like to stress
that our study provides the first piece of evidence that fine
parcellation of the cerebellum and of the striatum into multiple
networks is necessary to address the etiology behind neurode-
velopmental disorders, calling for more research on this topic. In
this vein, an important next step will be to also evaluate whether
circuit impairments such as those identified in the present study
during resting state also manifest during task state.

Conclusion
The results presented here indicate that functional somatomotor
cortico-cerebellar and frontoparietal cortico-striatal circuits are
impaired in DCD. This is compatible with current complementary
explanatory frameworks of DCD, including procedural motor skill
learning deficit and internal modelling deficit, thus providing
them with a neural basis. On the other hand, the results run
against the idea of an impaired cortico-subcortical connectivity
in DD, and consequently the idea that the above frameworks
are useful to conceptualize DD. As an alternative solution, we
can allude speculatively the most popular phonological deficit
framework of DD that is related to the left cerebral reading
network. Just as important, the fact that DD-DCD comorbidity
did not lead to more severely impaired circuits compared with
DCD alone also casts doubts on a common brain origin to both
disorders. Further studies are required to complete the picture
of the boundaries and overlaps of brain systems subtending
neurodevelopmental disorders. These studies should not be lim-
ited to DD and DCD but should also include other disorders
(e.g., ASD, attention-deficit/hyperactivity disorder) to evaluate
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whether diagnostic categories of the DSM-5 represent homoge-
neous disorders or conversely whether they are intertwined and
share a common etiology.
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Supplementary material can be found at Cerebral Cortex Commu-
nications online.
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