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Background. Salmonella Enteritidis and Salmonella Typhimurium are major causes of bloodstream infection and diarrheal di-
sease in East Africa. Sources of human infection, including the role of the meat pathway, are poorly understood.

Methods. We collected cattle, goat, and poultry meat pathway samples from December 2015 through August 2017 in Tanzania and 
isolated Salmonella using standard methods. Meat pathway isolates were compared with nontyphoidal serovars of Salmonella enterica 
(NTS) isolated from persons with bloodstream infections and diarrheal disease from 2007 through 2017 from Kenya by core genome 
multi-locus sequence typing (cgMLST). Isolates were characterized for antimicrobial resistance, virulence genes, and diversity.

Results. We isolated NTS from 164 meat pathway samples. Of 172 human NTS isolates, 90 (52.3%) from stool and 82 (47.7%) 
from blood, 53 (30.8%) were Salmonella Enteritidis sequence type (ST) 11 and 62 (36.0%) were Salmonella Typhimurium ST313. 
We identified cgMLST clusters within Salmonella Enteritidis ST11, Salmonella Heidelberg ST15, Salmonella Typhimurium ST19, 
and Salmonella II 42:r:- ST1208 that included both human and meat pathway isolates. Salmonella Typhimurium ST313 was isolated 
exclusively from human samples. Human and poultry isolates bore more antimicrobial resistance and virulence genes and were less 
diverse than isolates from other sources.

Conclusions. Our findings suggest that the meat pathway may be an important source of human infection with some clades 
of Salmonella Enteritidis ST11 in East Africa, but not of human infection by Salmonella Typhimurium ST313. Research is needed 
to systematically examine the contributions of other types of meat, animal products, produce, water, and the  environment   to 
nontyphoidal Salmonella disease in East Africa.
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Nontyphoidal serovars of Salmonella enterica (NTS) were as-
sociated with an estimated >153 million illnesses and >56 000 
deaths worldwide in 2010 [1]. NTS are a leading cause of 
bloodstream infection in sub-Saharan Africa [2], occurring 
often in the absence of diarrhea and carrying a case fatality 

ratio of up  to approximately 20% [3]. NTS bacteremia may 
be associated with human immunodeficiency virus (HIV) in-
fection, recent or current malaria, and malnutrition [3]. Even 
after accounting for HIV-associated disease, the burden of 
NTS bacteremia in sub-Saharan Africa is substantial [4, 5]. 
The role of NTS in diarrheal disease in African countries is 
less clear. While approximately 9% of diarrheal illnesses and 
11% of diarrheal deaths in the World Health Organization 
African region were attributed to NTS [1], NTS were isolated 
from <1% of stool samples from infants and young children 
with diarrhea at African sites in 1 large study of diarrheal di-
sease [6]. Furthermore, it is common for NTS to be isolated 
no more often from the stool of infants and children with di-
arrhea than from community controls [6, 7]. Nonetheless, the 
acquisition of NTS in stool is likely to precede the develop-
ment of invasive disease. While there has been relatively little 
work to characterize those NTS causing diarrheal disease in 
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sub-Saharan Africa [8], Salmonella Typhimurium sequence 
type (ST) 313 [9] and several distinct clades of Salmonella 
Enteritidis ST11 [10, 11] strains predominate among blood-
stream isolates from the region.

Whereas the typhoidal Salmonella serovars Typhi and 
Paratyphi A  are human host–restricted, NTS are generally 
considered to have their reservoirs in nonhuman animals. 
Approximately half of global NTS infections are thought to be 
transmitted by food [1], with meat being a major food vehicle 
in high-income countries [12]. Unlike the situation in high-
income countries, where foodborne disease surveillance is well 
developed and epidemiologic investigations inform control 
measures, there are few data on the major reservoirs, sources, 
and modes of transmission of NTS in Africa. The lack of epi-
demiologic data hampers control efforts. NTS may host gener-
alists, such as Salmonella Typhimurium; exhibit degrees of host 
adaptation, such as the Salmonella Dublin adaptated to cattle; or 
host restriction, such as the Salmonella Gallinarum restricted to 
poultry [3]. A whole-genome sequencing analysis of Salmonella 
Typhimurium ST313 and Salmonella Enteritidis ST11 strains 
has demonstrated the inactivation of some genes [9, 11] that 
have been speculated to indicate adaptation towards a narrower 
ecologic niche, such as the human host [9]. However, other ev-
idence, such as the ability of Salmonella Typhimurium ST313 
to infect and cause disease in poultry [13], is a counterpoint to 
human host restriction. Furthermore, from a food safety per-
spective, NTS from both healthy animals and those with disease 
have the potential to enter the food chain directly on meat or 
through the contamination of produce and water. Several live-
stock species in Africa carry Salmonella Typhimurium and other 
NTS serovars, including cattle and poultry [14–16].

Developments in enteric pathogen epidemiology, including 
cluster-based inference and source attribution models that use 
microbial subtyping data to assign human infections to an-
imal and environmental sources are being used to understand 
NTS epidemiologies in high-income countries [17]. These ap-
proaches have been proposed to investigate sources of NTS 
disease in Africa [18]. In order to understand the potential 
contribution of poultry and red meat to human NTS disease 
in sub-Saharan Africa, we studied NTS from livestock to retail 
meat along the meat pathway and from human bloodstream 
and enteric infections in Tanzania and Kenya, East Africa, 
where movement of livestock, food, and people is common. We 
used multi-locus sequence typing (MLST) cluster analysis to 
determine the genetic relatedness of isolates, in order to investi-
gate the contribution of meat to human NTS infections.

METHODS

Study Setting and Sampling

Meat pathway samples were collected from December 2015 
through August 2017 in red meat slaughter and butcher facilities 

and on poultry farms in the Arusha Urban, Moshi Municipal, 
and Moshi Rural Districts of northern Tanzania (Figure 1). As 
described elsewhere, 10 live poultry on each of 80 poultry farms 
were sampled by cloacal swab and their farm environments were 
sampled by boot socks (Solar Biologicals Inc., Newark, NJ); 4 
farms per ward were randomly selected from 10 wards each in 
the Arusha Urban and Moshi Municipal Districts [19]. Red meat 
slaughter facilities in the Arusha Urban and Moshi Municipal 
Districts were sampled between 2 and 25 times. Red meat slaughter 
and butcher facility environment swabs were taken from knives 
and cutting equipment, cutting boards, walls, sinks, hanging rails, 
and other solid surfaces with sterile cellulose sponge swabs that 
had been predosed with 10 mL buffered peptone water in stom-
acher bags (TSC Technical Service Consultants, Lancashire, UK). 
Boot socks were used to sample the facility floors. Liquid runoff 
from open waste drains was also collected, where available, in 
60 mL sterile containers. Cloacal swabs were taken from poultry 
using Amies transport swabs (Sterilin Ltd, Newport, UK). At 
least 25 g of intestinal samples from cattle and goats were taken 
after slaughter. Carcasses of cattle and goats were swabbed at both 
the rump and the shoulder using both dry cotton-tipped swabs 
and cotton-tipped swabs moistened with Maximum Recovery 
Diluent (Oxoid), following the New Zealand Ministry for 
Primary Industries National Microbiological Database program 
protocol [20]. Metal carcass swab templates (100 cm2 for cattle 
and 25  cm2 for goats) were sterilized with 70% ethanol wipes 
and allowed to air dry between swabbings. Swab heads were 
snapped off into empty sterile 30  mL universal tubes (Greiner 
Bio-One Ltd, Gloucester, UK) for transport. Cattle and goat meat 
were obtained from meat sellers in the Arusha Urban, Moshi 
Municipal, and Moshi Rural Districts, whose meat was supplied 
by study slaughter facilities. Approximately 500 g of the lowest 
hanging section of cattle and goat meat on display was purchased 
and placed in a resealable plastic bag. All samples were trans-
ported in a cooler box with freezer packs to Kilimanjaro Clinical 
Research Institute Biotechnology Laboratory in Moshi for testing 
on the day of sampling.

Equal numbers of human bloodstream and diarrheal disease 
NTS isolates were sought from Kibera, Nairobi, and Lwak Mission 
Hospital, western Kenya. NTS were sequentially isolated from 
2007 through 2017 from an ongoing population-based infec-
tious disease surveillance system operated by the Kenya Medical 
Research Institute in collaboration with the US Centers for 
Disease Control and Prevention [21]. Isolates were identified as 
described previously [22], frozen and shipped to the Kilimanjaro 
Clinical Research Institute Biotechnology Laboratory in tryptone 
soya broth with 20% glycerol, and stored at −80°C.

Isolation, Identification, Enumeration, and Antimicrobial Susceptibility 
Testing of Salmonella from the Meat Pathway

As described previously [19], isolation and identification of 
Salmonella was performed from meat pathway swabs, from 
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Figure 1. Map showing (A) data collection sites in Lwak and Kibera, Kenya, 2007–17, and (B) slaughter slab, butcher, and poultry farm locations sampled for nontyphoidal 
Salmonella, Arusha and Kilimanjaro Regions, northern Tanzania, 2015–17. 
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1  g intestinal samples and 25  g meat, to yield 1–5 presump-
tive Salmonella isolates identified per sample. Enumeration of 
Salmonella was performed on the day of sampling using a spiral 
plater (Wasp, Don Whitley, West Yorkshire, UK) for cloacal 
swabs, intestinal contents, meat samples, environmental sam-
ples, or a direct manual spread plate for carcass swabs. Xylose 
lysine deoxycholate agar (Oxoid) with 5  μg/mL novobiocin 
(Merck KGaA, Darmstadt, Germany) plates were inoculated, 
in duplicate, with 50 μl of freshly prepared homogenate. Plates 
were incubated overnight at 37 ± 2°C. Typical Salmonella col-
onies were counted manually and biochemically confirmed 
[19], and the number of Salmonella in the original sample was 
calculated. Routine phenotypic antimicrobial susceptibility 
testing was performed against amoxicillin/clavulanate, ampi-
cillin, ceftazidime, ceftriaxone, chloramphenicol, ciprofloxacin, 
naladixic acid, and trimethoprim/sulfamethoxazole on envi-
ronmental, poultry, and livestock isolates by disk diffusion, and 
interpreted to contemporary guidelines [23].

Molecular Confirmation and DNA Preparation of Salmonella Isolates

Salmonella isolates from livestock, poultry, and their environ-
ments from northern Tanzania and from human blood and 
stool from Kenya were shipped to mEpiLab, Hopkirk Research 
Institute, Massey University, Palmerston North, New Zealand. 
Following subculture, DNA was extracted from each isolate 
using the QiaAmp DNA minikit (Qiagen, Hilden, Germany). 
Salmonella isolates were confirmed by polymerase chain re-
action targeting the Salmonella enterotoxin (stn) gene [24]. 
Libraries were prepared using an Illumina NexteraXT li-
brary preparation kit (Illumina, San Diego, CA) following 
the manufacturer’s instructions and were submitted to New 
Zealand Genomics Limited, University of Otago, Dunedin, 
New Zealand, for whole-genome sequencing using a HiSeq 
2 × 125-bp PE v4 instrument (Illumina).

Data Analysis

Illumina read data were cleaned using Trimmomatic version 
0.38 [25]. Draft genomes were assembled using SPAdes ver-
sion 3.11 [26]. Processed reads are publicly available on the 
National Center for Biotechnology Information Sequence Read 
Archive under BioProject ID PRJNA602741. Metadata are 
stored under BioSample accession numbers SAMN13905911–
SAMN13906457 (Supplementary Table 1). Resistome and 
virulome profiles were assessed using ABRicate (https://
github.com/tseemann/abricate) to query the ResFinder and 
the Virulence Factors (VFDB) databases [27, 28]. Annotation 
of antimicrobial resistance genes and resistance mechanisms 
was performed using the Resistance Gene Identifier algorithm 
web portal (RGI 5.0.0) and the comprehensive antibiotic re-
sistance database (CARD 3.0.2) [29]. We employed criteria 
of “high quality/coverage” and “perfect and strict” hits only, 
and excluded “nudging of ≥ 95% identity loose hits to strict.” 

Assembly statistics were compiled using seqkit [30] as part of the 
Nullarbor pipeline [31]. We identified 7 gene STs using MLST 
(https://github.com/tseemann/mlst) [32]. Core genome MLST 
(cgMLST) types and serovar information were predicted using 
SISTR [33]. Allelic profiles were clustered using globally optimal 
eBURST (goeBURST) [34] in phylogenetic inference and data 
visualization for sequence based typing methods (PHYLOViZ) 
[35]. A distance threshold (T), expressed as the number of allelic 
differences for which isolates form the same cluster, was applied 
and used to generate goeBURST clusters at all possible similarity 
thresholds. The Neighbourhood Adjusted Wallace Coefficient 
(nAWC) [36], that examines the congruence of partitions be-
tween adjacent similarity thresholds (T), was used for cluster 
definition (https://github.com/theInnuendoProject/nAWC),  to 
assess cluster grouping dynamics. We identified cgMLST clus-
ters reflecting basic units in the overall Salmonella popula-
tion structure, defined as the earliest point at which 5 or more 
consecutive thresholds yielded nAWC values > 0.99. To visu-
alize the Salmonella population structure, we generated a min-
imum spanning tree using R packages “igraph” [37], “MLSTar” 
[38], “RColorBrewer [39],” “gplots [40],” and “ape” [41]. A tree 
displaying the relationship between ST type, resistome, and gen-
otype was generated using the Interactive Tree of Life [42]. The 
circular dendrogram was generated by calculating a distance 
matrix based on the pairwise number of core genome allele dif-
ferences between isolates, and clustering was done using Ward’s 
method [43]. ST diversity was estimated for each source by cal-
culating the Simpson (1-D) and Shannon indices and plotting 
rarefaction curves. Both indices compare the diversity allowing 
for sample size, but the Shannon index places more emphasis on 
the richness, or number of different lineages, than the evenness, 
or how evenly distributed the different lineages are. The diversity 
indices with bootstrapped confidence intervals were calculated 
using the R package “vegetarian” version 1.2 [44], and the rare-
faction curves were plotted using the R package “vegan” version 
2.5–3 [45]. Human and meat pathway Salmonella Enteritidis 
strains were compared with previously described African and 
global lineages by cgMLST [11].

Research Ethics

This study was approved by the Tanzania National Institutes 
for Medical Research National Research Ethics Coordinating 
Committee, the Kenya Medical Research Institute Scientific 
and Ethics Review Unit, the University of Otago Human Ethics 
Committee, and the University of Glasgow College of Medical, 
Veterinary, and Life Sciences Ethics Committee.

RESULTS

Salmonella from Poultry and Red Meat Pathways and from Humans

Of 164 meat pathway samples yielding Salmonella, 33 (20.1%) 
were from poultry farms, 32 (19.5%) from ruminant slaughter 
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or butcher environments, 62 (37.8%) from cattle or their 
meat, and 37 (22.6%) from goats or their meat. Detailed in-
formation on specific sources and locations and enumeration 
among positive samples is shown in Table  1. The 164 meat 
pathway samples yielded 367 NTS isolates. Of 172 Salmonella 
isolates selected from humans, 90 (52.3%) were from the 
bloodstream and 82 (47.7%) were from the stool of patients 
with diarrhea.

Salmonella sequence types, serovars, and diversity

Of 539 NTS isolates, 91 (16.9%) were Salmonella Typhimurium 
and 78 (14.5%) were Salmonella Enteritidis (Supplementary 
Table 2). Of 72 allelic profiles identified among all isolates, 17 
(23.6%) were of previously undescribed STs. The predominant 
STs were Salmonella Enteritidis ST11 (n = 78) and Salmonella 
Typhimurium ST313 (n = 62; Table 2; Supplementary Table 2). 
Of the 8 sample types, Salmonella Enteritidis ST11 was found 
in 7, being absent only from the slaughter and butcher envi-
ronment, whereas Salmonella Typhimurium ST313 was found 
only from human stool and blood. Salmonella Orion ST639 was 
found in 4 exclusively nonhuman sources.

A comparison of the diversity of 7-gene MLSTs between dif-
ferent sample types, using rarefaction curves and the Simpson 
and Shannon indices, showed the highest diversity was associ-
ated with isolates from cattle and goat meat, followed by iso-
lates from the red meat slaughter and butcher environment 
(Supplementary Table 3; Supplementary Figure 1). In contrast, 
the lowest diversity was associated with isolates from human 
blood. Blood isolates were significantly less diverse than the 
population isolated from human stool (Supplementary Table 3).

Core Genome Multi-Locus Sequence Types

The cgMLST analyses using nAWC resulted in a cutoff of  
38 allelic differences and 157 separate clusters, ranging in size 

from 1 to 65 isolates. The Salmonella population structure 
and cgMLST sequence types are shown in Figure  2. Similar 
to 7-gene MLST findings, sources of cgMLST clusters exhib-
ited contrasting cluster-related patterns. Some cgMLSTs were 
found in all sample types, while others were restricted to human 
samples, or nonhuman samples. Within Salmonella STs 11, 16, 
19, 27, and 1208, we identified cgMLST clusters that included 
both human and meat pathway isolates. When compared with 
previously described clades [11], Salmonella Enteritidis ST11 
cgMLST clusters of similar human and meat pathway isolates 
belonged to the so-called global epidemic clade, rather than to 
Africa-restricted clades.

Antimicrobial Resistance and Resistome

Antimicrobial susceptibility results and resistome profiles for 
49 resistance genes from 9 antimicrobial classes are shown 
in Supplementary Table 4.  Phenotypic antimicrobial sus-
ceptibility results of human isolates are reported elsewhere 
[46]. Of 539 isolates, resistance genes to aminoglycosides 
were found in 133 (24.7%), beta-lactams in 105 (19.5%), 
chloramphenicol in 136 (25.2%), trimethoprim in 97 
(18.0%), sulphonamides in 131 (24.3%), and tetracycline in 
102 (18.9%). Resistance genes to fosfomycin, macrolides, 
and quinolones were present in ≤11 isolates. Human blood 
isolates had the widest range of resistance genes, with 69 
(84.1%) of 82 isolates having genes for 5 or more resistance 
classes (Supplementary Figure 2). Salmonella bearing genes 
for resistance to 2 or more antimicrobial classes were found 
in 14 (35.9%) of 39 poultry cloacae, 13 (38.2%) of 34 poultry 
farm environment, 29 (32.2%) of 90 human stool samples, 
and <10% of other sample sources (Supplementary Figure 
2; Supplementary Figure 3; Supplementary Figure 4). The 
median numbers of resistance gene classes found in iso-
lates from human, poultry, and ruminant samples were  

Table 1. Numbers of samples positive for Salmonella and enumeration, northern Tanzania, 2015-17 

Arusha Urban Moshi Municipal Moshi Rural

Salmonella 
enumeration, log 

CFU/sample Total

n/ N (%) n/ N (%) n/ N (%) Median (range) n/ N (%)

Poultry farm environment 5/ 40 (12.5) 9/ 40 (22.5) - - - 3.6 (3.0–5.1) 14/ 80 (17.5)

Poultry cloaca 8/ 393 (2.0) 11/ 402 (2.7) - … - 3.7 (2.3–4.2) 19/ 795 (2.4)

Slaughter and butcher environment 15/ 108 (13.9) 10/ 71 (14.1) 7/ 48 (14.6) 3.7 (3.0–5.1) 32/ 227 (14.1)

Cattle intestinal 1/ 114 (.9) 2/ 93 (2.2) 0/ 128 (0) 2.3 (2.3–2.3) 3/ 335 (.9)

Goat intestinal 0/ 139 (0) 6/ 84 (7.1) 1/ 10 (10.0) 2.9 (2.6–3.3) 7/ 233 (3.0)

Cattle carcass 4/ 105 (3.8) 0/ 50 (0) 1/ 119 (.8) 0a (0–0) 5/ 274 (1.8)

Goat carcass 0/ 134 (0) 6/ 40 (15.0) 0/ 12 (0) 0a (0–0) 6/ 186 (3.2)

Cattle meat 19/ 180 (10.5) 21/ 140 (15.0) 14/ 143 (9.8) 3.4 (3.4–5.4) 54/ 463 (11.7)

Goat meat 13/ 118 (11.0) 10/ 76 (13.2) 1/ 11 (9.1) 3.9 (3.1–4.3) 24/ 205 (11.7)

TOTAL 65/ 1331 (4.9) 75/ 996 (7.5) 24/ 471 (5.1) - - 164/ 2798 (5.8)

Data are from poultry cloaca, poultry farm environment, cattle and goat intestinal, carcass, meat, and slaughter and butcher environment samples in the Arusha Urban, Moshi Municipal, 
and Moshi Rural Districts, 2015–17. 

Abbreviations: -, not applicable; CFU, colony forming units. 
aBelow level of enumeration in all samples.
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5 (interquartile range [IQR], 0–6), 0 (IQR, 0–3), and 0 (IQR, 
0–0), respectively.

Virulome

Virulome profiles of the 539 isolates tested identified 153 viru-
lence genes in total, of which 26 (17.0%) were considered major 
[28], including those associated with adherence (sinH, ratB, 
pef, ipf, genes associated withType 1 fimbriae, shdA, and misL), 
magnesium uptake (mgtBC), resistance to an antimicrobial 
peptide produced by macrophages (mig-14) [47], serum resist-
ance (rck), an oxidative stress defense protein (sodCI), and other 
proteins (spv and cdtB). The median (IQR) of major virulence 
genes found in isolates derived from human, poultry, and ru-
minant samples were 26 (19–26), 18 (17–18) and 13 (12–17), 
respectively (Supplementary Figure 5).

DISCUSSION

We demonstrated that NTS from East Africa, while relatively 
uncommon in cattle, goat, and poultry intestinal samples, were 
highly prevalent in the slaughter and butcher environment 
and in cattle and goat meat. Salmonella Enteritidis ST11 and 
Salmonella Typhimurium ST313 predominated among iso-
lates from persons with bloodstream infection and diarrhea. 
By cgMLST, Salmonella Enteritidis ST11 from humans, be-
longing to the so-called global epidemic clade [11], and other 
less common Salmonella serovars and sequence types were 
clustered closely with strains isolated from the cattle, goat, and 
poultry meat pathway. However, Salmonella Typhimurium 
ST313 was not isolated from any meat pathway sample. Taken 
together, our findings suggest that the meat pathway may be an 
important source of human Salmonella Enteritidis ST11 infec-
tion in East Africa, but not of human Salmonella Typhimurium 
ST313 infection.

As in other regions, we confirm that in East Africa Salmonella 
enterica serovars Enteritidis and Typhimurium are leading 
causes of NTS invasive and diarrheal disease in humans [1]. 
Consistent with studies from high-income countries [48, 49], 
our cgMLST data suggest that both poultry and red meat may 
be sources of human Salmonella Enteritidis ST11 infections 
in East Africa. Notably, Salmonella Enteritidis ST11 that were 
highly similar between meat pathway and human disease iso-
lates belonging to the so-called global epidemic clade rather 
than to Africa-restricted clades [11], leaving open questions 
about sources of Africa-restricted Salmonella Enteritidis ST11 
clades. While we found Salmonella Typhimurium in all compo-
nents of the meat pathway tested, no Salmonella Typhimurium 
ST313 were isolated from the meat pathway. While relatively 
few studies from African countries have examined Salmonella 
Typhimurium sequence types in nonhuman sources [50, 
51], the existence of a nonhuman reservoir for Salmonella 
Typhimurium ST313, if any, remains to be established.Ta
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NTS was isolated throughout the meat pathway in northern 
Tanzania, including on a small proportion of carcasses 
and >10% of retail cattle and goat meat. While the prevalence 
of NTS was low in livestock intestinal samples and poultry clo-
acal samples, it was higher in poultry, livestock slaughter, and 
butcher environments. These findings point to the importance 
of cooking meat well prior to consumption, and suggest that the 

contamination of meat during slaughter and butchering from a 
range of sources may contribute substantially to contamination 
by Salmonella of retail meat in this setting.

Our study has a number of limitations. First, our meat pathway 
research and human disease surveillance were not co-located, 
and human disease isolates were collected over a period that 
extended beyond the period of meat pathway data collection. 

Figure 2. Minimum spanning tree based on Salmonella core genome multi-locus sequence type profiles overlaid with common 7-gene multi-locus sequence type clus-
ters, East Africa, 2007–17. Human isolates are presented as squares and isolates from nonhuman sources are presented as circles. Shading represents 7-gene multi-locus 
sequence type clusters. Node colors differentiate cgMLST groupings, determined using globally optimal electronic based upon related sequence types (goeBURST) [34] in 
phylogenetic inference and data visualization for sequence based typing methods (PHYLOViZ) [35]. Abbreviations: cgMLST, core genome multi-locus sequence typing; ST, 
sequence type; ST11: Salmonella Enteritidis; ST313 and ST19: Salmonella Typhimurium; ST639: Salmonella Orion; ST1208: Salmonella II 42:r:-; ST27: Salmonella Saintpaul; 
ST16: Salmonella Virchow. 
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While movement of livestock, food, and people is common in 
East Africa, location and time differences may have reduced our 
ability to attribute human infections to meat pathway sources. 
Second, our research was limited to cattle and goat meat path-
ways, and the poultry component was restricted to live chickens 
and their environments. Although cattle, goats, and poultry are 
the major sources of meat in Tanzania, we cannot exclude roles 
for pigs, sheep, and other species in the epidemiology of human 
NTS infections. Finally, rarefaction curves did not plateau, sug-
gesting that more diversity likely exists that was not sampled by 
our study.

In conclusion, we demonstrate that nontyphoidal Salmonella 
is common in the meat pathway in Tanzania, especially in 
slaughter and butcher environments, and as a contaminant 
of retail meat. MLST cluster analyses suggest that the meat 
pathway likely contributes to both human bloodstream in-
fections and diarrheal disease due to Salmonella Enteritidis 
ST11 and to other less common Salmonella serovars and se-
quence types, including Salmonella Typhimurium other than 
ST313. However, we did not find evidence of a contribution 
to Salmonella Typhimurium ST313 infections. In addition to 
studies in humans, more research is needed to systematically 
examine the contribution of other types of meat, animal prod-
ucts, produce, water, and environmental exposures  as potential 
sources of NTS disease in East Africa.
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