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Background. Cytomegalovirus (CMV) seropositivity and anti-CMV immunoglobulin G (IgG) levels are associated with ad-
verse health outcomes in elderly populations. Among people living with human immunodeficiency virus (PLWH), CMV seropos-
itivity has been associated with persistent CD8 T-cell elevation and increased risk of developing non-AIDS comorbidities despite 
long-term antiretroviral therapy (ART). Herein, we investigated whether CMV seropositivity and elevation of anti-CMV IgG levels 
were associated with increased epithelial gut damage, microbial translocation, and systemic inflammation.

Methods. A total of 150 PLWH (79 ART-naive and 71 ART-treated) were compared to 26 without human immunodeficiency 
virus (HIV) infection (uninfected controls). Plasma markers of HIV disease progression, epithelial gut damage, microbial translo-
cation, nonspecific B-cell activation, anti-CMV and anti–Epstein-Barr virus (EBV) IgG levels, and proinflammatory cytokines were 
measured.

Results. CMV seropositivity and elevated anti-CMV IgG levels were associated with markers of epithelial gut damage, microbial 
translocation, and inflammation in PLWH and participants without HIV infection. In contrast, total nonspecific IgG, immunoglob-
ulin M, immunoglobulin A, and anti-EBV IgG levels were not associated with these markers. CMV seropositivity was associated 
with markers of epithelial gut damage, microbial translocation, and inflammation independent of sociodemographic and behavioral 
characteristics of the study population.

Conclusions. CMV-seropositive people with and without HIV had increased epithelial gut damage, microbial translocation, 
and inflammation. Furthermore, anti-CMV IgG levels were independently associated with increased epithelial gut damage and mi-
crobial translocation. CMV coinfection may partially explain persistent gut damage, microbial translocation, and inflammation in 
ART-treated PLWH.
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Human cytomegalovirus (CMV), a member of the 
Herpesviridae family, is ubiquitous worldwide. In elderly 
populations, CMV-specific T-cell response and elevated anti-
CMV immunoglobulin G (IgG) levels have been linked with 

adverse health outcomes in large epidemiological studies [1, 2]. 
The underlying mechanism has yet to be defined but studies 
showed that a high frequency of CMV-specific T cells skews 
the immune system toward a CMV-specific response instead of 
fighting other pathogens [3]. Initial infection occurs primarily 
in mucosal epithelial cells including the gastrointestinal tract 
[4]. Recently, CMV has been shown to actively replicate in en-
terocytes, leading to a loss of gut barrier integrity [5].

Human immunodeficiency virus (HIV) infection is char-
acterized by a rapid decline of mucosal CD4 T cells, impaired 
gut barrier integrity, and subsequent translocation of microbial 
products leading to persistent inflammation. Such inflamma-
tion contributes to the increased risk of developing non-AIDS 
comorbidities among people living with HIV (PLWH) receiving 
antiretroviral therapy (ART) [6]. In a simian immunodeficiency 
virus–infected rhesus macaque model, Hensley-McBain et  al 
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showed that intestinal damage precedes mucosal immune dys-
function and subsequent inflammation [7]. We and others have 
shown that bacterial and fungal translocation are associated 
with systemic inflammation and increased risk of developing 
non-AIDS comorbidities in both ART-naive and ART-treated 
PLWH [8–12]. As such, understanding the factors associated 
with persistent epithelial gut damage and inflammation in 
PLWH is of critical importance.

CMV is a common coinfection among PLWH, and inva-
sive CMV disease has become rare during the ART era [13]. 
However, asymptomatic or latent CMV coinfection has been 
associated with CD8 T-cell elevation and immune activation in 
PLWH, leading to a lower CD4/CD8 ratio [14–16]. Moreover, 
elevation of anti-CMV IgG levels has been shown to be asso-
ciated with neurocognitive dysfunction and cardiovascular 
disease in ART-treated PLWH [17–19]. These findings sug-
gest that antiviral drugs may help alleviate chronic immune 
activation and inflammation in PLWH also by reducing CMV 
burden. Indeed, in 2011, Hunt et al found that daily adminis-
tration of the antiviral valganciclovir for 8 weeks led to reduced 
circulating CMV DNA and immune activation in a group of 30 
ART-treated PLWH with asymptomatic CMV coinfection [20].

CMV replication in the gut and subsequent epithelial gut 
damage have been shown to drive inflammation. In 2017, 
Maidji et al reported that CMV infection disrupted tight junc-
tions and reduced epithelial integrity in the gut of 12 PLWH [5]. 
As Canada has been recently reported to have the second-lowest 
CMV seroprevalence among the general population in the 
world and a relatively low frequency in PLWH, our Canadian 
cohorts offer a unique opportunity to study the contribution 
of CMV coinfection to microbial translocation [21, 22]. Thus, 
we sought to investigate whether CMV serostatus and elevated 
anti-CMV IgG levels were independently associated with in-
creased microbial translocation in well-defined groups of ART-
naive and ART-treated PLWH.

METHODS

Description of Participants

A cross-sectional study was conducted on 150 adult PLWH 
from the Chronic Viral Illness Service at the McGill University 
Health Centre, the Montreal Primary HIV Infection Study, and 
the Canadian HIV and Aging Cohort Study as previously re-
ported [23, 24]. A total of 26 HIV-uninfected controls were re-
cruited from the Montreal Primary HIV Infection Study and 
the Canadian HIV and Aging Cohort Study who were either re-
latives or partners of PLWH. Participants were excluded if they 
presented with any symptomatic infection (including sexually 
transmitted infections such as gonorrhea, syphilis, and chla-
mydia) as well as hepatitis B or C coinfection. Antiretroviral 
drug classes, sociodemographic characteristics (including 
age, sex, race, education, and annual income), and behavioral 

characteristics (including sexual practices and recreational drug 
use) were recorded at study enrollment.

Laboratory Measurements

Fasting blood samples were collected from participants to iso-
late peripheral blood mononuclear cells and plasma, which 
were then stored in liquid nitrogen and at ˗80oC, respec-
tively. Plasma HIV-1 p24 antigen/antibody and a confirm-
atory Western blot were used to establish the diagnosis of 
HIV infection, as previously reported [24]. Quantification of 
HIV plasma viral load was done using the Abbott RealTime 
HIV-1 assay (Abbott Laboratories, Abbott Park, Illinois). 
CD4 and CD8 T-cell counts were measured using 4-color 
flow cytometry. CMV seropositivity was determined by the 
McGill University Health Centre laboratory using chemilum-
inescent microparticle immunoassay on the Architect ana-
lyzer (Abbott). Anti-CMV IgG levels were measured using the 
CMV IgG enzyme immunoassay test kit (GenWay Biotech, 
San Diego, California). Anti-EBV IgG levels were measured 
using the EBV IgG enzyme-linked immunosorbent assay 
(ELISA) (GenWay Biotech). Intestinal fatty acid binding pro-
tein (I-FABP), a marker of epithelial gut damage in PLWH 
[25], was quantified using an ELISA (Hycult Biotech, Uden, 
Netherlands). Soluble CD14 (sCD14) was measured by immu-
noassay (Quantikine, R&D Systems, Minneapolis, Minnesota). 
Lipopolysaccharide (LPS) was quantified using the human 
LPS ELISA kit (Cusabio, Wuhan, China). The (1→3)-β-d-
glucan (BDG) levels were measured by the Fungitell Limulus 
Amebocyte Lysate assay (Associates of Cape Cod, Inc, East 
Falmouth, Massachusetts). CXCL13, a marker of immune 
activation, was measured using the Human CXCL13/BLC/
BCA-1 Quantikine ELISA kit (R&D Systems) [26]. Total IgG, 
immunoglobulin M (IgM), and immunoglobulin A  (IgA) 
were measured by the McGill University Health Centre using 
the Olympus AU5800 (Beckman Coulter). Subclasses of IgG 
(IgG1–4) were measured using ELISAs from eBioSciences 
(Saint Laurent, Quebec, Canada). Interleukin (IL) 1β, tumor 
necrosis factor alpha (TNF-α), IL-6, and IL-8 were measured 
using the Meso Scale Discovery U-Plex Pro-Inflammatory 
Combo 4 kit (Meso Scale Discovery, Rockville, Maryland). All 
measurements were done in duplicate.

Statistical Analyses

Statistical analyses were conducted using SPSS 24.0 (IBM SPSS, 
Chicago, Illinois) and GraphPad Prism 6.0 (GraphPad, La 
Jolla, California). Comparisons were conducted using nonpa-
rametric Mann-Whitney U test and Kruskal-Wallis test with 
Dunn post hoc test. Spearman rank correlation test was con-
ducted to assess the associations between quantitative variables. 
An α-level of 5% was used for statistical significance. As hy-
pothesis testing of multiple parameters is prone to false posi-
tives, we sought to correct for this false discovery rate <0.05 
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using the Benjamini-Hochberg method (reported as Q value). 
Multivariate linear regression analysis was conducted to deter-
mine the independent association of anti-CMV IgG level with 
markers of epithelial gut damage, microbial translocation, and 
inflammation adjusting for age, sex, ethnicity, education, sexual 
practices, smoking and alcohol consumption, CD4 and CD8 
T-cell counts, CD4/CD8 ratio, total IgG, total IgM, total IgA, 
subclasses IgG1–4, and anti-CMV IgG levels.

Ethical Considerations

Ethical approval was obtained from the McGill University 
Health Centre ethics board, as well as all research ethics boards 
of participating and recruiting centers. All study participants 
provided written consent. The study was conducted in accord-
ance with the Declaration of Helsinki.

RESULTS

Participant Characteristics

Participants were grouped according to HIV seropositivity, 
ART usage, and CMV seropositivity. Sociodemographic 
and behavioral characteristics were similar among parti-
cipants apart from participants of Hispanic origin among 
ART-naive PLWH (Table 1). The majority of ART-treated 
participants were on regimens of nucleoside reverse tran-
scriptase inhibitors in combination with nonnucleoside 
reverse transcriptase inhibitors, protease inhibitors, 
or integrase strand transfer inhibitors (Supplementary 
Table 1). PLWH had similar CD4 T-cell count regard-
less of CMV serostatus in both the ART-naive and ART-
treated groups. In contrast, elevated CD8 T-cell count 
and decreased CD4/CD8 ratio were associated with CMV 

Table 1.  Sociodemographic, Behavioral, and Laboratory Measurements of Study Participants (N = 176)

Characteristics

Living with HIV (n = 150 [85%])

HIV-Uninfected (n = 26 [15%])ART-Naive (n = 79 [53%]) ART-Treated (n = 71 [47%])

CMV– 
(n = 13 [16%])

CMV+ 
(n = 66 [84%]) P Value

CMV– 
(n = 18 [25%])

CMV+ 
(n = 53 [75%]) P Value

CMV– 
(n = 13 [50%])

CMV+ 
(n = 13 [50%]) P Value

Sociodemographic characteristics

 Age, y 36 (31–47) 37 (32–41) .89 43 (40–51) 46 (40–49) .79 52 (47–57) 50 (45–58) .87

 Male sex, No. (%) 12 (92) 63 (96) .78 17 (97) 48 (90) .83 11 (85) 10 (77) .75

 Race/ethnicity, No. (%)

  White 8 (62) 47 (72) .14 13 (73) 37 (69) .07 9 (69) 9 (69) .99

  African Canadian 3 (23) 17 (25) .81 4 (22) 14 (27) .08 3 (23) 3 (23) .99

  Hispanic 2 (15) 2 (3) .03 1 (5) 2 (4) .21 1 (8) 1 (8) .99

 Education, No. (%)

  Less than high school 3 (23) 17 (26) .23 5 (25) 15 (29) .72 3 (23) 2 (15) .93

  High school and above 7 (54) 30 (45) .08 7 (40) 22 (41) .99 6 (47) 7 (54) .96

 Annual income <$30 000 3 (23) 19 (29) .14 6 (35) 16 (30) .85 4 (30) 4 (30) .89

Behavioral characteristics

 Sexual practices, No. (%)

  MSM 10 (78) 50 (76) .82 12 (70) 39 (73) .38 9 (69) 8 (62) .41

  Heterosexual 2 (17) 13 (20) .76 5 (25) 12 (23) .77 4 (31) 3 (23) .65

  Bisexual 1 (5) 3 (4) .98 1 (5) 2 (4) .96 1 (8) 2 (15) .97

 Smoking and alcohol consumption, No. (%)

  Ex-smoker … …  7 (39) 19 (35) .45 5 (42) 5 (36) .32

  Current smoker … …  4 (21) 13 (25) .78 3 (22) 3 (23) .71

  Current alcohol use … …  12 (68) 35 (65) .83 8 (62) 8 (62) .81

Laboratory measurements

 CD4+ T-cell count, cells/μL 397 (253–510) 406 (298–526) .23 603 (407–700) 588 (492–699) .51 711 (598–924) 779 (614–1005) .52

 CD8+ T-cell count, cells/μL 769 (620–1035) 877 (703–1102) .01 653 (502–783) 760 (593–826) .03 376 (291–513) 379 (246–612) .87

 CD4/CD8 T-cell ratio 0.52 (0.45–0.89) 0.46 (0.38–0.54) .05 0.92 (0.87–1.10) 0.77 (0.53–0.94) .01 2.14 (2.09–2.27) 2.39 (1.82–2.61) .49

 HIV type 1 VL, log10 copies/mL 4.57 4.54 .97 <1.6 <1.6 NA NA NA NA

 Duration of HIV infection, y 0.28 0.26 .82 14.2 15.7 .79 NA NA NA

 Time to initiate ART, y NA NA NA 2.9 2.4 .91 NA NA NA

 Duration on ART, y NA NA NA 12.3 13.4 .84 NA NA NA

 Anti-CMV IgG, IU/mL NA 23.1 (8.7–33.4) NA NA 24.3 (15.1–36.8) NA NA 19.7 (9.6–31.4) NA

 Anti-EBV IgG, IU/mL 16.0 (11.6–19.3) 16.5 (12.8–19.2) 0.97 15.2 (11.2–17.3) 15.3 (11.9–18.6) .96 13.2 (4.8–18.3) 13.9 (5.6–20.8) .92

Data are shown as median (interquartile range) unless otherwise stated. Currency is in Canadian dollars. Values in bold indicate P-value less than or equal to .05.
Abbreviations: –, seronegative; +, seropositive; …, not available; ART, antiretroviral therapy; CMV, cytomegalovirus; EBV, Epstein-Barr virus; HIV, human immunodeficiency virus; IgG, immu-
noglobulin G; MSM, men who have sex with men; NA, not applicable; VL, viral load.
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serostatus among ART-naive and ART-treated PLWH. 
HIV viral load did not significantly differ with CMV 
serostatus among ART-naive PLWH. Total immunoglob-
ulin IgG, IgM, IgA, and IgG1–4 did not differ with CMV 
serostatus within the same group (Supplementary Table 2).  
Median anti-EBV IgG levels were similar among CMV-
seropositive and -seronegative participants (Table 1).

CMV Serostatus Was Associated With Increased Gut Damage and 
Microbial Translocation

Circulating I-FABP, a marker of epithelial gut damage in 
HIV infection [27], was elevated in CMV-seropositive ART-
naive PLWH (P  <  .001), ART-treated PLWH (P  <  .01), and 
HIV-uninfected participants (P  =  .05) compared with their 
CMV-seronegative counterparts (Figure 1A). Plasma levels of 

LPS were elevated in CMV-seropositive ART-naive (P < .001) 
and ART-treated PLWH (P  <  .001) only. Circulating LPS 
was not elevated in CMV-seropositive HIV-uninfected in-
dividuals (P  >  .99) (Figure 1B). Circulating fungal polysac-
charide BDG, a marker of fungal translocation, was elevated 
in CMV-seropositive ART-naive (P = .006) and ART-treated 
PLWH (P  <  .001), but not in HIV-uninfected participants 
(P  >  .99) compared with their CMV-seronegative counter-
parts (Figure 1C). CMV-seropositive ART-naive PLWH had 
higher plasma levels of sCD14 than their CMV-seronegative 
counterparts (P  =  .002, data not shown). As previously re-
ported by Freeman et  al, plasma levels of sCD14 were sim-
ilar among CMV-seropositive and -seronegative ART-treated 
PLWH (P =  .91) and HIV-uninfected participants (P =  .53) 
(data not shown) [14].

Figure 1. Plasma levels of markers of epithelial gut damage and microbial translocation are elevated in antiretroviral therapy (ART)–naive and ART-treated cytomegalo-
virus (CMV)–seropositive people living with human immunodeficiency virus (PLWH). A, CMV-seropositive ART-naive and ART-treated PLWH as well as participants without 
human immunodeficiency virus (HIV) infection have higher plasma levels of intestinal fatty acid binding protein (I-FABP) compared with their CMV-uninfected counterparts. 
B, CMV-seropositive ART-naive and ART-treated PLWH have higher plasma levels of lipopolysaccharide (LPS) compared with their CMV-seronegative counterparts. C, CMV-
seropositive ART-naive and ART-treated PLWH have higher plasma levels of (1→3)-β-d-glucan (BDG) compared with their CMV-seronegative counterparts. Horizontal lines 
represent first quartile, median, and third quartile, respectively. P values show Kruskal-Wallis tests with Dunn post hoc test between different groups. Light blue: ART-naive 
PLWH; dark blue: ART-treated PLWH; purple: participants without HIV infection. 
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Anti-CMV IgG Levels Were Associated With Plasma Level Markers of 
Epithelial Gut Damage and Microbial Translocation

Elevated anti-CMV IgG levels have been previously associated 
with increased development of non-AIDS comorbidities in 
PLWH [18, 19]. We investigated whether anti-CMV IgG levels 
were associated with degree of epithelial gut damage and mi-
crobial translocation. Anti-CMV IgG levels were associated 
with the marker of epithelial gut damage I-FABP (r  =  0.283; 
P = .004) as well as the markers of microbial translocation LPS 
(r  =  0.298; P  =  .003) and BDG (r  =  0.316; P  =  .001) among 
CMV-seropositive PLWH (Figure 2A–C). Such associations re-
mained significant after adjusting for the rate of type I errors 
caused by hypothesis testing with multiple comparisons using 
false discovery rate <0.05 (Table 2). Importantly, total IgG, 
IgM, IgA, IgG1–4, and anti-EBV IgG levels were not associated 
with such markers. Among participants without HIV infection, 
anti-CMV IgG levels were also associated with plasma levels 
of I-FABP (r = 0.549; P =  .04), LPS (r = 0.783; P =  .004), and 
BDG (r = 0.633; P = .01) (Supplementary Figure 1). Again, such 
markers were not associated with total IgG, IgM, IgA, or IgG1–
4, nor anti-EBV IgG among participants without HIV infection 
(Table 2). Multivariate analyses confirmed that the associations 
between anti-CMV IgG levels and markers of epithelial gut 
damage along with microbial translocation were independent 
of sociodemographic, behavioral, and laboratory characteristics 
(Table 1). Plasma levels of I-FABP, LPS, and BDG were similar 
among all ART-treated PLWH regardless of ART drug class 
(Supplementary Table 1).

CMV Seropositivity Was Associated With Increased Systemic Inflammation

CMV-seropositive ART-naive and ART-treated PLWH had 
higher plasma levels of CXCL13, a marker of immune activa-
tion (P = .005 and P = .02, respectively; Figure 3A), IL-6 (P = .02 
and P < .001; Figure 3C), and IL-8 (P = .01 and P = .03; Figure 
3E). However, plasma levels of IL-1β and TNF-α were not as-
sociated with CMV seropositivity (Supplementary Figure 2). 

Anti-CMV IgG levels were associated with plasma levels of 
CXCL13 (r = 0.401; P < .001; Figure 3B) [28], IL-6 (r = 0.292; 
P  =  .003; Figure 3D), IL-8 (r  =  0.329; P  <  .001; Figure 3E), 
IL-1β (r  =  0.281; P  =  .005), and TNF-α (r  =  0.217; P  =  .03; 
Supplementary Figure 2) in CMV-seropositive PLWH. Among 
participants without HIV infection, anti-CMV IgG level was 
associated with plasma levels of CXCL13 (r = 0.704; P =  .01) 
and TNF-α (r = 0.574; P =  .05) but not with plasma levels of 
IL-1β (r = 0.469; P = .128), IL-6 (r = 0.419; P = .177), or IL-8 
(r = 0.259; P = .413) (Supplementary Figure 1). Anti-EBV IgG 
levels were associated with plasma levels of CXCL13 in ART-
naive PLWH (r = 0.318; P = .01) but not in ART-treated PLWH 
(r  =  0.271; P  =  .06) nor participants without HIV infection 
(r = 0.388; P = .08). Total IgG, IgM, IgA, IgG1–4, and anti-EBV 
IgG were not associated with plasma levels of IL-1β, IL-6, IL-8, 
or TNF-α (Table 2). Multivariate analyses confirmed that anti-
CMV IgG levels were associated with plasma levels of CXCL13, 
IL-1β, IL-6, IL-8, and TNF-α independent of sociodemographic 
and behavioral characteristics as well as laboratory measure-
ments (Table 1). Plasma levels of CXCL13, IL-1β, IL-6, IL-8, and 
TNF-α were similar among all ART-treated PLWH regardless of 
ART drug class (Supplementary Table 1).

DISCUSSION

In this cross-sectional study, we investigated the contribution of 
CMV seropositivity on microbial translocation and inflamma-
tion in ART-naive and ART-treated PLWH. In line with previous 
studies, we confirmed that CMV seropositivity was associated 
with higher CD8 T-cell counts and lower CD4/CD8 ratio in 
PLWH [14, 29, 30]. Moreover, we expanded upon such obser-
vations by showing that CMV seropositivity and anti-CMV IgG 
levels were associated with higher plasma levels of markers of 
gut damage (I-FABP), bacterial (LPS) and fungal (BDG) trans-
location, and proinflammatory cytokines in both ART-naive 
and ART-treated PLWH as well as uninfected controls.

Figure 2. Anti-cytomegalovirus (CMV) immunoglobulin G (IgG) levels are associated with plasma levels of intestinal fatty acid binding protein (I-FABP), a marker of gut 
damage, and the microbial products lipopolysaccharide (LPS) and (1→3)-β-d-glucan (BDG) among CMV-coinfected people living with human immunodeficiency virus (PLWH). 
A, Anti-CMV IgG levels are associated with plasma levels of I-FABP (n = 119). B, Plasma levels of anti-CMV IgG are associated with plasma levels of LPS (n = 119). C, Anti-
CMV IgG levels are associated with plasma levels of BDG (n = 119). P values show nonparametric Spearman correlations. Light blue: ART-naive PLWH; dark blue: ART-treated 
PLWH. 
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CMV seropositivity was associated with increased epithelial 
gut damage and microbial translocation markers independent 
of CD8 T-cell count and CD4/CD8 ratio. Furthermore, markers 
of epithelial gut damage, bacterial translocation, and fungal 
translocation were associated with anti-CMV IgG levels but 
not anti-EBV IgG levels nor total IgG, IgM, IgA, and IgG1–4. 
These findings further support the observation that increased 
epithelial gut damage and microbial translocation are linked 
in part to CMV seropositivity and not influenced by systemic 
inflammation nor global immunoglobulin levels. Moreover, 
epithelial gut damage and microbial translocation markers 
were positively associated with anti-CMV IgG levels. In elderly 
populations, higher levels of anti-CMV IgG were associated 
with CMV reactivation and aging outcomes [31]. Conversely, 
anti-EBV IgG level was not associated with CD8 T-cell eleva-
tion, epithelial gut damage, microbial translocation, nor in-
flammatory markers apart from plasma levels of CXCL13 in 
ART-naive PLWH. We and others have recently showed that 

CXCL13, a marker of lymph node germinal center activity, can 
also be considered as a novel marker of HIV disease progres-
sion, inflammation, and T-cell activation in PLWH [26]. This 
observation is in line with some EBV-related non-Hodgkin 
lymphomas where circulating CXCL13 level is used as prog-
nostic score for survival outcome [32].

In line with our findings, Maidji et al have recently observed 
that the gastrointestinal tract is one of the largest sites of CMV 
replication [5]. Moreover, primary human intestinal cells and 
humanized mouse models of the gut showed that CMV infec-
tion, independent of HIV, disrupted tight junctions of polar-
ized intestinal cells and enhanced transepithelial permeability 
contributing to microbial translocation [5]. Additionally, CMV 
infection has been shown to induce IL-6 and IL-8 production 
in human enterocytes in vitro and in vivo, respectively [5, 33]. 
Likewise, we report that CMV seropositivity and anti-CMV IgG 
levels were associated with higher plasma levels of IL-6 and IL-8 
among both ART-naive and ART-treated PLWH. We observed 

Table 2. Correlations and False Discovery Rate Adjusted P value (Q Value) of Plasma-level Markers of Epithelial Gut Damage, Microbial Translocation, 
and Inflammation With Anti-Cytomegalovirus (CMV) and Anti–Epstein-Barr Virus Immunoglobulin G Among CMV-Infected Participants (n = 132)

Plasma Markers

Living with HIV (n = 119 [90%])

HIV-Uninfected (n = 13 [10%])
ART-Naive  

(n = 66 [55%])
ART-Treated  

(n = 53 [45%])

Anti-CMV IgG Anti-EBV IgG Anti-CMV IgG Anti-EBV IgG Anti-CMV IgG Anti-EBV IgG

Gut damage

 I-FABP r = 0.299 r = 0.032 r = 0.296 r = 0.015 r = 0.549 r = ˗0.02 

P = .03 P = .47 P = .04 P = .35 P = .04 P = .96

Q = .04  Q = .51 Q = .05 Q = .51 Q = .05 Q = .87

Microbial translocation

 LPS r = 0.455 r = 0.002 r = 0.201 r = ˗0.001 r = 0.783 r = 0.003 

P < .001 P = .21 P = .01 P = .22 P = .004 P = .89 

Q = .002 Q = .32 Q = .05 Q = .39 Q = .007 Q = .85

 BDG r = 0.403 r = 0.033 r = 0.298 r = 0.051 r = 0.633 r = ˗0.014 

P < .001 P = .56 P = .02 P = .42 P = .01 P = .97

Q = .001  Q = .58 Q = .03 Q = .68 Q = .03 Q = .99

Inflammation

 CXCL13 r = 0.254 r = 0.318 r = 0.623 r = 0.271 r = 0.704 r = 0.388 

P = .05 P = .01 P < .001 P = .06 P = .01 P = .08 

Q = .09  Q = .04  Q < .001 Q = .10 Q = .04 Q = .13

 IL-1β r = 0.351 r = 0.219 r = 0.209 r = 0.001 r = 0.469 r = 0.245 

P = .01 P = .13 P = .04 P > .99 P = .128 P = .44

Q = .04 Q = .22 Q = .09 Q > .99 Q = .178 Q = .42

 IL-6 r = 0.173 r = 0.201 r = 0.401 r = 0.193 r = 0.419 r = 0.041 

P = .221 P = .09 P = .004 P = .10 P = .177 P = .91

Q = .128 Q = .14 Q = .01  Q = .21 Q = .201 Q > .99

 IL-8 r = 0.430 r = 0.188 r = 0.333 r = 0.102 r = 0.259 r = ˗0.511

P < .001 P = .28 P = .02 P = .34 P = .413 P = .09

Q = .003  Q = .31 Q = .04 Q = .44 Q = .397 Q = .07

 TNF-α r = 0.419 r = 0.221 r = 0.274 r = 0.154 r = 0.574 r = 0.080

P = .002 P = .05 P = .01 P = .21 P = .05 P = .81 

Q = .02 Q = .08 Q = .05 Q = .38 Q = .09 Q = .95

Data in bold indicate significant association after adjustment for false discovery rate (< 0.05).
Abbreviations: ART, antiretroviral therapy; BDG, (1→3)-β-d-glucan; CMV, cytomegalovirus; EBV, Epstein-Barr virus; HIV, human immunodeficiency virus; I-FABP, intestinal fatty acid binding 
protein; IgG, immunoglobulin G; IL, interleukin; LPS, lipopolysaccharide; TNF, tumor necrosis factor.
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Figure 3. Plasma levels of marker of inflammation CXCL13 and the proinflammatory cytokines interleukin (IL) 6 and IL-8 are elevated in cytomegalovirus (CMV)–coinfected 
people living with human immunodeficiency virus (HIV), ie, PLWH. A, CMV-seropositive antiretroviral therapy (ART)–naive and ART-treated PLWH have higher plasma levels 
of CXCL13 compared with their CMV-seronegative counterparts. B, Plasma levels of anti-CMV immunoglobulin G (IgG) are associated with plasma levels of CXCL13 in CMV-
infected PLWH (n = 119). C, CMV-seropositive ART-naive and ART-treated PLWH have higher plasma levels of IL-6 compared with their CMV-seronegative counterparts. D, 
Plasma levels of anti-CMV IgG are associated with plasma levels of IL-6 in CMV-infected PLWH (n = 119). E, CMV-seropositive ART-naive and ART-treated PLWH have higher 
plasma levels of IL-8 compared with their CMV-seronegative counterparts. F, Plasma levels of anti-CMV IgG are associated with plasma levels of IL-8 in CMV-infected PLWH 
(n = 119). Horizontal lines represent first quartile, median, and third quartile, respectively. P values show Kruskal-Wallis tests with Dunn post hoc test between different 
groups. Associations with anti-CMV IgG levels show nonparametric Spearman correlations. Light blue: ART-naive PLWH; dark blue: ART-treated PLWH; purple: people without 
HIV infection. 
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a trend between CMV seropositivity and elevated plasma levels 
of IL-1β and TNF-α; however, this tendency was not statistically 
significant. This is in line with previous findings from Maidji 
et al that show an induction of IL-6 production but not IL-1β 
nor TNF-α in vitro in human colon epithelial cells following 
CMV infection [5]. Thus, with our findings, there is converging 
in vitro and ex vivo evidence that CMV infection is a contrib-
utor to epithelial gut damage and inflammation.

Despite the significant success of ART, chronic immune ac-
tivation and resultant risk of non-AIDS comorbidities persist 
[34, 35]. Our findings, combined with those of previous studies, 
suggest that CMV coinfection may exacerbate epithelial gut 
damage in PLWH, contributing to increased microbial trans-
location and inflammation even after long-term ART [5]. As 
such, targeting CMV may help alleviate epithelial gut damage 
in ART-treated PLWH and reduce the incidence of non-AIDS 
comorbidities.

We acknowledge certain limitations to our study. While we 
assessed CMV seropositivity and used anti-EBV IgG levels as 
a Herpesviridae family control, we did not investigate the con-
tribution of other coinfections common among PLWH such as 
other herpesviruses (types 1, 2, and 8), hepatitis B, and hepa-
titis C. Furthermore, although anti-CMV IgG levels are not a 
marker of CMV replication, we compared people who are se-
ropositive for CMV with people who are seronegative [36, 37]. 
The differences between these 2 groups as well as the associ-
ations with anti-CMV IgG but not anti-EBV IgG levels suggest 
that CMV coinfection is playing an active role in persistent ep-
ithelial gut damage in ART-treated PLWH. Further evaluation 
of CMV replication in blood and tissues with the use of quanti-
tative polymerase chain reaction is needed to appraise the con-
tribution of transient CMV replication in tissue on the elevation 
of plasma levels of anti-CMV IgG.

Overall, we reported for the first time that CMV-seropositive 
ART-naive and ART-treated PLWH have increased microbial 
translocation and inflammation compared to those without 
CMV seropositivity. Anti-CMV IgG levels were also correl-
ated with markers of epithelial gut damage, microbial trans-
location, and inflammation independent of anti-EBV IgG and 
other nonspecific immunoglobulins. Furthermore, such obser-
vations were independent of sociodemographic and behavioral 
characteristics. CMV infection may explain the persistence of 
epithelial gut damage, microbial translocation, and immune ac-
tivation in PLWH on long-term ART and in uninfected con-
trols. Future studies should assess whether anti-CMV therapy 
can alleviate epithelial gut damage, microbial translocation, and 
chronic inflammation in ART-treated PLWH [38].
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