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Background. Myelosuppression-related infections remain important causes of morbidity and mortality in children with acute 
lymphoblastic leukemia (ALL).

Methods. By analyzing fecal samples collected at diagnosis and after each of the initial 3 phases of chemotherapy, we evaluated 
the role of gut microbiota in predicting infections in 199 children with newly diagnosed ALL. The bacterial 16S rRNA gene was 
analyzed by high-depth sequencing to determine the diversity and composition of the microbiome.

Results. After the induction and reinduction I phases of chemotherapy, microbial diversity decreased significantly relative to 
the prechemotherapy value. After chemotherapy, the relative abundance of certain bacterial taxa (eg, Bacteroidetes) decreased sig-
nificantly, whereas that of other taxa (eg, Clostridiaceae and Streptococcaceae) increased. A baseline gut microbiome characterized 
by Proteobacteria predicted febrile neutropenia. Adjusting for the chemotherapy phase and ALL risk level, Enterococcaceae domin-
ance (relative abundance  ≥30%) predicted significantly greater risk of subsequent febrile neutropenia and diarrheal illness, whereas 
Streptococcaceae dominance predicted significantly greater risk of subsequent diarrheal illness.

Conclusions. In children undergoing therapy for newly diagnosed ALL, the relative abundance of Proteobacteria before 
chemotherapy initiation predicts development of febrile neutropenia, and domination of the gut microbiota by Enterococcaceae or 
Streptococcaceae at any time during chemotherapy predicts infection in subsequent phases of chemotherapy.

Clinical Trial Registration. NCT00549848.
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Emerging epidemiologic evidence shows associations between 
gut microbiota and overall health [1–3]. Alterations in gut 
microbiota affect the immune system and resistance to infec-
tion in healthy individuals, adults with acute myeloblastic leu-
kemia or non-Hodgkin lymphoma, and hematopoietic stem 
cell transplant (HSCT) recipients [4–7]. Disruption of the gut 
microbiome by chemotherapy and broad-spectrum antibiotics 
may facilitate domination by a single pathogen that can cross 
the intestinal mucosa to the bloodstream [8, 9]. The diversity 
and composition of gut microbiome predict infection in adults 
with cancer [5, 6, 8–10]. Although one study [11] showed that 
children with cancer had less-diverse gut microbiota than their 

healthy siblings, the relevance of the microbiome to the out-
come of antineoplastic therapy in children is unknown.

We hypothesized that changes in the gut microbiome are 
associated with infection risk in children with ALL. This study 
examined changes in fecal microbiota in children with ALL 
before and during chemotherapy and aimed to identify char-
acteristics of gut microbiome that predicted outcomes such as 
diarrhea, bloodstream infections, or febrile neutropenia (FN).

METHODS

Study Design and Participants

Patients were enrolled at the time of ALL diagnosis at St Jude 
Children’s Research Hospital between January 2012 and August 
2015. The protocol was approved by the institutional review 
board, and informed consent was obtained. The ALL treatment 
regimen and risk classification (ClinicalTrials.gov identifier 
NCT00549848) were described previously [12, 13]. Therapy 
consisted of a 6-week remission induction, 8-week consolida-
tion, and 120-week continuation phase that included two 3-week 
periods of intensive chemotherapy (reinduction I in weeks 7–9 
and reinduction II in weeks 17–20). Demographic, antibiotic and 
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probiotic exposure, treatment, and outcomes were abstracted 
from the study database and electronic medical records.

Bloodstream infection was defined as detection of bacteria or 
fungi in blood cultures obtained for clinical care; diarrhea as ≥3 
loose or watery stools in a 24-hour period or a documented clin-
ical diagnosis; fever as an oral temperature >38.0°C persisting for >1 
hour; and neutropenia as an absolute neutrophil count ≤500 cells/
µL. Patients were followed from the date of ALL diagnosis until cen-
soring at the first of: end of reinduction II, death, or removal from 
the Total XVI study because of ALL relapse, HSCT, or other factors.

Sample Collection

Stool specimens were obtained at 4 predefined time points for 
microbiome analysis: before or within 72 hours after induction 
chemotherapy initiation (baseline); within 2 weeks after induc-
tion completion (postinduction); and at the initiation of reinduc-
tion I (postconsolidation) and reinduction II (postreinduction) 
phases. Samples were frozen at −80°C until DNA extraction.

DNA Extraction, Library Construction, and Sequence Analysis

DNA was extracted by bead beating on a FastPrep instrument 
(MP Biomedicals, Santa Ana, California) followed by genomic 
DNA extraction with a FastDNA kit (MP Biomedicals). The V1–
V3 region of the bacterial 16S rRNA gene was amplified using a 
NEXTflex 16S Amplicon-Seq Library Prep kit (Bioo Scientific, 
Austin, Texas). The multiplexed products were used for high-
depth sequencing on the Illumina Mi-seq platform. The quality 
of raw 16S ribosomal RNA (rRNA) pair-ended reads (300 bp ×2) 
was examined by FastQC, and low-quality read ends (quality score 
<20) were trimmed with Trim Galore [14, 15]. The reads were 
subsequently merged with PANDAseq and processed with QIIME 
[16, 17]. The average read depth is 133 290 (median, 147 411). The 
closed-reference mapping protocol of QIIME was used for opera-
tional taxonomic unit (OTU) assignment at 97% sequence similar-
ity, using the UCLUST algorithm [18]. A representative sequence 
was selected from each OTU for taxonomic assignment with the 
Greengenes database [19]. Using the OTU table, alpha diversity 
estimates (Shannon, Simpson, and Chao 1 indices) were calculated 
using R phyloseq [20]. Rarefaction curves were generated for num-
ber of sequences per sample (Supplementary Figure 1).

All sequence read files are accessible through the National 
Center for Biotechnology Information (project accession num-
ber PRJNA449103).

Statistical Analysis
OTU Assignment
All samples were included in the analysis. OTUs were grouped 
in 14 taxa based on frequency (Supplementary Figure 2).

Changes in Microbiota Diversity and Composition During 
Chemotherapy
A linear mixed-effects model examined changes in the diver-
sity indices using SAS version 9.4 software (SAS Institute, Cary, 

North Carolina). For microbiome compositional change, a 
mixed-effects negative binomial regression model was used [21].  
The P value was adjusted for the false discovery rate with the 
Benjamini-Hochberg method [22] and reported as Q value.

Effect of Antibiotics and Probiotics on Microbiome
Antibiotic prophylaxis against pneumocystis pneumonia was 
excluded from analysis because of ubiquitous exposure. Because all 
patients received other antibiotics during the study, exposure was 
calculated as the proportion of days receiving antibiotics for each 
chemotherapy phase. Correlation between antibiotic exposure 
and change in diversity was evaluated using Spearman rank test, 
and change in dominance of Bacteroidetes was tested using Fisher 
exact test. Probiotic use was analyzed using a Swimmer plot.

Impact of Baseline Microbiota on Infection Outcomes
For initial risk stratification at the time of ALL diagnosis, the 
Wilcoxon-Mann-Whitney test and logistic regression were used 
to assess potential risk factors for subsequent infection occurring 
at any time during the study period, including the baseline micro-
biome. For each taxon whose relative abundance (RA) significantly 
differed among patients who had or did not have the event, the RA 
was dichotomized at the optimal cutoff value based on the Youden 
index. Factors with a P value of <.1 in univariate analysis were 
examined by multiple logistic regression. The cumulative incidence 
of outcomes was compared among risk factors with Gray test.

Microbiota Composition Type Assignment
The “community state” refers to the RA of taxa in a stool sample 
at a specific time point. The “microbiota composition type” is 
a cluster of community states with similar microbiota compos-
ition. The community states were grouped using hierarchical 
clustering of the Jensen-Shannon divergence matrix, which 
assesses beta diversity and the optimal number of clusters [23], 
and ward linkage and presented as a heat map [21].

Modeling Association Between Microbiota and Infection Outcomes
To evaluate the effect of the time-dependent microbiome on the 
recurrent infection outcomes throughout all courses of chemo-
therapy, Anderson-Gill proportional hazards models were 
adopted [24, 25]. ALL risk level, Shannon diversity index and 
microbiome composition at the collection time point, and the 
chemotherapy phase were treated as time-dependent predictors. 
To assess sensitivity of the results, a bootstrap method (with 
10 000 replicates) was used to examine the association between 
Enterococcaceae or Streptococcaceae dominance and subse-
quent infections. Dominance was defined as an RA of ≥30% [9].

RESULTS

Patient Characteristics and Infection Outcomes

A total of 199 children provided 406 stool samples (Table  1). 
Twenty-six patients (13%) had 31 episodes of bloodstream 
infection, 122 (61%) had 248 FN episodes, and 73 (37%) had 
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112 episodes of diarrheal illness (Table  1). Characteristics 
of patients with samples at each time point are shown in 
Supplementary Table 1.

Changes in Gut Microbiota Diversity

Microbiome diversity significantly decreased from diagnosis to 
the end of induction (3.34 [standard deviation {SD}, 0.72] vs 
2.82 [SD, 0.88]; P < .001; Figure 1 and Supplementary Table 2).  
However, after less-intensive consolidation and continuation 
treatment, diversity reverted to the baseline level (3.18 [SD, 0.69]  
postconsolidation vs 2.82 [SD, 0.88] postinduction; P  <  .01). 
Gut microbiota diversity again decreased significantly after 
reinduction I (2.84 [SD, 0.76] postreinduction vs 3.18 [SD, 0.69] 
postconsolidation; P < .01). Although there was no significant 
difference between the diversity indices at baseline and postcon-
solidation or between those at postinduction and postreinduc-
tion, the index at postreinduction was significantly lower than 
that at baseline (P < .001; Figure 1), suggesting that induction 

and reinduction chemotherapy reduced the gut microbial diver-
sity. Similar results were shown across all alpha diversity indices  
(Supplementary Figure 3).

Changes in Gut Microbiota Composition

Compared to baseline, the mean log RA of Bacteroidetes, 
Faecalibacterium species, Ruminococcaceae, Actinobacteria, 
and Verrucomicrobia significantly decreased in at least one of 
the postchemotherapy samples (Figure  2 and Supplementary 
Tables 2 and 3). In contrast, the mean log RA of Clostridiaceae, 
Streptococcaceae, Lactobacillaceae, Enterococcaceae, and other 
Firmicutes significantly increased after chemotherapy (Figure 2 
and Supplementary Tables 2 and 3). Although mean diversity of 
the postconsolidation samples did not differ significantly from 
that of the baseline samples nor did the diversity of the postin-
duction samples compared to postreinduction samples, the gut 
microbiome composition changed significantly. The diversity at 
postconsolidation reverted back to baseline level, but the com-
position was different.

Effect of Antibiotics and Probiotics on Microbiome

Impact of antibiotics on microbiome changes was examined 
for patients who had stool specimens collected before and after 
each phase of chemotherapy. Antibiotic exposure was not signif-
icantly associated with changes in diversity for any chemother-
apy phase (Supplementary Table 4 and Supplementary Figure 4).  

Table 1. Patient Characteristics (N = 199)

Characteristic No. (%)

Age at diagnosis, y, median (range) 6.4 (0.5–18.4)

Age at diagnosis, y, No. (%)

 <1.5 9 (5)

 1.5–4 72 (36)

 5–9 65 (33)

 ≥10 53 (27)

Sex, No. (%)

 Male 118 (59)

 Female 81 (41)

Race, No. (%)

 Black 28 (14)

 White 158 (79)

 Other 13 (7)

Acute lymphoblastic leukemia risk level at induction

 Low 106 (53)

 Standard 81 (41)

 High 12 (6)

Stool samples, No. (%) 406

 Baseline before induction 112 (28)

 After induction completion 97 (24)

 Postconsolidation at reinduction I initiation 107 (26)

 Postreinduction at reinduction II initiation 90 (22)

Patients with infection outcomes, No. (%)

 Bloodstream infectionsa 26 (13)

 Febrile neutropenia 122 (61)

 Diarrheal illnessb 73 (37)

 No infection outcomec 42 (21)

aEtiologic agents of bloodstream infections included coagulase-negative staphylococci 
(7 episodes), Escherichia coli (3), Enterococcus species (3, all susceptible to vancomy-
cin), Staphylococcus aureus (3), Streptococcus pneumoniae (3), Rothia mucilaginosa (2), 
Neisseria polysaccharea (2), Stenotrophomonas maltophilia (1), Enterobacter cloacae (1), 
Micrococcus species (1), Bacillus cereus (1), Pseudomonas aeruginosa (1), Streptococcus 
salivarius (1), Capnocytophaga sputigena (1), and Burkholderia cepacia (1).
bEtiologies included Clostridium difficile (45 episodes), rotavirus (5), norovirus (5), adenovi-
rus (4), and Cryptosporidium (2).
cNo fever, bacteremia, febrile neutropenia, or diarrheal illness.

Figure 1. Change in gut microbiota diversity in 199 children during chemotherapy 
for acute lymphoblastic leukemia. Fecal samples were obtained at 4 time points 
(baseline, n = 112; postinduction, n = 97; postconsolidation, n = 107; and postrein-
duction, n = 90). A mixed-effects linear model was used to examine the change in 
Shannon indices over time. Patients were included as a random effect. **P < .01; 
***P < .001. Abbreviation: NS, not significant.
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Similarly, no significant association was found between 
cumulative antibiotic exposure and change in dominance of 
Bacteroidetes (Supplementary Table 5). Due to the small num-
ber (n  =  10) of patients who received probiotics at any time, 
the findings regarding microbiome changes are unlikely to be 
affected by probiotics (Supplementary Figure 5).

Using the Baseline Microbiome to Predict Any Infection Throughout 
Therapy

The relationship between baseline microbiome at the time of 
ALL diagnosis and subsequent development of infection dur-
ing chemotherapy was characterized. Of the 112 patients with 
a baseline sample, 65 developed at least one FN episode. There 
was no significant difference between diversity of baseline sam-
ples from patients who did or did not develop FN (median, 3.38 
[interquartile range {IQR}, 2.83–4.04] vs 3.34 [IQR, 2.72–3.87]; 
Supplementary Table 6). However, Proteobacteria were signifi-
cantly more abundant at baseline in patients who subsequently 
developed FN (median, 0.03 [IQR, 0.01–0.14] vs 0.01 [IQR, 
0–0.06]; P = 0.027; Supplementary Table 5). Using an optimal 
RA cutoff of 0.01%, Proteobacteria RA in baseline microbi-
ome was the only independent predictor of subsequent FN 
(Supplementary Table 7). After adjusting for sex and the com-
peting risk of death and ALL relapse, the cumulative incidence 
of first FN episodes in patients with Proteobacteria RA ≥0.01% 
was significantly higher than in patients with RA <0.01% (haz-
ard ratio [HR], 2.12 [95% confidence interval {CI}, 1.22–3.69]; 
P  =  .008; Figure  3 and Supplementary Table  7). In summary, 
the composition, rather than diversity, of baseline gut microbi-
ome was an independent predictor of FN during chemotherapy. 

Patients presenting at ALL diagnosis with Proteobacteria RA 
≥0.01% had a 67% chance of developing FN. The differences 
found in similar analyses of bloodstream infections and diar-
rheal illness were not significant (data not shown).

Infections During a Course of Chemotherapy Associated With Gut 
Microbiome at the Start of That Course

Using all stool samples collected at all 4 time points to gener-
ate a heat map and hierarchical clustering, 5 meaningful clusters 
of composition type were identified: Bacteroidetes-dominant 
(type 1); dominance of other Firmicutes or Clostridiaceae 
(type 2); dominance of Enterococcaceae, Streptococcaceae, 
Lactobacillaceae, or Proteobacteria (type 3); Blautia species dom-
inant (type 4); and even distribution of taxa (type 5) (Figure 4). 
The distribution of the 4 stool-sample time points and the 
infection outcomes in each cluster are shown in Supplementary 
Tables  7 and 8. Forty percent of baseline samples were domi-
nated by type 5 cluster and 49% by Bacteroidetes (type 1 cluster). 
This dominance by Bacteroidetes has previously been shown in 
the gut microbiome of healthy children and adults [26, 27].

These 5 microbiota composition types at any of the 4 time 
points, along with diversity, chemotherapy phase, ALL risk level at 
the time of sample collection, age at ALL diagnosis, sex, and race, 
were tested to identify risk factors for infection outcomes during 
chemotherapy phase subsequent to the stool collection time point. 
Supplementary Table 10 shows that ALL risk level, chemotherapy 
phase, and time-dependent microbiome composition type were all 
associated with infection. FN episodes and diarrheal illness were 
more likely to occur during induction. Similarly, high-risk ALL 
was significantly associated with an increased risk for diarrheal 
illness, as compared to standard-risk (HR,  2.16 [95% CI, 1.01–
4.59]; P = .046) and low-risk ALL (HR, 2.74 [95% CI, 1.26–5.95]; 

Figure  2. Change in gut microbiota composition during chemotherapy at the 
same time points as in Figure 1. *Significant change.

Figure  3. The relative abundance (RA) of Proteobacteria in the baseline gut 
microbiota at acute lymphoblastic leukemia diagnosis is associated with increased 
cumulative incidence of first episodes of febrile neutropenia. The estimated hazard 
ratio was 2.12 (95% confidence interval, 1.22–3.69; P = .008) for a Proteobacteria 
RA of ≥0.01 vs an RA of <0.01%, adjusting for gender.
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P = .011). We found no significant association between ALL risk 
level and FN. Microbiome diversity, age, sex, and race were not 
associated with FN or diarrheal illness.

Adjusting for chemotherapy phase and ALL risk level, a type 3 
gut microbiome composition at any time point was a significant 
risk factor for FN, diarrheal illness, and any infection outcome 
(Figure 5). Compared with type 1 and type 5, type 3 compos-
ition conferred a higher risk for FN in subsequent chemotherapy 
phase (HR, 2.40 [95% CI, 1.11–5.20] and 2.88 [95% CI, 1.32–
6.28], respectively; Figure  5A). Similarly, type 3 composition 
was significantly associated with higher risk for diarrheal illness 
compared with type 1, type 2, type 4, and type 5 (Figure 5B). 
Diversity was not significantly associated with infection out-
comes. We also found no significant association with the 
time-independent factors, age, sex, and race (data not shown).

Characterization of Type 3 Microbiome Composition

Most (79%) of the fecal samples in the type 3 composition clus-
ter had dominance of Enterococcaceae or Streptococcaceae. Of 
14 patients with dominant Enterococcaceae, 7 (50%) developed 
subsequent infection, as did 4 of 5 (80%) patients with dom-
inant Streptococcaceae (Supplementary Table  11). Adjusting 
for chemotherapy phase and ALL risk level, Enterococcaceae 
dominance was significantly associated with increased risk of 
subsequent FN (HR,  2.97 [95% CI, 1.35–6.53]) and diarrheal 
illness (HR, 4.23 [95% CI, 1.77–10.1]) compared to nondom-
inance of both Streptococcaceae and Enterococcaceae, while 

Streptococcaceae dominance carried a greater risk (HR,  7.94 
[95% CI, 3.27–19.3]) of subsequent diarrheal illness (Table 2). 
Thus, a gut microbiota dominated by Enterococcaceae or 
Streptococcaceae is associated with subsequent infections.

Validation of Enterococcaceae or Streptococcaceae Dominance as 
Infection Predictor

A bootstrap method confirmed that patients with a gut micro-
biome dominated by Enterococcaceae or Streptococcaceae had 
a significantly higher risk of diarrheal illness and any infection 
outcome (Supplementary Figure  6A and 6B). Patients with 
Enterococcaceae or Streptococcaceae dominance also had a 
higher but nonsignificant risk of FN (Supplementary Figure 6C).  
In summary, the performance of Enterococcaceae or 
Streptococcaceae dominance as a predictor was validated for 
diarrheal illness and any infection outcome, and showed a 
strong trend toward predicting FN.

DISCUSSION

Our study is the first to evaluate changes in the diversity and 
composition of gut microbiome and its role in predicting infec-
tions in a large cohort of children with ALL.

Diversity decreased significantly after intensive induction and 
reinduction chemotherapy, despite a rebound after recovery from 
induction. The decreased microbial diversity after immunosup-
pressive and myelosuppressive treatment is consistent with stud-
ies in adult HSCT recipients and acute myeloblastic leukemia or 

Figure 4. Heat map of taxa relative abundance in microbiota of all 406 fecal samples collected at any of the 4 time points. Five clusters (types 1–5) were identified 
using unsupervised hierarchical clustering of the Jensen-Shannon divergence matrix and ward linkage. Type 1 is dominated by Bacteroidetes; type 2 by other Firmicutes 
or Clostridiaceae; type 3 by Enterococcaceae, Streptococcaceae, Lactobacillaceae, or Proteobacteria; and type 4 by Blautia species. Type 5 has evenly distributed relative 
abundances of taxa.
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non-Hodgkin lymphoma [5, 9, 28, 29]; however, the only other 
pediatric study to date [11] detected increases in gut microbial 
diversity during chemotherapy. Although both studies sequenced 
the V1–V3 regions of the 16S rRNA gene, their divergent findings 
might be explained by differences in the chemotherapy regimens, 
antibiotic use, methods of sample preparation and sequencing, 
data analysis methods, or time points for stool collection.

Although the empirical diversity index recovered to levels 
similar to those of baseline, this renewed diversity was charac-
terized by a different microbiotal composition. In contrast to 
the studies in adults, we found that microbiota composition, but 
not diversity, was independently predictive of infections during 
chemotherapy. As previously reported [26], the baseline micro-
biome was dominated by Bacteroidetes; which decreased after 

Table 2. Domination of Gut Microbiome at Any Time Point by Streptococcaceae or Enterococcaceae Was Associated With Diarrheal Illness and Febrile 
Neutropenia in the Subsequent Phase of Chemotherapy

Dominance of Microbiome

Associated With FN Associated With Diarrheal Illness

HR (95% CI) P Value HR (95% CI) P Value

Streptococcaceae-dominanta vs Enterococcaceae-dominantb 0.63 (.1–4.11) .628 1.88 (.59–5.96) .285

Streptococcaceae-dominant vs othersc 1.87 (.34–10.4) .475 7.94 (3.27–19.3) <.001

Enterococcaceae-dominant vs others 2.97 (1.35–6.53) .007 4.23 (1.77–10.1) .001

Anderson-Gill model was used to compare the risk of each infection outcome in different groups over time. The reported HRs were adjusted for the phase of chemotherapy and acute 
lymphoblastic leukemia risk level at the time of stool sample collection as appropriate.

Abbreviations: CI, confidence interval; FN, febrile neutropenia; HR, hazard ratio.
aStreptococcaceae-dominant: ≥30% relative abundance (RA) of Streptococcaceae.
bEnterococcaceae-dominant: ≥30% RA of Enterococcaceae.
cOthers: RA <30% for both Streptococcaceae and Enterococcaceae.

Figure 5. Forest plot of hazard ratios (HRs) with 95% confidence intervals (CIs) for febrile neutropenia (A) and diarrheal illness (B) associated with gut microbiome com-
position and diversity at any of the 4 time points. The Anderson-Gill model was used to compare the risk of each outcome among the microbiome Shannon indices and 
composition types over time. The reported HRs were adjusted for subsequent chemotherapy phase and acute lymphoblastic leukemia risk level, and the 95% CI and P values 
were estimated using the robust sandwich estimator.
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chemotherapy. A  reduction in Bacteroidetes has been linked 
to human disease [30]. The metabolic function of some of these 
bacterial taxa was explored in pathogenesis studies [28, 31].  
For example, Ruminococcaceae and Faecalibacterium species have 
been implicated in anti-inflammatory effects and may maintain 
intestinal epithelial integrity [31]. The loss of the protective effect of 
these taxa after chemotherapy might compromise gut integrity and 
increase the risk of bacterial translocation into the bloodstream.

On the other hand, the RA of bacterial taxa that commonly 
infect immunocompromised patients, such as Streptococcaceae 
and Enterococcaceae, increased significantly after chemo-
therapy. This is consistent with a study evaluating 94 adult 
HSCT recipients whose gut microbiota became dominated by 
Enterococcus species, Streptococcus species, and Proteobacteria 
[9]. Studies have demonstrated that gut microbial communities 
recover after resolution of perturbing factors [10, 32, 33]. We 
saw no such recovery of gut microbiota composition at the 3 
time points of stool sampling during chemotherapy. We found 
no association between antibiotic exposure and microbiome 
changes. As shown in Supplementary Figure  4, all patients 
received antibiotics during induction chemotherapy, and the 
majority did during consolidation and/or reinduction. It is 
not clear whether the change in microbiome is due to antibi-
otics or the chemotherapy itself. We believe that the confound-
ing between antibiotic administration and the chemotherapy 
makes it difficult to isolate an effect of antibiotics alone on the 
microbiota. It would be interesting to examine these patients’ 
microbiomes after completion of chemotherapy and resolution 
of their immunosuppressed state.

We have shown that the composition, but not diver-
sity, of gut microbiota is a significant predictor of infections. 
Presentation with a gut characterized by Proteobacteria at 
ALL diagnosis significantly predicted FN during chemother-
apy. The Proteobacteria phylum of gram-negative bacteria 
includes Enterobacteriaceae, Pseudomonas species, and other 
bacteria commonly causing infections in immunocompro-
mised patients. The importance of Proteobacteria as markers of 
imbalanced gut microbiota and increased risk for disease has 
been previously documented in immunocompetent and immu-
nocompromised patients [9, 10, 34].

In addition to the baseline gut microbiome, characteriza-
tion of the microbiome composition before each phase of 
chemotherapy independently predicted infections during 
the upcoming phase. Adjusting for chemotherapy phase and 
ALL risk level, domination of the gut by Enterococcaceae or 
Streptococcaceae predicted subsequent FN or diarrheal illness. 
This is consistent with adult studies showing that an increased 
abundance of certain taxa (Proteobacteria, Enterococcus spe-
cies, and Streptococcus species) was associated with subsequent 
bloodstream infections and mortality [9, 35].

Our study included the largest pediatric ALL cohort 
with gut microbiome evaluation, and it represents the most 

comprehensive analysis of the microbiome’s relation to infec-
tions. However, it did not adjust for additional factors that 
might contribute to changes in gut microbiota, including diet, 
ethnicity, body mass index, residence geographic location, and 
pet exposure. Also, not all patients provided stool samples at all 
4 time points.

In conclusion, we have shown that microbiome composition 
can be used as an infection risk stratification tool at the time 
of presentation with ALL diagnosis. If validated, evaluations 
of the gut microbiome at the onset of chemotherapy could be 
used to determine biomarkers of the clinical course during 
chemotherapy. Our findings emphasize the need for enhanced 
understanding of microbiome in children with cancer during 
chemotherapy to design targeted microbiome-based diagnos-
tic and biomarker tools. Therefore, once a patient is identified 
at risk for infections, customized treatment regimens could 
be designed to mitigate this risk by selectively manipulating 
the gut microbiota composition using customized probiotics, 
fecal microbiota transplant, modified diet, or other innovative 
approaches. However, more studies are needed. Our findings 
can guide the design of future studies to evaluate the perfor-
mance of microbiota biomarkers and the proposed treatment 
regimens that modify gut dysbiosis.
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