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Mathematical modeling of healthcare-associated infections and multidrug-resistant organisms improves our understanding of path-
ogen transmission dynamics and provides a framework for evaluating prevention strategies. One way of improving the communi-
cation among modelers is by providing a standardized way of describing and reporting models, thereby instilling confidence in the 
reproducibility and generalizability of such models. We updated the Overview, Design concepts, and Details protocol developed by 
Grimm et al  [11] for describing agent-based models (ABMs) to better align with elements commonly included in healthcare-related 
ABMs. The Modeling Infectious Diseases in Healthcare Network (MInD-Healthcare) framework includes the following 9 key elem-
ents: (1) Purpose and scope; (2) Entities, state variables, and scales; (3) Initialization; (4) Process overview and scheduling; (5) Input 
data; (6) Agent interactions and organism transmission; (7) Stochasticity; (8) Submodels; and (9) Model verification, calibration, and 
validation. Our objective is that this framework will improve the quality of evidence generated utilizing these models.
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FRAMEWORK PURPOSE AND AUDIENCE

Healthcare-associated infections (HAIs) are associated with 
substantial morbidity, mortality, and costs [1, 2]. Mathematical 
modeling transmission of HAI pathogens and multidrug-
resistant organisms (MDROs) improves our understanding of 
the dynamics of the spread of pathogens, provides a framework 
for evaluating prevention strategies, and can accelerate preven-
tion efforts [3]. Instilling confidence in the reproducibility and 
generalizability of models is a challenge that may be addressed 
through clear and thorough communication of the underlying 
methodology.

The International Committee of Medical Journal Editors 
has compiled recommendations for best practices for con-
ducting and reporting high-quality scholarly work. Reporting 
guidelines utilized for different types of study designs in-
clude STrengthening the Reporting of OBservational studies 

in Epidemiology (STROBE) for observational studies and 
Consolidated Standards of Reporting Trials (CONSORT) for 
randomized trials [4, 5]. However, there is a paucity of best 
practices for reporting HAI and MDRO transmission mod-
eling studies to biomedical journals. As transmission mod-
eling becomes increasingly prominent and findings are used 
to inform public health practice, a common framework for re-
porting would strengthen the knowledge base and acceptability 
of findings from such studies [6, 7], analogous to recent efforts 
to improve modeling of human papillomavirus–related cancer 
control [8].

In 2017, the Centers for Disease Control and Prevention cre-
ated the Modeling Infectious Diseases in Healthcare Network 
(MInD-Healthcare), a consortium of investigators collabora-
tively developing and using mathematical models to investigate 
the spread and prevention of HAIs and MDROs. This docu-
ment describes the MInD-Healthcare Framework and aims to 
improve communication among mathematical modelers about 
their respective agent-based models (ABMs). We specifically 
focus on transmission of HAI pathogens and MDROs, although 
there is substantial overlap with describing other infectious dis-
eases. With an increasing proportion of ABMs among all HAI 
transmission models, this framework is focused on ABMs in 
contrast to other models (eg, compartmental models) for which 
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complete mathematical specification is provided for method-
ological transparency [9]. However, the guiding principles are 
generalizable. This framework can be utilized by epidemiolo-
gists to better understand the methods used by mathematical 
modelers and appropriately interpret modeling studies’ re-
sults. This framework is an adaptation of the Overview, Design 
concepts, and Details (ODD) developed by Grimm et  al [10, 
11] to increase the transparency and reproducibility of mod-
eling methods in the context of ecological modeling. The ODD 
framework has infrequently been used to describe HAI ABMs, 
although it has improved methodological clarity when em-
ployed [12–14]. The MInD-Healthcare Framework aims to 
align the traditional ODD with elements commonly included 
in healthcare-related ABMs and adopt terminology commonly 
used by epidemiologists to describe infectious disease processes.

FRAMEWORK ELEMENTS

The framework is composed of 9 elements: (1) Purpose and 
scope; (2) Entities, state variables, and scales; (3) Initialization; 
(4) Process overview and scheduling; (5) Input data; (6) Agent 
interactions and organism transmission; (7) Stochasticity; 
(8) Submodels; and (9) Model verification, calibration, and 

validation. (See Table 1 for a checklist for users of this frame-
work.) Each element should be described clearly and concisely 
utilizing tables and diagrams, where appropriate.

Purpose and Scope 

The purpose of a model is grounded by the primary objective(s) 
of the study and the potential impact of the model-driven insights 
on clinical practice. The scope provides boundaries for which dy-
namics will be included and therefore the external validity of the 
model. The purpose and scope should align with each other and 
drive the description of the remaining framework elements. The 
purpose and scope of a model are typically described in the in-
troduction of an article because they provide critical context for 
understanding why the model was developed and provide a guide 
for what to expect in the following model description. This ele-
ment contains a summary description and justification for the 
model’s level of complexity and its intended use.

Entities, State Variables, and Scales 

An entity is a person or object that may interact with other 
entities or be affected by external environmental conditions. The 
entities of an ABM (eg, patients, healthcare personnel [HCP]) 
are characterized by a set of state variables. A state variable is 

Table 1. Framework Elements

Element Checklist Item and Brief Definition
Reported on 

Page No.

1. Purpose and scope Purpose: Specify the primary problem under consideration or the objective(s) of the study.  
Scope: Specify the boundaries for which dynamics will included and which are ignored.

__________

2. Entities, state vari-
ables, and scales

Describe each entity, state variable, and scale. 
Entity: A distinct or separate object or actor that behaves as a unit; may interact with other entities or be affected 

by external environmental factors. Each entity’s current state is characterized by its state variables. 
State variable: Attribute which performs at least 1 of the following functions: distinguishes an entity from other 

entities of the same type or category, or traces how the entity changes over time.  
Scale: Temporal and spatial resolutions and extents of the model.

__________

3. Initialization Describe the initial states of the model entities and environment, (ie, at time t = 0) including how many entities of 
each type are present initially and the exact values of their state variables (or how they were set stochastically).

__________

4. Process overview 
and scheduling

Process overview: Specify who (ie, what entity) does what (ie, what actions are executed) and who is affected (ie, 
which entities and state variables).  

Scheduling: The order in which actions are taken and the order in which the effects of those actions are realized.

__________

5. Input data Describe whether the model uses input from external sources such as data files or other models to represent 
processes that change over time.

__________

6. Agent interactions 
and organism 
transmission

Agent interactions: Specify both direct interactions in which individuals encounter and affect others and any indi-
rect interactions.  

Organism transmission: Describe how pathogen transmission is specified, including which interaction types result 
in changes to health states (eg, incident colonization, infection transmission).

__________

7. Stochasticity Describe if stochasticity is part of the model and the major underlying reasons including which elements are mod-
eled as fully stochastic, partly stochastic, or deterministic.

__________

8. Submodels Describe the equations and algorithms used in the submodels. Include tables of parameter definitions, units, and 
values used.

__________

9. Model verification, 
calibration, and 
validation

Describe the processes of verification, calibration, and validation.  
Verification: Process of ensuring the model was implemented correctly and meets the specifications of the model 

design.  
Calibration: Process of tuning the model parameters so that the model output matches a selected set of statistics 

from the real-world system or from simulated data.  
Validation: Process of evaluating how well the model represents the underlying truth of the real-world process it 

aims to represent. 

__________

We strongly encourage using this checklist in conjunction with the current article “Modeling Infectious Diseases in Healthcare Network (MInD-Healthcare) Framework for Describing and 
Reporting Multidrug Resistant Organism (MDRO) and Healthcare-Associated Infections (HAIs) Agent-Based Modeling (ABM) Methods” for important clarifications on all included elements. 
Additional extensions are forthcoming: For those and for up-to-date references relevant to this checklist, see https://www.cdc.gov/hai/research/MIND-Healthcare.html.

https://www.cdc.gov/hai/research/MIND-Healthcare.html
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an attribute that performs at least 1 of the following functions: 
it distinguishes an entity from other entities of the same type 
or traces how the entity changes over time. State variables may 
also be global and accessible to all entities. Scales refer to the 
temporal and spatial resolutions of the model and how they in-
fluence the representation of transmission (eg, minimum dura-
tion for contact) [15]. Modelers should describe what kinds of 
entities are in the model and by what state variables or attributes 
they are characterized.

At any point in time, the state variables provide a snapshot of 
the model, with sufficient information to restore and restart the 
model from that instant. State variables can change over time 
(eg, use of an antibiotic) or remain constant (eg, sex, physical 
location of a hospital). Patient-level state variables should be 
epidemiologically meaningful and comparable to data available 
in electronic medical records (eg, patients’ treatment statuses 
with each class of antibiotic could be included as state variables 
[eg, neither, only penicillin, only fluoroquinolone, both], but 
“receipt of 2 antibiotic classes” would not be considered a state 
variable). Health states are a set of state variables that repre-
sent the underlying natural history of disease processes. These 
health states may include, but are not limited to, susceptible, 
asymptomatically colonized, infected and infectious, and re-
covered. The health states that are modeled may vary by agent 
type (eg, HCP may only become transiently colonized, whereas 
patients progress to infection).

Many ABMs include the following types of entities and their 
associated state variables:

Agents: A model can have different types of agents; individ-
uals can be considered agents and may be further differen-
tiated in categories (eg, patients, HCP). There may even be 
different subtypes within a category (eg, nurses, physicians). 
Agents are not limited to humans (eg, pathogens or facilities). 
Example state variables of agents include: identity number 
(ie, even if all other state variables would be the same, the 
agent would still maintain a unique identity), demographics 
(eg, age, sex), location (eg, assigned unit within a hospital), 
and comorbidities (eg, previous antibiotic use).
Spatial units: Spatial units are often used to model the state of 
specific spatial locations within a hospital (eg, patient room, 
unit) and are referred to as grid cells or patches. Example 
state variables of spatial units include: location, size, list of 
agents within the spatial unit, and descriptors of physical en-
vironmental conditions (eg, surface type) within the spatial 
unit. Some overlap of roles can occur; for example, a spatial 
unit used to model a patient room may be an entity with its 
own state variables (eg, likelihood of surfaces to become and 
remain contaminated) but may also function as a location, 
and hence a state variable, of patients.
Collectives and cohorts: We group entities with common state 
variables together. These groups of entities can have distinct 
behaviors, so it may make sense to distinguish them as a 

defined group (eg, entire healthcare facilities, groups of HCP 
within a unit, or households). A collective is a group that is 
usually characterized by the list of its agents, and by specific 
actions that are only performed by the collective, not their 
constitutive entities (eg, a hospital ward made up of spatial 
unit subcomponents in which certain agent to agent inter-
actions can only occur). In contrast, a group of agents that 
are only considered as a unit of analysis (and do not have dis-
tinct behavior) are referred to as a cohort (eg, intensive care 
unit patients to aid in model verification, calibration, and 
validation).

In describing spatial and temporal scales it is important to 
specify what the model’s units represent in reality, both within 
and among healthcare facilities. For temporal scale: describe 
the time period being modeled (eg, 5-year period or specific 
calendar years 2011–2015). Describe time as discrete steps (eg, 
day) or as a continuum over which both continuous processes 
and discrete events can occur. Describe if time scales vary by 
agent class and at which time step events occur. For spatial 
scale: describe if agents operate and interact within a single 
ward, across an entire healthcare facility, or across a network of 
healthcare facilities and the community. Describe if the model 
explicitly represents a geographic area.

Initialization 

Results generated from ABMs can depend significantly on 
the initial conditions of the model. Initialization describes the 
starting states of the model entities and environment (ie, at 
time t = 0 of a simulation run), including how many entities of 
each type are present initially and the exact values of their state 
variables or how they were set stochastically. Describe if initial-
ization is always the same or varies between simulation runs. 
Are the initial values chosen arbitrarily or based on data? If the 
latter, references to those data should be provided. It may not be 
possible to accurately replicate model results unless the initial 
conditions are known. Different models, and different analyses 
using the same model, can of course depend quite differently on 
initial conditions. Sometimes the purpose of a model is to ana-
lyze consequences of its initial state, while other times modelers 
aim to minimize the effect of initial conditions on results (eg, 
excluding the output from a predetermined warm-up period). 
These considerations should be described explicitly and align 
with the overall objective of the study. If a random number seed 
is used for stochastic elements, this section is the appropriate 
place to specify the value of that seed.

Process Overview and Scheduling 

The simulation of an ABM relies extensively on an explic-
itly defined schedule for how model processes are executed. 
Processes can be defined by who (ie, what entity) does what 
(ie, what actions are executed) and who is affected (ie, which 
entities and state variables). Scheduling determines the order 
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in which actions are taken, as well as the order in which the 
effects of those actions are realized. Many ABMs represent 
time in discrete steps, while others treat it as a continuous 
variable [16].

Describe if the model is a hybrid or combined model (ie, 
including compartmental components). In this element only 
the self-explanatory names of the model’s processes should 
be listed: “move,” “update plots,” etc. These names are then 
the titles of the submodels that are described in the section 
entitled “Submodels.” As Grimm et  al defined, processes are 
performed either by one of the model’s entities (eg, move) or 
by a higher-level controller (ie, an observer) that performs 
actions such as updating plots or writing output to files. To 
handle such higher-level processes, ABM software platforms 
like Repast [17] and NetLogo [18] include the concept of the 
“Model” or “Observer.” By “in what order?” we refer to both 
the order in which the different processes are executed and 
the order in which a process is performed by a set of agents. 
For example, for HCP visiting a patient we specify the order in 
which HCP attempt to wash their hands, wear personal pro-
tective equipment, and touch the patient and environment. We 
specify, relative to other processes modeled, whether HCP per-
form hand hygiene in a random order, a fixed order, or a HCP 
type-sorted order. Differences in such ordering (eg, HCP visits 
to patients) can have a very large effect on model outputs [19, 
20]. When processing a particular action, an entity’s state can 
be updated immediately (asynchronous updating) or the up-
date can be stored until all entities have executed the process, at 
which point all entity states are updated simultaneously (syn-
chronous updating).

For this element, only an overview is required to provide an 
understanding of how the ABM is simulated (eg, visit patient, 
update environment). The specific details of these processes 
are reserved for the submodels element. Except for very simple 
models, authors should provide the full model code or, at a min-
imum, pseudo-code to fully describe the schedule, so the model 
can be replicated. Ideally, the pseudo-code corresponds fully to 
the actual ABM code.

Input Data 

Describe whether the model uses input from external sources 
such as data files or other models to represent processes that 
change over time. In models of real systems, dynamics may 
be driven in part by a time series of environmental variables, 
sometimes called external forcings; for example, seasonality of 
disease or associations with environmental factors that could 
affect the hospital infrastructure (eg, legionellosis and rainy 
weather seasons, daily shift schedules of HCP). “Driven” means 
that 1 or more state variables or processes are affected by how 
these environmental variables change over time. However, these 
environmental variables are inputs and are not, themselves, af-
fected by the internal variables of the model. Often, it makes 

sense to use observed time series of environmental variables 
so that their statistical qualities (eg, mean, variability, temporal 
autocorrelation) are realistic. Alternatively, external models 
can be used to generate input (eg, a set of seasonal environ-
mental conditions) [21]. Obviously, to replicate an ABM, any 
such input has to be specified and the data or models provided, 
if possible. The publication of input data for some simulations 
may be constrained by confidentiality considerations. Where 
such concerns exist, inclusion of pseudo-data ought to be con-
sidered. If these input data are obtained through an application 
program interface (API) to another model or data provider, de-
tails on how this API can be accessed should be provided. If a 
model does not use external data, this element should never-
theless be included, using the statement, “The model does not 
use input data to represent time-varying processes.” Note that 
“Input data” does not refer to parameter values or initial values 
of state variables.

Agent Interactions and Organism Transmission 

Describe the kinds of interactions among agents that are as-
sumed. Include a description of both direct interactions (eg, 
in which individuals encounter and affect others) and indirect 
interactions (eg, patients sharing the same care team). Provide 
details on how transmission is specified, including which inter-
actions result in changes to health states (eg, in a simple flow 
chart). How do agents react to the interactions, or lack thereof, 
with other agents and the processes that they undergo? How 
do the pathogen characteristics influence transmission? Is 
feedback from previous processes incorporated into future 
processes? Are dynamic responses based on exceeding some 
minimum threshold?

Stochasticity 

Often, we choose to model variability in a parameter or process 
without fully representing all the underlying mechanisms that 
account for that variability occurring. A simplified approach is 
to incorporate stochastic elements that randomly draw num-
bers to change parameters or processes. ABMs are inherently 
stochastic, although they may contain deterministic elements 
(eg, a module describing room contamination deterministi-
cally may output contamination level as a parameter value in 
an ABM more broadly). Demographic stochasticity, where only 
whole individuals, as opposed to fractions of individuals, can 
undergo changes (eg, birth, death, disease-state changes) is a 
mechanistic basis for including stochasticity in mathematical 
models and is especially relevant in small populations [17]. 
What elements of the submodels are modeled fully stochas-
tically, partially stochastically, or deterministically? Why are 
elements modeled this way? Is stochasticity used, for example, 
to reproduce variability in processes for which it is important 
to model the actual causes of the variability? How many model 
replications are utilized and how was this number determined?
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Submodels 

All submodels should be presented completely and in detail 
(utilizing the applicable framework elements). Submodels are 
described at a high level in the process overview and sched-
uling, although specific details of these processes are described 
here. The factual description of the submodel (ie, equation[s] 
and algorithms) should be described. If parameterization is not 
discussed outside of the description based upon this frame-
work, it can be included here. The parameter definitions, units, 
and values used should be presented in tables. The purpose of 
including this information is to prevent the description from 
seeming ad hoc and to strengthen model credibility. Justification 
can be very brief in the earlier sections, but the complete de-
scription of submodels is likely to include references to relevant 
literature, as well as independent implementation, testing, and 
analysis of submodels. Additionally, in most cases, it will be 
necessary to have simulation experiments or a model analysis 
section following the model description.

Model Verification, Calibration, and Validation

Verification is the process of ensuring the model was imple-
mented correctly. Calibration is the process of tuning the model 
parameters so that model output matches a selected set of statis-
tics from the real-world system or simulated data and is possibly 
conducted in tandem with validation (eg, incident infections 
hospitalwide). Validation is the process of evaluating how well 
the model represents the underlying truth of the process it aims 
to represent. What is the process of model verification? What 
is the process for model calibration? What are the calibration 
targets and on what information are they based? What is the 
process for model validation?

Sensitivity analysis may be a part of multiple processes. 
Sensitivity analysis is the process of determining which model 
parameters and structures have the most significant effect on 
model outputs. Uncertainty analysis is the process of evaluating 
how the uncertainty of model parameter values may affect the 
model’s output [22]. The precision with which parameters can 
be measured in the real-world impacts the reliability of model 
results generated using those estimates [3]. Therefore, uncer-
tainty analysis relates to validation and calibration. Sensitivity 
analysis may be performed for verification (eg, extreme value 
test) or validation (eg, analyzing the impact of increasing hand 
hygiene compliance on acquisition rates) or calibration (eg, 
choosing a wider range for certain parameters to be chosen 
from, fixing noncalibrated parameters to different plausible 
values, employing a different fitting method). What sensitivity 
analyses were conducted? What uncertainty analyses were 
conducted?

INTERPRETATION

The MInD-Healthcare Framework was developed as a set of best 
practices for conducting and reporting transmission modeling 

studies, in particular those utilizing ABMs. It primarily aims to 
improve communication among mathematical modelers about 
their respective ABMs and builds upon the ODD protocol [10]. 
By increasing methodological transparency, we hope this frame-
work will improve quality and reproducibility of the evidence 
generated by these models, just as development of the CONSORT 
guideline improved completeness of reporting of randomized 
controlled trials [23]. Additionally, this framework can facilitate 
multimodel comparisons by aiding in harmonization, systematic 
exploration of variability, and pooling of results [24].

High-quality scientific literature provides a complete meth-
odological description and increased certainty for decision 
makers. Mathematical models are often criticized as being 
“black boxes” because they provide a limited methodolog-
ical description. Adoption of these standards will enable con-
sumers of modeling studies to better understand the methods 
and accompanying strengthens and limitations of these studies. 
Increased transparency also ought to improve the interpretation 
of modeling studies and adoption of recommendations based 
upon these studies. The MInD-Healthcare Framework should 
be re-evaluated and revised in the future to consider evolution 
of the field, generation of new evidence, and incorporate feed-
back from those using this framework.
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