
At 2404 pages with 1024 illustrations, this is a massive work in its scope and breadth. The book is arranged into 27 parts that include 477 chapters! For the laboratorian, chapter 14.2 deserves review, presenting an in-depth and complex review of clinical decision-making. Chapter 21 concerns principles of outcome assessment. Laboratory reference ranges are offered in chapter 477. All of the common tests are represented, although esoteric tests may not be mentioned (e.g., angiotensin-converting enzyme activity; VIP; IgG subclasses). While both conventional and international unit reference ranges are provided, conversion factors between the units are unfortunately not provided.

To evaluate this textbook, I specifically reviewed in depth several chapters scattered throughout the book, seeking answers to the following questions: How clearly does the chapter describe the clinical presentation and course of the disease, considering the fact that many clinical chemists are not physicians by training? How completely does the chapter describe the diagnostic techniques used to make the laboratory diagnosis of disease. Specific comments on several chapters follow.

Chapter 41.2, Acute Myocardial Infarction: The clinical discussion is very broad and very complete. The discussion of cardiac markers, however, is very brief (<1/2 page) and (e.g.) mentions troponin I but not troponin T. While the clinical description of AMI and its clinical course are well described, the clinical chemist will need to look to other sources for a thorough discussion of cardiac markers. The brevity of this section is surprising, given that the authors state: “Elevated concentrations in plasma of macromolecules released from irreversibly injured myocardium has become the definitive diagnostic criterion of infarction.”

Chapter 191, Disorders of Magnesium Metabolism: Hypomagnesemia is fairly well covered. The authors do mention the issue of using intravenous Mg$^{2+}$ to minimize myocardial injury in acute myocardial infarction. They also state that use of Mg$^{2+}$ is controversial in AMI but do not conclude for or against this practice. Hypermagnesia is briefly overviewed.

Chapter 340, Infections Associated with Human Cytomegalovirus: This chapter clearly describes the clinical course of CMV acute and reactivation infection. In <2 pages, the clinical chemist can garner a quick overview of this important topic that is becoming more significant as more transplants are performed each year. The diagnostic section is rather abbreviated. The laboratorian might want to know what type of cells CMV is cultured upon (i.e., human skin fibroblasts) and more about the details of the centrifugation-enhanced culture techniques (e.g., shelf-vial technology). The various techniques for antibody detection (e.g., EIA, passive latex agglutination, CF, ACIF) are not discussed. Likewise, PCR diagnosis is only briefly mentioned. Examination of tissue by using immunofluorescence is not discussed. One reference concerning diagnostic methodologies for CMV is provided.

As with any multiauthored text, the quality of writing and the thoroughness of discussions vary widely from excellent to modest. One can find periodic errors that confuse the reader. For example, in the chapter on hyperlipoproteinemias (chapter 173) in Fig. 173–1, the legend lists “LDL receptor-related protein (LRP),” but the Fig. labels this structure “LAP.” Chapter 204 on adrenal physiology lacks an outline of the adrenal steroid biosynthetic pathways, which would appear key to understanding adrenal disorders. On the other hand, the discussion of the etiology of type I diabetes is masterful (chapter 205, page 1252). For information retrieval, the index is very thorough. Mechanically, the pages are quite thin. If you use a yellow highlighter, expect to see yellow on the reverse side of the page!

Although the clinical discussions in general are very good, laboratory findings are not strongly intertwined or linked with clinical findings. For the clinical chemist who primarily wishes to review disease causation and treatment, the Cecil Textbook is a good choice. However, if the reader wants to study the laboratory diagnosis of disease and review pathophysiology related to laboratory abnormalities, the book is limited in these aspects; a better choice would be a text such as the Tietz Textbook of Clinical Chemistry. The reader must also be aware that the most up-to-date information (e.g., HIV RNA viral load testing) must still be gathered from a review of the current medical literature.

William E. Winter
Departments of Pathology, Immunology, and Laboratory Medicine; Pediatrics; and Molecular Genetics and Microbiology University of Florida College of Medicine Box 100275 Gainesville, FL 32610-0275

As the Preface indicates, this book is intended for the broad audience of laboratorians, physicians, nurses, and anyone involved with the proper application of knowledge as it relates to the preanalytical phase of laboratory testing. Visually rich with colorful illustrations, neatly numbered and captioned, 114 tables, graphs, diagrams, and photographs explicitly reinforce and clarify the text. In addition, the authors cleverly emphasize to the reader their recommendations and warnings by highlighting the former in green print, the latter in red. These printing contrasts make for efficient skimming for emphasized text. The book is well referenced, and an excellent glossary is included. An added bonus is a booklet attached to the inside back cover titled, List of analytes, Preanalytical variables. The presentation of information in user-friendly table form makes this a valuable, transportable ready reference for physicians and laboratorians alike.

Before the first chapter, the authors take a novel approach intended to enhance the reader’s awareness of the importance of the multiple steps in the

1470 Clinical Chemistry 43, No. 8, 1997