
The aim of this Handbook is to restore Wallach’s Interpretation of Diagnostic Tests (now in its sixth edition) to the size of a coat pocket and thus to provide the information in a format more readily available for immediate reference. The Sixth Edition of this classic has grown so large that it is no longer practical to carry around. Both books provide a wealth of information about the utilization of laboratory tests and are organized into chapters on diseases of organ systems, from cardiovascular to infectious diseases. Any textual writing is minimal; rather, the material is presented in practical lists, tables, figures, and algorithms. Clinical chemists will want to consider either or both books—the Sixth Edition as a possible resource for the library or personal bookshelf, and the Handbook for those who are interested in taking along this kind of a reference on ward rounds and for other interactions with clinicians away from the office, although I found I was not able to use it in these settings. There simply is not enough time to read a textbook before responding to real-time situations and questions. I would check the Handbook soon thereafter, however, when it became a confirmatory and educational tool for me.

The abridgment that produced the Handbook was achieved by including only those disorders encountered more frequently in clinical practice, eliminating illnesses that lack diagnostically useful laboratory findings and omitting neonatal and hereditary disorders that require genetic studies for diagnosis. Also omitted (unfortunately) are all the references and data sources, for which an interested reader would be forced to consult the Sixth Edition. A notable improvement over the Sixth Edition is that the Handbook alphabetizes disorders within the organ system chapters and the list of laboratory tests reviewed in early chapters.

The first chapter presents a list of reference intervals, along with an introduction to normal values and "general principles" intact from the Sixth Edition. These 14 considerations about laboratory tests should be required reading for pathology residents, laboratory medicine fellows, and anyone else concerned about a proper approach to laboratory utilization. The reference intervals themselves need some editing to add clarity and to remove some dated material; many of the chemistry reference intervals imply dependence on the specific method, which is good, but are given as "Ektachem" data, and the interval for creatine kinase (CK)-MB is still listed only as "<5%".

The second chapter is a short roster of critical values (where the CK-MB % problem is repeated). The third chapter gives a concise presentation of chemical analytes and their alterations by various diseases. This list, although otherwise useful, contains several unfortunate differences from the Sixth Edition: Ionized calcium is not covered as well, two figures concerning potassium each display careless mistakes, and a missing word or two in a few places (e.g., albumin) causes confusion. The reference intervals and other information about urine are nicely covered in chapter four, which includes a remarkable 22 pages on information to glean from urine color.

The rest of the Handbook consists of 13 chapters covering various diseases of organ systems, as mentioned above, 2 short chapters on drugs and laboratory values, and 2 appendices, including a handy table of conversion factors between conventional and SI units for hematology and chemistry analytes. Lastly, a comprehensive index will perhaps be as valuable as the contents to a busy reader trying to look something up quickly.

David D. Koch
Department of Pathology and Laboratory Medicine
University of Wisconsin
Madison, WI 53792


The first serum marker [serum glutamic-oxaloacetic transaminase (SGOT), also known as aspartate transaminase (AST)] to facilitate the diagnosis of myocardial infarction (MI) was described in 1954. It took 20 years before the next significant development was documented in the form of creatine kinase (CK)-MB measurement. However, the pace of discovery of new markers of MI has since accelerated. We have seen the emergence of completely new, nonenzymatic MI markers, such as the cardiac troponins, during the past 10 years. Descriptions of experimental immunoassays for measuring other structural proteins of the myocardium are published almost daily. "Old" markers have been given new life in the form of CK-MB isoforms, and we are looking for biochemical markers that will predict imminent MI instead of documenting the fact that the myocardium has suffered an ischemic injury. Additionally, the new markers have redefined our understanding of the ischemic syndromes and are changing traditional therapeutic approaches. The change is so rapid that it is sometimes hard, even for the researcher interested in this field, to keep up with new developments. In fact, many relatively new clinical chemistry and pathology textbooks are outdated when discussing the biochemical markers of MI.

It was not a day too soon to publish a book that focuses on coronary artery disease (CAD) and the laboratory diagnosis of the related syndromes. Cardiac Markers, edited by Alan Wu, sets out to do this, and it does it well. Dr. Wu and the other authors of the book, some active researchers themselves in the field of cardiac markers, do an excellent job of reviewing the clinical and laboratory aspects of MI.

The book comprises four parts, which focus on the clinical aspects of CAD, traditional cytoplasmic markers, current structural markers of MI, and future markers. Each part is filled with essential information for