against the temperature (temperature ramp and then plotted of 1 cycle at 95 °C for 0 s, 20 °C/s), annealing (55 °C for 10 s), and extension (72 °C for 10 s). The melting curve consisted (95 °C for 0 s, 20 °C/s), and extension (72 °C for 10 s). The melting curve consisted of 1 cycle at 95 °C for 0 s, 20 °C/s, and extension (72 °C for 10 s), and then increasing the temperature to 95 °C at a slope of 0.2 °C/s.

The fluorescence signal (F) was monitored continuously during the temperature ramp and then plotted against the temperature (T). These curves were transformed to derivative melting curves (−dF/dT) vs T].

Representative results for the three different genotypes (TT, CT, and CC) are given in Fig. 1. In the 100 patient samples, 27% were TT, 41% were CT, and 32% were CC. The proposed technique and the restriction enzyme technique gave identical results. The assay is rapid and accurate and seems especially suited for routine laboratories that process large numbers of samples.

We thank Olfert Landt (TIB MOL-BIOL, Tempelhofer Weg 11-12, 10829 Berlin, Germany) for designing the hybridization probes.

References


Michael Heesen1*
Dagmar Kunz2
Rolf Rossaint1
Brunhilde Blömeke3

Departments of 1Anesthesia, 2Clinical Chemistry and Pathobiocchemistry, and 3Dermatology University Hospital RWTH Aachen Pauwelsstrasse 30 D-52074 Aachen, Germany

Assessment of Vitamin B1 Status

To the Editor:

The excellent report by Talwar et al. (1) promotes the measurement of thiamin diphosphate (TDP) for the assessment of vitamin B1 status. My experience with >30,000 people supports this, but only for the investigation of untreated patients.

The TDP assay is more precise than the transketolase activation (ETK) test, and the method described is an important advance for which I thank the authors. In comparing the two methods, Talwar et al. (1) found TDP slightly advantageous in the identification of B1 deficiency. They and most workers using the ETK test agree that the cutoff point is 25%. I have found it useful to report results in the range 15–25% as borderline. When this is done, there is little to choose between TDP and ETK in terms of clinical usefulness.

Much as I would like to use the more precise TDP assay, there is a problem that surfaces when one wishes to use the laboratory to follow repletion with thiamin. It is very rare for the TDP concentration to remain low after a few days of supplemental B1, and in many cases, TDP normalizes after a single 100-mg dose. This is not the case for the ETK test. In some cases, several weeks of daily supplementation are needed to normalize the results.

I am in the fortunate position of receiving considerable feedback from the clinicians using our laboratory service and have carefully studied their findings in relation to the laboratory results. In my experience, it is the ETK test that parallels the clinical improvement in supplemented patients.

I support the use of the more precise TDP (HPLC method) in untreated people, but I caution against its use in following supplementation. For this, the ETK test, even with its many limitations, remains the method of choice. A more precise method for measuring this enzyme would be enormously helpful.

I hope this letter will open some further discussion on the use of func-
John McLaren Howard
Biolab Medical Unit
9 Weymouth St.
London W1 N 3FF, United Kingdom

Drs. Talwar and St. J'O'Reilly respond:

To the Editor:

Dr. McLaren Howard makes an interesting observation relating to the biochemical assessment of thiamin status in people supplemented with the vitamin. In his experience, the indirect measurement of thiamin status using the transketolase (ETK) activation assay is clinically more useful than direct measurement of thiamin diphosphate (TDP) concentrations in red cells in people repleted with thiamin. Unfortunately, we are unable to comment on his observation because no relevant data are presented.

Discrepancies between the ETK activation test and clinical signs of thiamin deficiency have been reported previously, with several studies reporting no relationship between ETK activation results and thiamin intake (1–5). These discrepant findings have raised questions about the usefulness of the ETK activation test as a sole indicator of thiamin status.

Because a valid ETK activation response depends on a kinetically normal enzyme (1, 6), certain disease states may affect enzyme cofactor binding and hence the TDP activation effect (6). Because of the potential difficulty in interpretation of ETK activation effect in some disease states and the limitations of enzyme activation tests in general, several authors have suggested the use of more direct measures of thiamin status, such as TDP in whole blood or plasma (4, 6, 7).

We would agree with Dr. McLaren Howard that further discussion is required on the merits or otherwise of direct and indirect measures of thiamin status in patients repleted with thiamin. Meanwhile, our experience with the HPLC assay suggests that measurement of TDP in red cells is the single most useful biochemical measurement for assessing thiamin status in patients who are at risk of thiamin deficiency.

References


Dinesh Talwar
Department of Clinical Biochemistry
Macewen Building
Royal Infirmary
Glasgow G4 0SF, United Kingdom

*Author for correspondence.

Transient Hyperphosphatasemia of Infancy and Childhood: Study of 194 Cases

To the Editor:

Transient hyperphosphatasemia of infancy and childhood (TH) is a temporary and isolated increase of serum alkaline phosphatase (ALP; EC 3.1.3.1) activity occurring without obvious cause during the first years of life. Despite several reports about this phenomenon, the origin of TH remains obscure.

Over a period of 8 years (1992–1999), we detected 194 cases of TH in 106 boys and 88 girls. The hyperphosphatasemia was discovered fortuitously during routine investigations in outpatient and inpatient departments of a children's hospital with a capacity of 500 beds. A wide variety of clinical disorders was associated with this condition (gastrointestinal diseases, 24%; respiratory infections, 21%; congenital anomalies and inborn errors of metabolism, 15%; anemia, 10%; malignancies, 7%; neurological disorders, 5%; others, 18%).

We measured total ALP activity using the IFCC-recommended method at 37 °C with Elan (Eppendorf) and Cobas Integra (Roche) analyzers. Our reference interval for children was 0.85–6.80 μkat/L (51–408 U/L). Adult reference intervals are 0.54–1.7 μkat/L (32–104 U/L) for women and 0.76–2.0 μkat/L (45–122 U/L) for men. In each TH case, we saw the characteristic two-band ALP isoenzyme pattern on Cellogel zonal electrophoresis as described by Stein et al. (1) and Behulová et al. (2).

Although markedly increased ALP activities may occur in TH, frequently only slightly or moderately increased activities are observed, depending on the timing of the blood sample in relation to the natural course of TH. Markedly increased activities, therefore, are not necessary to reach a diagnosis of TH. The peak ALP activity in our series was 2- to 20-fold higher than the pediatric upper reference limit, with the median being a 4-fold increase.

In this series, 49% of cases were detected in the second year of life, and 96% of affected children were younger than 5 years (Fig. 1). We speculate that immaturity of the mechanisms responsible for ALP clearance allows increases of plasma ALP, triggered by an exogenous insult.

We observed a marked seasonal clustering of cases from September to November (43%); the lowest incidence was from January to March.