trials in the area of homocysteine lowering and vascular disease and summarizing strategies that could be taken to better understand how homocysteine may be a major player in the complex series of metabolic pathways that could lead to vascular damage in at-risk populations.

Each chapter in this book is itself a small summary of a focused area within the study of homocysteine. The book is therefore a great reference for an up-to-date review of any one of the many pathways involved in homocysteine metabolism. However, because each chapter is in itself a stand-alone review, few cross-references are made, and someone reading the book from cover to cover may find some duplication in the description of homocysteine metabolism. The editor should be applauded for bringing together some of the leaders in the field of homocysteine research and thus compiling a comprehensive review that should be on the shelf of any scientist working in the area of homocysteine.

Eric B. Rimm

Harvard School of Public Health

Boston, MA 02115

Fax 617-432-2435

E-mail eric.rimm@channing.harvard.edu

Correction

Correction

In the Table of Contents of the May 2001 issue, the Letter to the Editor by Z.M. Habbal and R. Chidiac-Tannoury entitled “Lactic Acid Dimer: An Artifact in the Gas Chromatographic Analysis of Urine with Massive Lactic Acid Aciduria” contained an error in the spelling of the name Chidiac-Tannoury. The printer regrets the error.