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Diagnostic tables are used in the identification of biological specimens. A method is presented which
generates subsets of the available tests which meet the requirements of a diagnostic table. The
method always finds a set with the fewest possible tests. In each of four trial applications an
alternative sequential method, due to H. G. Gyllenberg, also found a set with the fewest possible
tests.
(Received August 1971)

A biological specimen is identified by comparing its properties
with those appropriate to the various groups of organisms to
which it may belong. The groups of organisms are referred to
as taxa (singular, taxori) and it is convenient to regard the
properties as the results of tests applied to the specimen. The
identification process comprises two elements, test selection
and inference (Gorry, 1968). Test selection is the decision as
to which of the available tests should be applied to a particular
specimen; inference is the analysis of the results of these tests
to indicate the correct taxon. Many aids to identification have
been produced (Morse, 1971), mainly printed schemes but
including mechanical devices and computer programs.
A widely used scheme is the key (Fig. l(b)) which combines test

selection and inference elements in a decision tree. In the
example, test a must be carried out first and depending on its
result, positive or negative, another test is indicated and so on
until the name of a taxon is reached. Using a key in this
way the tests are carried out consecutively and the sequence of
tests used will be different for objects of different taxa.

In botany and zoology the rigid test selection of a key is a
disadvantage because it may be impossible to apply some tests
to a given specimen because of damage or the state of develop-
ment of the specimen. To allow for this, polyclaves of various
sorts have been devised (Morse, 1971). Polyclaves are simply
summaries in a suitable form of all the available data on the
behaviour of the relevant taxa (Fig. l(a)). Test selection is left
completely to the user and inference is usually by sequential
elimination. In the example an experienced user might note
that a particular specimen shows an unusual positive result in
test e and reference to column e would immediately give taxon
3 as the identification. An inexperienced user might proceed: a
is negative eliminating 1 and 6, b negative eliminates 5, d
negative eliminates 2, e positive eliminates 4 leaving only 3, but
could still reach an identification without using test c which is
vital in the key.

In microbiology there is often a delay of several days, or even
weeks, before the result of a test is available and it is preferable
to apply a number of tests, wait till all their results are known
and then attempt inference. The key approach can still be used
for inference but the decision tree does not now carry out test
selection as all the tests in the key must be performed before
entering the tree. An alternative method of inference is used in
the diagnostic table approach. The diagnostic table (Fig. l(c))
gives the expected results for the taxa in a subset of the available
tests; identification is carried out by obtaining the results of all
these tests and matching them against the results in the table.
The advantage of this simultaneous inference over the sequen-
tial inference of a key is that an aberrant specimen which does
not agree exactly with any of the taxa descriptions can some-
times be identified by its best match (Sneath, 1969). (Morse,
1971, takes 'diagnostic table' to mean a particular form of
polyclave; the present meaning—an identification scheme using

a fixed set of tests and simultaneous inference—seems more
usual, at least in microbiology.)

Keys and diagnostic tables are constructed from a matrix
giving the expected results of all the relevant taxa in all the
available tests. An efficient diagnostic table is then constructed
by finding a subset of the tests which contains the fewest
possible tests, or is the cheapest if different 'costs' can be
assigned to the tests, and still allows the required identification
performance. The construction of a key involves the formation
of a tree of tests to the same criteria except in this case the cost
associated with the tree will be an average. The identification
performance given by most keys and tables is to identify
correctly a specimen of any of the relevant taxa provided that
the specimen gives the typical pattern of results for that taxon.
A more stringent requirement would be to identify correctly
aberrant specimens differing in one test from the expected
results.
The example (Fig. 1) shows two keys and a diagnostic table

constructed from the same hypothetical matrix. If the tests can
be carried out consecutively the first key, derived directly from
the matrix, gives identification with the fewest tests, 2f on
average. If all the necessary tests must be performed as a set the
first key requires five tests but the diagnostic table only four.
The key derived from the diagnostic table also requires only
four tests though it is not as efficient, as a key, as the first;
average length 2 | . The example involves fewer taxa and tests
than most problems of practical interest but the conclusions
might be expected to hold in general.
The construction of efficient keys has been considered from a

theoretical point of view (Maccacaro, 1958; Moller, 1962;
Gower and Barnett, 1971) and recently several computer
programs have been described which construct keys automatic-
ally (Pankhurst, 1970a; Hall, 1970; Morse, 1971). Applications
in various fields have been reported (Hill and Silvestri, 1962;
Pankhurst, 1970b; Barnett, 1971). For microbiological
applications Gower and Barnett (1971) modified their key
constructing procedure so that both the efficiency of the key
and the overall number of tests required were taken into
account; the relative weighting of these separate factors could
be varied.

Rather less work has been published on the diagnostic table
problem. An efficient set of tests could obviously be found by
examining all possible combinations of t tests, increasing t till a
set is found which meets the performance requirements. The
amount of computation required by this method becomes
prohibitive for problems of practical interest (Piguet and
Roberge, 1970). An alternative approach is to choose tests
sequentially, each choice being made so as to optimise some
function of the resulting partial table. Gyllenberg (1963)
suggested as such a function the number of pairs of taxa
separated by the table; two taxa were considered to be separ-
ated if they gave different results in at least one of the tests in
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Fig. 1. Two keys and a diagnostic table constructed from the same
hypothetical data
(a) basic data (also Polyclave)
(6) key
(c) diagnostic table
(d) key derived from diagnostic table

the table. Rypka, Clapper, Bowen, and Babb (1967) applied
this method to several sets of bacteriological data. Niemela,
Hopkins, and Quadling (1968) used a more complex function
derived from information theory. As these authors point out,
there is no guarantee that the set of tests found by a sequential
method will contain the fewest possible tests.
A method is presented below which generates all possible sets

of tests which meet the requirements of a diagnostic table.
From these alternatives the most convenient can be chosen, by
direct costing if cost weights are available or by subjective
assessment. The results of applying the method to four sets of
data are compared with the results given by a sequential
method.

Method for generating diagnostic sets of tests

The basic data of the method is a matrix giving the expected
result for each of the taxa in each of the tests. Initially only
binary-valued tests are considered, the extension to multi-
valued tests is discussed below. Entries in the matrix may be
missing if the expected result is not known or if specimens of
the taxon in question vary in their response to the test.
All the (n(n — l)/2) possible pairs of taxa are considered and

for each pair the tests which separate that pair are found. A test
separates a taxon pair if the expected result of one taxon
differs from that of the other; if either result is missing the test
does not separate the pair. These separating tests are represented
for each pair by a logical sum. For example, if tests a, b and c
separate a given pair the representation will be A + £ + C.
The logical product of these expressions is then obtained in the
form of a sum of products, giving the required sets of tests.
For example, if tests a and b separate one pair of taxa and tests
a and c a second pair, then (A + B)(A + C) = A A + AC +
AB + BC = A + BC and either test a alone or tests b and c
together will separate both pairs of taxa. (A similar method has
recently been proposed for the efficient programming of
decision tables; Darwood, 1971.)

The sets of tests formed in this way meet only the most basic
requirement of a diagnostic table; the only guarantee is that
each taxon will differ from all others in at least one of the tests
in the set. The use of more stringent requirements is considered
below.

Programming the method

The method for generating alternative sets of tests involves the
logical multiplication of expressions representing the separating
tests for each pair of taxa. This is carried out by successively
multiplying each separating tests expression by the current
test sets expression formed by previous multiplications (Fig. 2).
It is easy to show that the number of terms in the test sets
expression may become very large. Consider hypothetical data
which gives separating tests expressions (A + B), (C + D),
(E + F) etc. Then the product of m such expressions will have
2m terms each representing a set of m tests. The maximum
number of such expressions which might occur is half the
number of tests, say m = 25 giving 33 x 106 terms.

For any particular data there may in fact be a large number of
alternative test sets which would serve as diagnostic tables.
This number may be so large that the computation becomes
impossible. Although the final test sets expression is fixed by
the data, the algorithm adopted should keep as small as
possible the number of terms in the intermediate current test
sets. This is likely to be achieved if the separating tests expres-
sions are multiplied in reverse order of the number of tests they
represent. The example (Fig. 2) shows this; forming the product
in the 'natural' order generates five current sets reducing to the
single final set. In general terms, multiplying first the separating
tests expressions with few tests is likely to result in a relatively
small number of current sets each containing a relatively large
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number of tests. These sets are likely to pass unchanged through
further multiplications. The example shows an extreme case in
which the tests a, b, d and e, necessary because each alone
separates one of the taxon pairs, happen to be sufficient to
separate all the other pairs. Piguet and Roberge (1970) found
a similar result for a matrix of 83 taxa and 40 tests.
Each step in forming the logical product of the separating tests

expressions comprises the multiplication of the separating tests
expression—a sum of single elements—by the current test sets
expression—a sum of products. This is carried out by enlarging
each of the current test sets by including in the set each of the
separating tests in turn. Any of the resulting sets which are
absorbed by other sets are then removed. A term will absorb
any product of itself and another term, e.g. AB + ABC +
ABDE = AB.
For this particular form of logical multiplication two results

can be derived which suggest an efficient algorithm. In the
proofs of the results A, B and C are elements representing
single tests andX and Yare products of any elements excluding
A, B and C.

Result 1:
Any test set term which contains one of the separating tests will
pass unchanged through the multiplication.

Proof:

{A + B + C+ ...)(AX+ . . . ) =

(AX + ABX + ACX +...)+...= AX +....

Result 2 :

Only test set terms which pass unchanged and contain just

one of the separating tests can absorb other sets. Only sets
which have not passed unchanged can be absorbed.

Proof:
Since the multiplication can enlarge a test set by only one test,
absorption can only occur in a situation such as
(A + . . .)(AX+XY+ . . .) = (AX + AXY) + . . . = AX + . . .
Then set AX has passed unchanged, setXY cannot have passed
unchanged or term AXY would not have arisen, and X cannot
contain any of the separating tests or XY would have passed
unchanged.
These results suggest the following algorithm for carrying out

the logical multiplication:
1. Sort the current test sets into 'pass, cannot absorb', 'pass,

can absorb' and 'must be enlarged', according to whether
they contain more than one, one, or none of the separating
tests.

2. Add to each of the 'must be enlarged' sets, each of the
separating tests in turn. As each enlarged set is formed check
it against the 'pass, can absorb' sets to see if it is absorbed.
If not, add it to the current test sets in the 'cannot absorb'
category.

Results
A FORTRAN program was written to generate diagnostic sets
of tests from an input matrix by the method described above.
A second program generated a single diagnostic set for each
input matrix by a sequential choice of tests, maximising at each
choice the total number of taxon pairs separated (Gyllenberg,
1963; Rypka et al., 1967). Both programs were operated on the
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Interact multi-access computer service of Baric Ltd.
The two programs were applied to four sets of published data

(Rypka et al., 1967; Niemela et al., 1968). The results obtained
are summarised in Table 1 in which the method described here
is referred to as the non-sequential method. From the first data
both methods produced the same single diagnostic test set.
For the second data the non-sequential method generated two
alternative sets of 25 tests each, the sequential method found
one of these sets. The computation of the non-sequential
method could not be completed for the third set of data; at the
17th taxon pair out of 28 more than 750 test sets were generated
exceeding the maximum allowed by the program. The program
listed the current test sets at this stage which included one set of
three tests and 81 of four tests. The 3-test set and five of the
4-test sets were input to the second program which completed
the sets by sequential choice of tests. Four of the 4-test sets
were found to be already complete and five alternative addi-
tional tests were found to complete the 3-test set. Four tests
must then be the fewest possible to separate this data and more
alternative 4-test sets could probably have been found from
among the 81 current when the program terminated. The
sequential method found one of the 4-test sets. From the last
data the non-sequential method generated 158 test sets,
distributed as follows: 2 x 8-test, 17 x 9-test, 64 x 10-test,
61 x 11-test, 13 x 12-test and 1 x 13-test. The sequential
method found one of the 8-test sets. Niemela et al. (1968) using
a different sequential method found two 8-test, three 9-test and
two 10-test sets for the same data.

Considering the results as a whole, the sequential method
produced in every case a diagnostic set with the fewest possible
tests for the particular data. Except for the first data the non-
sequential method produced several alternative sets for costing
or subjective assessment. The large number of sets generated
from the third data shows that the complete non-sequential
analysis of even relatively small matrices may be impossible.
The important factor here seems to be the large number of tests
in the matrix relative to the number of taxa.
In the sequential method, if two or more tests were equally

good choices at any stage the test taken by the program was
that indicated by an initial ranking of the tests. If this occurred
the equally good tests were listed by the program. The initial
ranking of the tests could be altered interactively between
successive analyses of the same matrix to follow alternative
choices of tests. Trials of this procedure on some of the data
showed that different test sets could be formed giving alter-
native diagnostic sets. The second 25-test set for the second
data could not be found in this way however, and for the fourth
data only two alternative sets were formed compared with
158 generated by the non-sequential method.

Extensions and alternative methods
Both the sequential and non-sequential methods described are
based on the separation of taxon pairs by tests. In the descrip-
tion only binary-valued tests were considered and a test was
taken as separating a pair of taxa if the expected result of one

taxon differed from the expected result of the other. A diagnostic
set of tests was considered to be complete when every pair of
taxa was separated by at least one test. Possible extensions
applicable to both methods are firstly allowing multi-valued
tests and secondly requiring more than one test to separate each
pair of taxa.
Consider a hypothetical multi-valued test with results red,

green, and blue. If members of a given taxon are consistently of
one colour, the expected result can be represented by a single
value. If this is true for all taxa, then a red taxon, for example,
will be separated by the test from green and blue taxa and the
logic used to determine whether or not a binary-valued test
separates a given taxon pair can be used for such multi-valued
tests. But suppose a taxon some of whose members are red,
some green but none blue. The test would separate such a
taxon from a blue taxon but from no other. When taxa such as
this occur a more complicated logic is required to recognise
separations by multi-valued tests.
If a diagnostic table is constructed so that some pairs of taxa

differ in only one test then a specimen aberrant in one of these
tests will be incorrectly identified. Requiring at least two tests
between each pair of taxa will guarantee that a specimen aber-
rant in just one test will be recognised as atypical. Requiring
three tests will enable identification of such a specimen by
matching as suggested by Sneath (1969). Lapage, Bascomb,
Willcox, and Curtis (1970) selected tests as though for a diag-
nostic table but carried out identification by a probability cal-
culation; they found that a reasonable identification rate was
achieved when at least two tests were required to separate each
taxon pair. The non-sequential method described here could
allow for two tests between each taxon pair by expressing the
separating tests as a sum of two-element products. For example,
if tests a, b and c separated a pair the expression would be
AB + AC + BC. The results obtained above which led to an
efficient algorithm for the logical multiplication would have to
be modified for the multiplication of such expressions. The
sequential method is easily adapted to allow for two or any
number of tests separating each pair. In practice (Lapage et al.,
1970) it has been found better not to maximise at each choice
the total number of pairs separated by two tests, but to choose
the test which separates the most of those pairs not already
separated by two tests.
The sequential method used here selected tests one by one,

maximising at each choice the total number of taxon pairs
separated by the resulting partial diagnostic table. The choice
of one test at a time is only the simplest of many possible
strategies for searching for tests to optimise some function of
the partial table (Gorry, 1968). Other functions have also been
used (Niemela et al., 1968) and some of the functions developed
for producing keys (Pankhurst, 1970a) might be applicable.
The straightforward use of taxon pair separations would seem
to have two advantages over other functions. Firstly the pre-
sence of unknown and variable test results does not affect the
rationale of the method as it does for some of the other methods.
Secondly the identification performance of the diagnostic tables

Table 1 Summary of results obtained by non-sequential (N) and sequential (S) methods

DATA

Source
RESULTS OF METHOD N METHOD S

No. of No. of Max. no. Final no. No. of tests No. of tests
taxa tests of sets of sets in min. set in set

Rypka et al. (1967), Table 7
Rypka et al. (1967), Table 10
Rypka et al. (1967), Table 13
Niemela et al. (1968), Table 1

10
36
8
29

8
32
34
22

1
2

>750
158

1
2
*

158

6
25
*
8

6
25
4
8

•Computation could not be completed
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Correspondence

To the Editor
The Computer Journal

Sir,
I must take issue with Mr. Finn {The Computer Journal, Vol. 15, No.
1, p. 12, 1972) over his suggested extension to the DO loop in
FORTRAN IV. One of the few redeeming features of the language
is that it can deal with DO loop controlled variables in a reasonably
efficient way, while the example he quotes of a complicated ALGOL
60 for statement shows how unpleasantly messy that construction
can become. It also shows one of its major weaknesses; to give a
simple example, assuming i is not modified inside the controlled
statement, how many times will the controlled statement in the
following be executed:

for i := 1 step 1 until 10, / + 1 while i < 20 do . . . ?
Does / + 1 mean 'add one to the last value of / for which the con-
trolled statement is executed' (in which case the answer is 20) or
'add one to the last value of / tested' (in which case the answer is 19,
the case / = 11 being omitted) ?
It is significant that ALGOL 68 is much more restrictive than

ALGOL 60 over the matter of for loops. If FORTRAN is to be
improved (other than by the most effective means, i.e. total annihil-

ation), an ALGOL 68 kind of extension would be preferable than
one based on ALGOL 60, for example

DO i = m TO n BY k WHILE /
where i stands for any INTEGER variable m, n and k for any
arithmetic expressions delivering an INTEGER value, and / for any
LOGICAL (Boolean) expression. If / is the logical constant .TRUE.
the 'WHILE /' may be omitted; if A: is the integer constant 1 'BY k'
may be omitted; and (in order to preserve the 'upward compatibility'
so beloved of Fortranites and which has frustrated so many improve-
ments in the past) 'TO' and 'BY' may be replaced by commas.
I agree with Mr. Finn that k should be allowed to deliver a negative

increment; but allowing REAL controlled variables, which his
suggestion of REAL increments also presumably implies, would do
no more than encourage bad programming practice among a group
of programmers already too exposed to bad influences.

Yours faithfully,
B. L. MEEK

Computer Unit
Queen Elizabeth College
Campden Hill Road
London W8
20 March 1972
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