Constructing the convex hull of a set of points in the

plane

P. J. Green* and B. W. Silvermant

A highly eflicient algorithm for computing the vertices of the convex hull of a set of points in the
plane is described and compared with existing methods. Empirical timings of a FORTRAN imple-
mentation of the algorithm show it to be faster than previous methods for most configurations of
points. Careful consideration is given throughout to ensure that degenerate configurations, con-
taining collinear or near-collinear points, are handled correctly.

(Received June 1978)

1. Introduction

The construction of the convex hull of a finite set of points
in the plane seems initially to be fairly trivial. However,
it is by no means obvious how to devise an algorithm which
will be efficient for this task, one of many more easily done by
human eye and brain than by a computer program. The method
we shall describe is an improvement of the algorithm described
by Eddy (1977) and was developed independently. Our
implementation was found to be appreciably faster than that
of Eddy, particularly for small or moderate samples. In addition
our method makes some attempt to deal with ‘degeneracies’
caused by rounding errors. In Section 5 we review some pre-
vious methods, all of which were found to be considerably
slower than ours for almost all configurations of points.

A related requirement, of particular interest in statistics, is to
‘peel’ the set of points by finding the points on the convex hull,
removing them, finding the points on the convex hull of the
remaining set, removing them, and so on until there are no
more points left. Points which are removed at an early stage
are near the edge of the configuration and are possible outliers;
the last point (or the mean of the last points) to be removed
is analogous to the median in the one-dimensional case. Indeed
it is possible to use the stage at which a point is removed as the
analogue of the rank of a univariate observation; these are the
‘c-ranks’ of Barnett (1976). Our convex hull algorithm can
easily be adapted to peel a data set in this way. Two planar
configurations, with the successive peels marked, are illustrated
in Figs. 1 and 2. Note that our convention is that successive
collinear points at the periphery of a configuration are all
counted as hull vertices.

2, The algorithm

Suppose we are given n points in the plane. These points will be
denoted by their index numbers 1, 2, . . ., n. The representation
we shall require of the hull is a list of the index numbers of the
vertices of the hull, in anticlockwise order round the hull, but
starting from no particular point. Given this list, it is a trivial
matter to plot the hull and almost as simple, for example, to
discover whether or not a test point is inside the hull.

We shall first define some geometrical terms; these are illus-
trated in Fig. 3. Given an ordered pair of points ij, a further
point k, is said to be outside ij if the triangle ijk, is oriented
negatively (clockwise). If ijk, is anticlockwise then k, will be
said to be inside ij; if i, j and k, are collinear then k; is on ij,
and if in addition ik;j occur in that order on the line, k; is
between ij.

The orientation of the triangle i jk is most easily determined by
the sign of its area ; note that, for fixed ij, the area is proportional
to the directed length of the perpendicular from k to the line ij.

Any point k of the configuration yielding the most negative
value of the area ijk, and therefore whose perpendicular
distance outside ij is greatest, is called furthest outside ij

A test list [ij] is a pair ij, together with the set of points, if anyg
between or outside ij, a point furthest outside ij being marked3
This test list is an edge ij of the hull if there are no pomtﬁ
between or outside ij, that is, if it consists only of the pair i ja
The algorithm proceeds by scanning the test lists; each tes€
list is either deleted and replaced by other test lists, or is con=.
firmed as an edge, as in the following procedure.

Step 1
Find any two points i and j certain to be on the hull, for exampl
those with largest and smallest x-coordinates. Form the test:

lists [ij] and [ji].

Step 2
Consider any test list [ij]. If there are no points outside tjg
confirm ij as an edge. Otherwise suppose k is furthest outside ij3

then replace the test list [ij] by forming new test lists [tk:E
and [kj].

sruSpeoe/sdnytw

/Lu00'dno

Step 3

If there are any remaining test lists not confirmed as edges ofs
deleted, repeat step 2. Otherwise, all the edges are now foundg
and it is simple to list them in cyclic order.

The procedure is illustrated in Fig. 4; test lists subsequentl;g
deleted are indicated as pairs linked by broken lines, whilex
those confirmed as edges are joined by solid lines.

Zreree/al!

880%

3. Numerical considerations
The only arithmetic operations required by the algorithm are3
the computing and comparing of signed areas of triangles>
specified by the coordinates of their vertices. These can lea
to problems of numerical accuracy, particularly in the preo
sence of degeneracy or near-degeneracy; a typical degeneracy“
is the occurrence of three or more collinear points. It is possible,
for example, in the case of four nearly collinear points, for the
inconsistency illustrated in Fig. 5 to appear. Suppose that,
on a previous application of Step 2, k was found to be furthest
outside ij, and that / was the only other outside point. When
[ik] is considered as a test list, it is possible that / may be found
to be outside it, leading to confirmed edges i/, /k and kj as
shown in Fig. 5. This is of course geometrically impossible,
but can occur numerically because of rounding errors.

To avoid difficulties of this kind, a tolerance parameter &
is introduced. Areas numerically less than ¢ are considered to
be zero, and so points k such that the area of the triangle ijk
has magnitude less than ¢ are taken to be on ij.

uo 1senb

*University of Bath: now at Department of Mathematics, University of Durham, South Road, Durham, DH1 3LE
tUniversity of Oxford: now at School of Mathematics, University of Bath, Claverton Down, Bath, BA2 7AY

The Computer Journal Volume 22 Number

= --o-q_-,“ v-.._“
' %_\ ~——— —
/',’ g e~ b — \\:':.\\ .
i - -~ o, '_.'.. ",- .\
\\‘Q‘\%% . {,-' “\\
\{‘\.\ ,.-"’ A, \\
....................... \ Y d // ,
oo \ '... ./ ’/ \._
N 1 / e NN
v i / / NN
\ \ i rs / AN\ N .,
RN S NN
\ “y i ’ / /’ \ \\ N, ™,
\ | g g / \ \, \ N,
\ a N < < \\ \\ "
\\ P b \ > > \ \“-
\ 1! \ N\ VDS
] \ \ / P4 s
\ \ \ / / VA
>} "NV S
.: /7 / \ \, v Py
!\ 4 g l/// & * NN / / d
! s i N N e
| Y d // s . N\ Vi 4 g
i .-_..‘.. g :_-—--;’,'/. P . . / / .',./ “ \'V" "_,’ %
o\ S ’, i N g
A\ - y 7 VA N S @
Nt e Ay % -
\ TUSeSESaes S S
\ _____ ":_’. . v 3
........... >
Fig. 1 A set of 100 random points, showing the convex hull peels Fig. 2 An oblique lattice of 100 points, showing the convex llaj!l
peels
Thus all the ‘doubtful’ points are included in the new test
list. When the test list is complete, it is flagged as degenerate 44(1
if it consists only of doubtful points—in this case they are
treated as collinear, and their order along the line determined, if T~ ,'53
necessary, by a standard sorting method. Increasing the value [*L
of ¢ makes the algorithm less sensitive—that is, more likely S~ ,,_& .
to find collinearities not actually present in the data—but less Tl -
likely to produce inconsistencies of the kind described. The T
effect of varying ¢ is illustrated in Table 1, where the two data
sets considered are those of Figs. 1 and 2. The random data o
consists of points drawn pseudo-randomly from a uniform 2

distribution on the unit square, while the lattice data is
constructed to lie on a lattice as shown. The table shows which
values of ¢ give the ‘correct’ hull in each case, on two computers
of different wordlength. Eddy’s method does not give the
correct hull for the lattice data.

In cases where degeneracy is likely to occur, we recommend,
as a final check, testing that the edges of the hull are directed
in a constant anticlockwise direction around the configuration,
so that the hull is plausible. For data arising from random
phenomena, degeneracy is unlikely to occur and setting &
to zero should provide satisfactory results.

4. Implementation and data structures

The authors have prepared a FORTRAN implementation of
the algorithm described above. In designing this, it transpired
that the execution time is highly dependent on the details of
the implementation, particularly for configurations of realistic
size. This point is further illustrated by the comparisons
described in Section 6. We shall therefore describe our imple-
mentation in some detail. We found that the cost in execution
time and storage space of enabling subsequent calls to the
routine to compute successive peels of the data, as described
in Section 1, was negligible, and so this feature has been
included.

The storage requirement for » points, in addition to the 2n
REAL locations for the point coordinates, is of two INTEGER
arrays of length n and an INTEGER stack of dimensions
(3, m). The value of m required is difficult to predict in advance,
but it is sufficient if it equals the number of peels required plus

The Computer Journal Volume 22 Number 3

Fig. 3 TIllustrating the geometrical definitions: K1, K2, K3, K4
respectively outside, inside, on and between ij

20z Indy gz uo 3senb Aq 0088 V/Zﬁ/Q/ZZ/BIO!UE/IU[LUOO/LUOO'an'O!LUQF eoe/,

—
+

-+~
i
Fig. 5 Inconsistency arising from a near degeneracy

Table 1
Data set Machine
Random IBM 370 False collinearities found if
(Fig. 1) e=>10"4

CDC 7600 False collinearities found if

e>10"3

Lattice IBM 370 Method fails if ¢ < 1078
(Fig. 2) CDC 7600 Method fails if ¢ < 1071
Notes

Only powers of 10 were considered as values for &.
All computations were performed in single precision
FORTRAN.

the maximum number of points found to lie on any one of these
peels; thus m will almost always be of smaller order than n.

At an intermediate stage in the computation there is a need
to store two types of information; records of peels already
constructed and records of test lists for the current peel. Both
types of record consist of a fixed-length label, a triple of integers
stored in the stack M, and a variable. length list addressed
by the label. In the case of a peel record, the list is held in one
of the integer arrays LIST, and consists of the indices of the
points on the relevant peel, in anticlockwise order. The label
for such a record is (address in LIST, length in LIST, degener-
acy flag). The segments of LIST thus referenced occupy
consecutive elements at the beginning of LIST, the remainder
of the array containing the indices of points not yet encountered,
that is those interior to the latest peel found.

The labels occupy consecutive rows at the beginning of the
stack M, and the remaining space in the stack is used to label
test lists for the current peel. For test list [ij] the label is of
the form (i, j, address) where ‘address’ is a pointer to a data
item in the second integer array NWK. For a test list confirmed
as an edge, this address is set to zero. A data item in NWK
is of variable length, beginning at the element addressed by
the label. This element contains the length of the remainder
of the item, which consists of a list of the points found to be
outside the line ij, beginning with a furthest outside point.
If the test list is degenerate, in the sense described in Section 3,
and has length at least two, the length is flagged with a minus
sign. The program is organised as follows; it is entered once
for each peel required.

Step 1
If there are fewer than three points left, a trivial computation
is needed; then branch to step 6.

Step 2

Scan the coordinates of the points listed at the tail end of
LIST to find those with minimum and maximum x-coordinate.
If these extreme coordinates are the same, the points are all
collinear; sort the tail of LIST by y coordinate and branch
to step 6.

Step 3

Denoting the extreme points i and j, form the test lists [ij]
and [ji] by copying point indices from the tail of list LIST
into two lists at either end of NWK. Set the lengths and
‘furthest outside’ locations, and set up test lists record labels
in the stack. Note that all of NWK is occupied at this point for
the first peel; two length items and » — 2 point indices are
stored.

Step 4
For each remaining unconfirmed test list [ij] the list is either

(a) of length one: in this case it is trivial to form new test
lists [ik] and [kj] say: both are immediately confirmed as
edges

(b) degenerate, with length greater than one: sort the immedi-
ate points by an appropriate coordinate, and form new test
lists [i k], [k, k2], . . . , [kmJj] say, all immediately con-
firmed as edges, or

(c) non-degenerate with length greater than one: suppose the
point furthest outside is k. Form new test lists [ik] and
[kj] by splitting the record in NWK into those points
(i) outside ik (these overwrite the beginning of the item in
NWK) (ii) outside kj (these overwrite the end) and (iii)
outside neither (these are written back into the tail of LIST.)
Then complete the test list records by setting the length
and ‘furthest outside’ locations and writing new test list
labels in the stack. Note that in the worst possible case
(all points outside either ik or kj) the whole of the old
list in NWK will be overwritten; there is one fewer point
(k) to list, but one more length location.

Step 5

When all test lists remaining are confirmed as edges, scan the
stack to form an anticlockwise list in LIST of the peel vertex
indices.

Fig. 6 Illustrating Methods J1 and J2

304
& N
E) N
N
\\
.
~
E S
i s
~ .\\
1 - “\\“.\N PPtigN S —— e,
1 o Sel SO~ e
--. e e ——— e s
= .~‘\ \\- . iy
r T~ —paz TN, Sl
r e i T
103 S)

S0 o0 2000

® wumeen o8 porrm

Fig. 7 The relationship between execution time and number of points
in the configuration, for Methods GS (lower curves) and E
(upper curves). The distributions are those of Table 2:
Uniform (broken lines), Normal (solid lines) and Cauchy
(dotted lines)

The Computer Journal Volume 22 Number 3

202 udy £ uo 1s8nb Aq 00880%/292/€/22/31014e/|ufo0/W0d"dno"oIWePEDE//:SARY W) PAPEo|UMOQ

Table 2

Uniform Normal Cauchy

Number of points 100 1,000 100 1,000 100 1,000
Number of realisations 10 5 10 5 10 5
Number of repetitions 10 1 10 1 10 1
Average number of vertices 151 31-0 9-5 12-8 47 50
 GS 1-40 13-0 1-21 11-0 1-14 10-2
E 1-80 14-2 1-47 11-8 1-:27 11-6
e G 2:70 46-2 2:70 454 268 450
gﬁﬁﬁfﬁ;ﬂi‘;ﬁﬂgfc°nds N 3173 649-8 19-95 2666 1003 1068
J2 11-55 204-8 8-17 115-0 5-64 67-8
J3 4-84 862 442 72-8 4-10 67-2

L R 7-88 174-2 6-02 80-4 3-51 422 5

Notes 3

1. The three distributions used were the uniform distribution on a disc, the circular normal distribution, and the bivariate Cauch&

distribution.

2. Several realisations were taken from each model, and, in the case of 100-point configurations, several repetitions were made (ﬂ“

each call, in order to increase the pre01s1on of the timings.

yuw

3. All computations were performed in single precision FORTRAN, run under the optimising compiler on the CDC 7600 of thg‘

University of London Computer Centre.

Step 6

Enter the peel record label in M to address the appropriate
segment of LIST, and set the degeneracy flag if any degeneracy
was encountered during the computation of the peel. Exit.

5. Some other methods

In this section we discuss some other methods which have
been suggested for finding convex hulls. Our own method will
be referred to as method GS. Our algorithm and implementa-
tion are similar in spirit to the method considered by Eddy
(1977). Eddy’s algorithm, which we shall refer to as method E,
does not, however, make any attempt to deal with degeneracies.
His suggestion that higher precision arithmetic should be
used unfortunately does not always work ; it is quite possible
for a degeneracy which is found to be exact by single precision
arithmetic to be only a near degeneracy in double precision.
It is easy to deal with exact degeneracies properly while near
degeneracies can easily lead to contradictory results. In addi-
tion Eddy’s method is somewhat laborious for small numbers
of points; this is illustrated in Fig. 7.

An earlier method, referred to as method G, was described
by Graham (1972). Graham’s method works by expressing
each point in polar coordinates relative to some interior
point, sorting the points in order of increasing polar argument
and then successively confirming points as hull vertices or else
deleting them by considering the orientation of each triple
of consecutive remaining points. For details see Graham’s
paper. The number of operations required by Method G is
shown by Graham to be 0 (n log n).

Jarvis (1973) considered two methods which we shall refer
to as J1 and J2 respectively. The first works as follows. Find
the leftmost point; this is the first vertex v,. (Jarvis uses a
slightly slower procedure for this step.) The second vertex v,
is the point which maximises the angle zv,v,, as in Fig. 6.
Now suppose v,, v,, . . . , v; have already been found to be
consecutive vertices of the hull. By searching through all the
points, find the point x which maximises the angle v;_, v; x and
set v;,, to be x. If v;,, is v, then the hull has been found.

Jarvis’s second method, a refinement of his first, works
by eliminating points which are inside the hull of the vertices

The Computer Journal Volume 22 Number 3

oe//:S

L

already found. After v, has been found, sort all the points ig
order of increasing angle zv,x. By making use of this orderm@
the subsequent search for v;,, at each stage is restricted te
points x lying on the same side of v,v; as z. Points in the area
shaded in Fig. 6 are not considered. 0

A method similar to those considered by Jarvis operates
as follows: sort the points in order of increasing x coordmate
and hence find the leftmost point, which must be a vertexz
Look at the lines to all the other points, and find the one w1tg
the (algebraically) smallest slope. The corresponding pomI
is the next vertex. Now look at the lines from this point to alt
points on its right, making use of the ordering of the pomtéj;f
and choose the line with the smallest slope. Continue in thi§
way until the rightmost point is reached, and then return in &
similar fashion around the upper half of the hull. We ca@
this method J3.

Recursive methods depend on the fact that the hull of tl@
union of sets is the hull of the union of the hulls of those set§
The recursive method we shall consider (method R) adds points
one at a time. The first three points form their own hull. Ay
each remaining point is added the list of hull vertices is modifiett
by checking whether the new point lies outside any of the old
hull edges; if it does, all such edges are deleted and replaceg
by two new edges to the new point. If the new point lies insidg
all the existing hull edges, then no modification is necessary.
Another recursive method was described by Preparata and
Hong (1977) and modified in principle by Bentley and Shamos
(1978).

It should be emphasised that all these methods are susceptible
to numerical errors of the kind described in relation to method
GS, though some of them are fairly robust. However, it will be
shown below that method GS is easily the fastest method,
even when it has been modified to deal with numerical errors.

6. Performance of the algorithms

The various methods described above were compared on several
different sets of data. Each set of points is a pseudo-random
sample from a particular probability distribution in the plane.
Timings for the various methods are summarised in Table 2.
Note that the three distributions used yield greatly differing

numbers of vertices. It can be seen that Method GS was fastest
for all the configurations considered. It can also be seen from
Fig. 7 that the time required by Method GS seems to be
proportional to the number of points considered, thus giving
it an advantage over the other methods. The two best methods,
GS and E, are further compared in Fig. 7. It should be pointed
out that all the times refer to our own implementations of the
various algorithms, except for method E where the program

References

BARNETT, V. (1976).

BENTLEY, J. L., and SHAMOs, M. 1. (1977).
Technical Report.

Eppy, W. F. (1977).
411-412.

CONVEX described by Eddy (1977) was used.

Acknowledgements

We are grateful to W. F. Eddy for some helpful correspondence,
to A. Bowyer for his help with the computer runs, and to the
SSRC for provision of facilities to the spatial data project at
the University of Bath.

The ordering of multivariate data (with discussion), J. Roy. Statist. Soc. (A), Vol. 139, pp. 318-354.
Divide and conquer for linear expected time, Carnegie-Mellon University Computer Science

A new convex hull algorithm for planar sets, ACM Transactions on Mathematical Software, Vol. 3, pp. 398-403 and

GRAHAM, R. L. (1972). An efficient algorithm for determining the convex hull of a finite planar set, Information Processing Letters, Vol. 1,

pp. 132-133.

JARvis, R. A. (1973). On the identification of the convex hull of a finite planar set, Information Processing Letters, Vol. 2, pp. 18-21.

PREPARATA, F. P., and Hong, S. J. (1977).

Convex hulls of finite sets of points in two and three dimensions, CACM, Vol. 20, pp. 87-93.

Book reviews

Natural Language Communication with Computers, edited by L. Bolc,
1978; 292 pages. (Springer-Verlag, $13-50)

Mainly, the book contains descriptions of systems which are
capable of analysing, and transforming into internal code, classes of
natural language sentences. The systems vary according to their
purpose (application) and the extent of analysis performed (morpho-
logical/syntactical/semantical). Chapter 1 describes an ambitious
system providing for the building and subsequent querying of a
knowledge structure, including the possibility of temporal changes.
Natural language sentences are parsed by a so-called feature
grammar (a two-level extension of a Chomsky grammar), and
coded in predicate logic with extra operators which reflect the ‘state-
of-the-world’. Chapter 2 is an account of a less general but perhaps
more streamlined system designed for the use with, for example, a
pharmacological data base. Queries are translated (again, by a
feature grammar) into logical expressions (set language). The
system described in Chapter 3 is designed for the monitoring of
water pollution. Input statements or queries are analysed by an
upgraded ATN (Augmented Transition Network) and translated
into formulae. The book also includes a very detailed tutorial on
ATNs (Chapter 5). Chapter 6 outlines a project whose aim is to
analyse syntactically a subset of Polish, using the programming
language PROLOG which, together with its formal semantics (or
rather, a second approximation of that), is described in Chapter 4.
Two sophisticated PROLOG programs are also given in Chapter 4, a
complete compiler for a subset of ALGOL and an ‘intelligent’
interactive system.

In more than one respect, the book is less homogeneous than its
title suggests; the subject inevitably attracts people with varying
interests. On the whole I expect Chapters 1, 3, 5 and 6 to appeal to the
linguist more than to the computer scientist, and vice versa for 2 and
4. In places, Chapter 5 reads like ‘a linguist’s first course in formal
methods’, whereas Chapter 4 is almost an anti-tutorial and 1 is also
difficult to read. Although, in my opinion, the book does justice to
its declared aim of ‘providing information on the present state of the
research in the area’, there is only one contribution, namely Chapter
2, by Kraegeloh and Lockemann, which managed to convey to
me quite clearly what has been achieved and, importantly, what has
been left out. I regret that nowhere is the problem of what can or
cannot be achieved discussed in detail. While the tenor of the
contributions points to the recognition that ‘syntax’ and ‘semantics’
of natural languages tend to be inextricably interwoven, I also find
traces of the opinion that the two can be considered separately. This
touches the question of whether or not natural languages, or non-
trivial subsets thereof, are suitable as machine languages. I think
that a decision has to be made whether one is content with leaving

natural languages to communication amongst humans (in which case
the title of the book is a misnomer), or one strives for an improved
COBOL, to put it in extreme terms (in which case the title is an over-
estimation). The very notion ‘natural’ clashes with the term
‘computer’ which denotes, after all, an artificial device. It is a
discussion of such issues which I most dearly miss, not being an
expert in ‘artificial intelligence’; it is also unfortunate that the
responsibility of the editor did not extend to cover these problems
and, thereby, to put the set of contributions into a more specific
framework. For these reasons I can recommend the book in the
first place only to those specialising in the area and wishing to find
out what is happening ‘elsewhere’.

E. Best (Newcastle)

Portability of Numerical Software, Workshop, Oak Brook, Illinois,
1976. Edited by W. Cowell, Lecture Notes in Computer Science
Vol. 8, 1977. 539 pages. (Springer-Verlag, $18.30)

This volume should be compulsory reading for all members of ANSI
X3J3, the Committee responsible for FORTRAN 77. Nonetheless,
despite the considerable criticism of FORTRAN within this book,
the overall feeling emanating from the papers is one of gratitude for
its existence. Indeed the low point in the book comes with a pre-
dictable series of bleats in favour of ALGOL 68, but as L. M. Delves
states in his paper ‘ALGOL 68 compiler writers would give the
biggest boost to the language if they could let the user call FOR-
TRAN routines from his ALGOL 68 program’.

The book is a large volume and its very nature inevitably means
that there is a fair amount of repetition, but the editors have found
an extremely natural order for the papers and added some useful
cohesive comment. The book gets off to a fairly slow start with a
discussion of the restrictions created by the physical limitations of
computers, in particular the word length. It starts to come to life
with the papers from those responsible for successful general
purpose libraries, in particular those concerning PFORT and PORT
from members of Bell Telephone Laboratories. It contains an
excellent paper from B. T. Smith on ‘FORTRAN poisoning’ anda
valuable paper by J. M. Boyle surveying contemporary computerised
source management systems. The NAG project emerges with con-

" siderable credit, and the final paper in the book contains, under a

section headed ‘Overflow control’, a classic example of the kind of
problem obstructing the path to program portability.

There is just one sour note to sound. The papers themselves are
beautifully laid out. What a pity the examples of coding within them
do not separate code and comment as well as the typist has separated
examples and text.

D. L. FisHErR (Leicester)

The Computer Journal Volume 22 Number 3

202 udy £ uo 1s8nb Aq 00880%/292/€/22/31014e/|u00/W0d"dNo"oILSPEDE//:SARY WO.) PAPEOUMOQ

