Single Versus Double Buffering in Constrained

Merging

William E. Wright

Department of Computer Science, Southern Illinois University at Carbondale, Carbondale, Illinois, USA

An analysis is made of a number of aspects of the buffering scheme during the merge phase of an external sort. A
discussion is given of the problem of choosing between complete double buffering, complete single buffering, or
something in between, assuming a constraint on the amount of internal memory available for buffering. It is shown that
single buffering degrades processing time for a merge pass by an average of from 25% to 37%. It is shown that single
buffering is faster than double buffering if and only if there is space available for fewer than 16 buffers.

DOUBLE BUFFERING

During the merge phase of an external sort, it is necessary
to read in strings from several physical or logical units of
external storage, perform merging of the strings in
internal storage, and write out longer strings on other
external storage units. While the data is in main memory,
it is stored in buffers—input buffers for data which has
been read, and output buffers in which to store the
merged strings in preparation for writing. Using a merge
of order m > 2, it is necessary at any one time to have at
least m full input buffers in memory, one for each unit.
On the other hand, only one available output buffer is
necessary at any given time, because merged strings are
prepared for only one output unit at a time.

Assuming that it is possible to read from only one unit
at a time and write onto only one unit at a time, the
technique of double buffering can greatly reduce the
elapsed time during the merge by permitting a high
degree of overlapping between input, output and internal
processing. Double buffering of input permits one full
input buffer to be available for internal processing while
the other buffer is being filled (read). Double buffering of
output permits one output buffer to be available for
internal processing while the other full buffer is being
emptied (written).

Since only one output unit is being served at any given
time, only two output buffers are needed to provide
double buffering and the maximum possible overlapping
of output (this statement is qualified and clarified in the
section on single buffering). However, since there must
be m full input buffers in order for processing to continue,
the maximum possible overlapping of input can be
achieved only if there are at least 2m input buffers. In
fact, the 2m input buffers must be filled according to an
algorithm known as forecasting with floating buffers,!
which looks at the key of the last record in each full input
buffer to determine which input unit to read from next.
It has been shown that if fewer than 2m input buffers are
used, or if 2m buffers are used but the forecasting
algorithm is not followed, then maximum overlap cannot
be guaranteed.

If two buffers are used for output and 2m for input,
then maximum overlapping of input, output and internal
processing can be obtained (assuming that internal
processing is faster than input and output). In this case,

input and output are continuous, with the next output
buffer always being full when each write is completed,
and an input buffer always being empty when a read is
completed. At the beginning of a merge pass only reading
will occur while the first m input buffers are read and
then the first output buffer is filled. At the end of a pass
only writing will occur after the last input buffer has been
filled. Accordingly, the time required for a merge pass
will be the time to write (or read) the file once at full
speed, plus the time to read m input buffers, plus the time
to fill (internally) one output buffer. The nonoverlapped
time at the beginning (or end) of a pass is usually
insignificant in comparison with the rest of the time, so
that the time for a merge pass is generally assumed to be
the time to write (or read) the file at full speed.

LESS THAN DOUBLE BUFFERING

While double buffering is extremely valuable in most
circumstances, it is not necessarily appropriate for certain
‘constrained’ environments which are less than ideal.
One problem is that double buffering obviously requires
more main memory than single buffering, assuming the
same buffer size and merge order. Main memory may be
of little concern in a large computer system, but it can be
of critical importance in a mini- or microcomputer
environment.

It would, of course, be possible to achieve double
buffering in the same memory size as single buffering by
making the buffers only half as large. In some circum-
stances this would be quite reasonable, but in other
circumstances the disadvantages might outweigh the
advantages. One disadvantage is that the access time per
bit might increase, due to a constant seek and/or latency
time for each access which is independent of the block
(and buffer) size. Another problem is that there may be
a physical minimum block size that is a function of the
device, so that the buffer size cannot be smaller than this
minimum. An example would be a sector on a sectored
disk (e.g. 256 bytes) or a block on a magnetic bubble
memory system (e.g. 144 bytes).

It would also be possible to achieve double buffering in
the same memory size as single buffering, and with the
same buffer size, by reducing the merge order by a factor
of 2. For example, instead of doing 20-way merging with

CCC-0010-4620/82/0025-0227 $02.00

© Heyden & Son Ltd, 1982

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 227

202 udy Gz uo 1s8nb Aq LG108€//22/2/SZ/310Me/|ufoo/Wwod"dno-oiWepeo.//:SARY WOy PaPEo|umoQ

W. E. WRIGHT

single buffering, do 10-way merging with double buffer-
ing. The advantages and disadvantages are apparent:
double buffering permits overlapping of input, output
and internal processing so that the pass is faster, but the
lower merge order will quite likely result in more
passes.

It is not obvious as to what choice should be made. An
example should illustrate the problem. Suppose that at
the beginning of a merge pass there are 14 physical
strings residing on a single random access device such as
a disk or magnetic bubble memory system. Suppose also
that there are 5000 bytes of main memory space available
(assume a minicomputer environment) for the input
buffers. Assuming that the physical block size for the
device is 256 bytes or a multiple of 256, then there is
enough main memory for 19 single block buffers.

Completing the sort in one merge pass would require
14-way merging. This would in turn require 28 input
buffers if double buffering were used. This design is thus
infeasible since the maximum number of buffers is 19.
Therefore two passes will be required if double buffering
is used. Since \/ﬁ =~ 4, four-way merging could be used
for each pass. Eight buffers would be required, either all
having a size of two blocks (with three blocks left over),
or five with a size of two blocks and three with a size of
three blocks. The time required for the pass would be the
time required to read the file once.

An alternative design would be to go ahead with 14-
way merging so as to finish in one pass, and not use
double buffering. One technique would use forecasting
with 19 single-block floating buffers.? The merge pass
would be longer since overlapping is not complete, but
there would only be one such pass.

Still another scheme would also do 14-way merging,
but this time with just 14 buffers. Nine of the buffers
would be 1 block long, and the other five would be 2
blocks long. There would be no overlapping of input and
internal processing, since processing would stop when a
buffer became exhausted and was being read into. On the
positive side, the sort would be completed in only one
pass, the larger buffers would take longer to exhaust, and
the access time per bit would be smaller for the longer
reads.

In addition to these problems relating to the extra main
memory requirements for double buffering, there is
another problem that greatly reduces the benefits of
double buffering under some circumstances. The problem
is that double buffering loses most of its advantage if
input and output cannot be overlapped with each other.
For example, if the merge is being performed on a single
disk device, divided into the various logical units, then
input and output cannot occur simultaneously. Even if
there are two or more devices but a single controller,
input and output cannot occur simultaneously. (It might
be possible to do independent seeking, but this does not
require double buffering.) Even in the case where there
are multiple controllers but all connected to a single
channel, input and output cannot occur simultaneously.

Hence we see that in many (very common) situations,
double buffering does not bring about an overlapping of
input and output time. It does permit overlapping of
input-output with internal processing, but such an
overlap can largely be achieved with fewer than 2m input
buffers, especially if internal procssing is very fast
compared to input—output.

228 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

SINGLE BUFFERING

From the preceding discussion it is apparent that in many
circumstances consideration should be given to perform-
ing merges using fewer than 2m input buffers (where m is
the merge order). Again, there must be at least m buffers,
and there is no benefit in having more than 2m. Let n
denote the number of input buffers in excess of m. Then
0 < n < m and the total number of input buffers is m +
n.

Let r = (m + n)/m i.e. the ratio of the total number of
input buffers to the merge order. Then 1 <r <2,
complete double buffering corresponds to r =2, and
complete single buffering corresponds to r = 1. A large
value of r has the advantage of a greater overlapping of
input, output and internal processing, other things being
equal. A small value of r has the potential advantage of
a larger buffer size (i.e. slower exhaustion of buffers and
faster access time per bit) and a higher merge order (i.e.
fewer merge passes), other things being equal.

As noted earlier, a discussion of merging with from
m + 1 to 2minput buffers (i.e. 1 < n < m) is given in Refs
2 and 4. An approximate model for the system is
presented. We shall present here an analysis (based on
some reasonable assumptions) for the special case of n =
0, i.e. complete single buffering. We shall show the
degradation in time for a complete merge pass, caused by
nonoverlapped input, as a function of the merge order.
We shall show under what circumstances single buffering
is superior to double buffering, assuming a constant
memory size. We shall assume that input and output can
proceed independently and simultaneously, since the
analysis is trivial otherwise. For simplicity, we shall
restrict our attention to the case where all input and
output buffers are the same size.

Let us begin by defining the random variable X to be
the number of input buffers exhausted during the process
of filling a single output buffer. Clearly, X =0, 1,2, ...,
m. We shall assume that the original data was random, so
that the buffers are exhausting in a uniform fashion. We
shall also make the simplifying assumption that they are
exhausting independently of each other. In reality, the
buffer exhaustions are not independent since, for exam-
ple, two buffers cannot exhaust at exactly the same time.
The assumption is quite reasonable, however, especially
for large m.

An input buffer can exhaust at most once while an
output buffer is being filled, since even if it started with
no records, and if all records were selected from it, the
output buffer would be filled by the time the input buffer
exhausted a second time. Thus the exhaustion or
nonexhaustion of an input buffer while the output buffer
is being filled is a Bernoulli trial.® Since records inserted
into the output buffer are being drawn randomly from m
input buffers, the probability that any given input buffer
will exhaust is 1/m. Therefore, since the buffers are
exhausted independently, the number of buffers to be
exhausted (i.e. the random variable X) is a binomial
random variable with parameters 1/m and m.3

Consider the exact moment when we have just filled
the previous output buffer, initiated the write, and are
ready to begin filling the next output buffer (we assume
double buffering on the output). Let the random variable
D denote the time required to read or write one buffer.
We shall assume that D has a lower bound of d, > 0 and

© Heyden & Son Ltd, 1982

202 udy Gz uo 1s8nb Aq LG108€//22/2/SZ/310Me/|ufoo/Wwod"dno-oiWepeo.//:SARY WOy PaPEo|umoQ

SINGLE VERSUS DOUBLE BUFFERING IN CONSTRAINED MERGING

a mean (E[D]) of d. Let Dy, D,, D, , ... have the same
distribution as D. We shall let D, denote the time
required to write the output buffer, and D;, i > 1, denote
the time to read the ith input buffer to exhaust, assuming
that at least i input buffers become exhausted before
filling the output buffer.

Let the random variable T denote the time until the
write for the next output buffer is initiated. Then

E[T] = i E[T|X ={P[X = i])
i=0

Weshall assume that internal processing time is negligible
in comparison to input-output time. Thus,

E[T|X = 0] = E[D,] =d V)
Similarly, for 1 <i<m,
E[T|X =]
= E[max {Dy, D, + --- + D;}]
=E[D, + --- + D;+ max{Dy, Dy + --- + D;}

-D,—--- = D]
=id+E[max{D0,D1+ "'+Di}—D1" "'—Di]
=id + E[max {Dy, D, + --- + D;}—D; — --- — D;|

Dy + --- + D; 2 D]

P[D, + --- + D; > D,] + E [max {D,,
D+ - +D}—Dy— - =D
Dy>D,+ ---+D]P[Dy>D; + --- + D]

=id+E[D|+"+Dl“‘D1
—"‘—Di|D1+"'+Di>D0]

P[D, + --- + D; > D,] + E[D,— D,
_"'_Di|D0>D1+"'+Di]

P[D0>D1+"'+Di]

=id+E[D0_D1"‘"'—DilD0>D1+"'+D,']
Combining (1)(3) we get

E[T] = dpy(0) + 3" idpy() +

i=0

Y E[Do— D, — - --
i=1

D0>D1+"'+Di]
P[D0>D1 + R +D,]Px(1)

— D;|

=d(p,(0) + E[X]) + } bp.()) @

i=1

where

b,'=E[D0—D1_ "'Di|D0>D1+ ce +D,]

Letting b = Y’ bp.(i), we get

i=1

E[T]=d((l—l)m+1>+b (6)
m

© Heyden & Son Ltd, 1982

The values b, b,,..., b, cannot of course be
determined more specifically without knowing the distri-
bution of D. Obviously, P[Dy > D, + - -- + D,Jdecreases
as i increases. This probability would usually be very
small, since Dy, ..., D; have the same distribution. In
many cases it would become 0 very quickly (e.g. i > 2). If
D is a constant, then ;=5 =0 for 1 <i <m, and Eqn
(6) becomes

E[T]=d ((1—l>m+1>)
m

Generally, the smaller the variance of D, the smaller
the value of b. For magnetic tape devices, D would be
essentially constant. For random access devices such as
disks, drums, and magnetic bubble memory, D would
typically consist of a constant component, corresponding
to transfer time, and a random component, corresponding
to seek and/or latency time. For disks, transfer time
would probably correspond to a fraction of a rotation, or
possibly as much as a full rotation. Latency would vary
from 0 to a full rotation. Seek time would vary from 0 to
a fraction of a rotation to possibly a few rotations.

One technique to reduce or eliminate the influence of
b would be to use more than double buffering on output.
The extra output buffers could be used to negate the
effect of wide fluctuations in access time. Three or four
output buffers, for example, would greatly reduce b. With
an infinite number of output buffers, E[T] would be given
by Eqn (7) (m output buffers would not be sufficient, in
theory). Obviously, the use of additional output buffers
tends to defeat the purpose of single buffering on input.
It nevertheless provides a useful insight into the influence
of bon E[T].

Accordingly, we shall ignore b and look at Eqn (7) as
a function of the merge order m. Table 1 gives some
sample values of E[T] as a function of m, under the
various assumptions presented and the additional con-
vention that d = 1. Note that

lim (1— l) =e ! ~0.36788
m

m-

which gives the bottom entry in the table.
The table suggests that E[T] is an increasing function
of m, and we would like to prove this result.

sry=af(1-) +1)
m
m m m m

Table 1. Expected degradation caused by single buffering
m

E[T]
2 1.250
3 1296
5 1328
10 1.349
100 1.366
o 1.36788- -

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 229

202 udy Gz uo 1s8nb Aq LG108€//22/2/SZ/310Me/|ufoo/Wwod"dno-oiWepeo.//:SARY WOy PaPEo|umoQ

W. E. WRIGHT

It is obvious that (1—1/m)"~! is positive for m > 2,
therefore we wish to show that the other factor in Eqn
(8) is positive for m > 2.

lim <l+(l—l>ln<l—l))=0+l-0=0)
m-o \M m m

$1+4n4~0.1534>0 (10)

d,,(l " (1_ i) In (1_ l))
m m m

1 1

=—7ln<l——)<0 form>2 (11)

m m
Equations (9)-(11) show that this factor is a decreasing
function for m > 2, with an initial value (at m = 2) which
is positive, and a limiting value (as m approaches infinity)
of 0. Hence, 1/m + (1—1/m) In (1—1/m) > 0 for m > 2.
Hence d,, (E[T]) > 0 for m > 2, and therefore E[T] is an
increasing function of m. Moreover, since lim,, ., ., E[T] =
1 —e™! ~ 1.36788, we have shown that this limit is an
upper bound for E[T].

The primary conclusion to be drawn from this
development is that the degradation (increase) in run
time due to the use of single buffering instead of double
buffering is less than 37%. Note that E[T] would be
simply d if double buffering with forecasting were used
for input. (To be precise, the expectation would be
somewhat larger than this, just as for single buffering,
unless the access times were constant or there were an
infinite number of output buffers.) The random variable
T, of course, represents the time to process only one
buffer of output, but extending the expectation to the
entire merge pass would yield the same coefficient
(1-1/my" +1.

Let n be the number of strings to be merged, let p(x) be
the number of passes required using x-way merging, let
R be the expected time required to write (read) the file
once at full speed, and let S(x) be the expected total run
time for the merge using x-way merging. Then we get

p(2m) = [log,,nl
p(m) = llog,,n
= [log,.n-log,2ml
=~ p(2m)-(1 + log,.2)
S(m) = p(m)-R
~ p(2m)(1 + log,,2)R (12)

S2m) ~ p(2m)-<1 + (1 - ’%) >R (13)

From Eqns (12) and (13) we see that single buffering is
faster than double buffering if and only if

lm
log,,2 1——
082> (1-1)

(1 - ’l"> log,om < log;¢2 ~ 0.30103

ie.

ie.m<8.

This analysis shows then, that under the various
assumptions made, and for a given buffer size, if we do
not have room for at least 16 input buffers then we are
better off to single buffer than to double buffer. For
example, if we have room for only 14 buffers, then it is
faster to use single buffering and 14-way merging than to
use double buffering and 7-way merging. On the other
hand, if we have room for 16 or more input buffers, then
double buffering is faster.

SINGLE VERSUS DOUBLE BUFFERING

SUMMARY

An obvious question arising from this development is
under what circumstances single buffering would be
preferable to double buffering. Let us accordingly look at
the specific case in which main memory available for
input buffering is constant, and a choice must be made
between double buffering with m buffers (and m-way
merging), or single buffering with 2m buffers (using 2m-
way merging). We assume that the merge passes are
repeated until the sort is complete. Obviously, double
buffering will produce faster passes, and single buffering
will produce fewer passes.

We have analyzed a number of aspects of single input
buffering during the merge phase of an external sort
procedure. We have shown that it is a nontrivial problem
to choose between complete single buffering, complete
double buffering, or something in between, assuming
some constraint on the amount of internal memory
available for buffering. We have shown that single
buffering degrades processing time for a merge pass by
an average of from 259 to 37%. We have shown that
single buffering is faster than double buffering if and only
if there is space available for fewer than 16 buffers.

REFERENCES

1. D. E.Knuth, The Art of Computer Programming, Vol. 3, pp. 324~
325. Addison-Wesley, Reading, Massachusetts (1973).

2. Ref. 1, pp. 343-345.

3. E. Parzen, Stochastic Processes, pp. 13-15, Holden-Day, San
Francisco (1965).

230 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

4. L. J. Woodrum, A model of floating buffering, /BM Systems
Journal 9, 118-144 (1970).

Received May 1981
© Heyden & Son Ltd, 1982

© Heyden & Son Ltd, 1982

202 udy Gz uo 1s8nb Aq LG108€//22/2/SZ/310Me/|ufoo/Wwod"dno-oiWepeo.//:SARY WOy PaPEo|umoQ

