
Chebyshev collocation methods for ordinary differential equations

By K. Wright

This paper describes some methods for the solution of ordinary differential equations based on
the Lanczos "selected points" or collocation principle. Some properties of the methods are
examined theoretically, and some examples of their use given.

In this paper I consider some methods for the solution
of ordinary differential equations in terms of finite
Chebyshev series. This form is often convenient, par-
ticularly if the solution is required for some other
calculation where its rapid and accurate evaluation is
important.

With the solution expressed in this form or as an
explicit polynomial, there are two approaches to the
problem of choosing coefficients to make the function
satisfy the differential equation approximately. The first
is to equate coefficients either of" powers of x or of the
polynomials. The second is to satisfy the differential
equation at certain values of the independent variable.
Both these approaches have been considered by Lanczos
(1957), but most work since then has followed the first
method (Clenshaw, 1957; Fox, 1962). Recently, how-
ever, Clenshaw and Norton (1963) have given a method
using the second alternative. Here I give some varia-
tions of the second approach, and discuss some of their
properties.

Although the methods are described in terms of
Chebyshev series, they are not essentially dependent
upon this; similar methods could be constructed to give
explicit polynomial solutions.

The principle of these methods is that ihe solution is
represented by a finite Chebyshev series with unknown
coefficients; this expression is substituted into the
differential equation and the coefficients are determined
so that the differential equation is satisfied at certain
points within the range under consideration. The
number of points is chosen so that, along with the initial
or boundary conditions, there are enough equations to
find the unknown coefficients. The positions of the
points in the range are chosen to make small the residual
obtained when the approximate solution is substituted
into the differential equation.

The range in which the solution is required is assumed
finite, and, for convenience, a linear transformation of
the independent variable is made to make the new
range ( - 1 , 1).

Suppose that the independent variable of the dif-
ferential equation is x, and it is solved exactly at n
points xh i = 1, 2, . . ., n. The residual will then be of
the form

E = n (x - (1)

upon the particular differential equation. The term
II(x — Xi) is, however, independent of the differential
equation, and this term is minimized if it is made a
multiple of a Chebyshev polynomial, or explicitly

x, — cos
(2/ +

In (2)

Lanczos (1957), p. 504, calls this choice of points the
"selected points" principle or the method of collocation.
It applies in a similar manner to sets of equations, the
function tfi(x) then being a vector.

Linear differential equations
This principle is easily applied to linear differential

equations. It is most conveniently illustrated with a
single first-order differential equation, since this gives
the essential points without unnecessary complications.

Consider the equation

/=Ax)y + g(x), (3)

where the solution is required in the range (—1, 1), and
the initial condition is imposed at one of the end points
of the range. Suppose that y, y' are represented by the
Chebyshev series

(4)
0

"£'brTr(x)
o

where the £ ' denotes that a0, bQ are taken with weight i
as is usual with Chebyshev series. The ar and br are
connected by the relations

— 2iait (5)

where bn, bn+, are taken to be zero; this result is obtained
by integrating the series for y' (Clenshaw, 1957). If the
expressions for y and y' are substituted in the differential
equation and the resulting relation satisfied at the n
points xlt the zeros of Tn(x), these equations with the
initial condition and the relations (5) provide enough
equations to find the 2/i + 1 unknowns ar, br. The
initial conditions are of a very simple form, for

- l ) = \a0- a,

+ a2. . .) ,
(6)

where ip(x) is an unknown function which will depend which follow from the definition.
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Chebyshev collocation methods

The set of linear equations produced in this way could
be solved directly by any standard method, but it is
more economical to eliminate the Z>, coefficients first.
The equations (5) can be used in succession to eliminate
bQ,bi,... in order, by altering the coefficients of the
later ' , and the a, in the set of equations. Thus the set
is educed to order n + 1. The equations are then
sol ed by a standard method.

A similar method could be used with y in the form
of an explicit polynomial of degree n; here the same
result would be obtained expressed in a different form,
apart from differences in rounding error. The Chebyshev
series form is convenient, however, since a good estimate
of the accuracy can be obtained from the size of the
last few terms of the series, and a better one is obtained
by comparing the two sets of coefficients obtained when
different values of n are used. These estimates are
justified by the rapid convergence properties of
Chebyshev series (Lanczos, 1957, p. 453).

The method outlined involves more work than the
methods of Clenshaw (1957) and Lanczos (1957) Ch.
VIII for equations of simple form, but it does apply
just as easily to equations with complicated functions
f{x) and g(x). The methods based on equating coef-
ficients, on the other hand, require these functions to
be explicit polynomials or finite Chebyshev series, and
they become rapidly more complicated as the order of
the polynomials increases.

Systems of equations can be treated in just the same
way; here each unknown function must be represented
by a Chebyshev series, so that larger sets of linear
algebraic equations have to be solved. The method is
not dependent upon the position of the associated
conditions, and boundary-value problems are no more
difficult than initial-value problems. Higher-order
equations could be reduced to sets of first-order equa-
tions, but it is usually better to treat these directly, as
the number of algebraic equations can be reduced using
relations analogous to equations (5). Conditions
involving higher derivatives can be treated using

/(+!) =
(7)

and similar expressions for higher derivatives; mixed
boundary conditions are also not much more difficult.

Non-linear differential equations
The "selected points" principle can also be applied

to non-linear differential equations; here, however, it
produces a set of non-linear algebraic equations for the
unknown Chebyshev coefficients. These equations
could be solved by a general iterative method, such as
Newton's method, but one would not expect this to be
very efficient.

I'intend to discuss two main methods, and briefly
mention a third, all of which take account of the origin
of the algebraic equations in differential equations. The

first is derived from the Picard existence theorem, the
second uses a linearized form of the differential equation,
and requires the solution of a linear differential equation
at each stage of the iteration.

The Picard method
For the sake of clarity I again outline the method for

the single first-order equation

y'=f(x,y) (8)

in the range (—1, I), with a condition at x = + 1. For
this equation the Picard iteration takes the form

, / n ) ) dt, (9)

where yM are the successive iterates. The conditions on
the convergence of this sequence are given by Ince
(1955), p. 62, and Tricomi (1960), p. 11. It should be
noted that these conditions can be generalized only for
sets of equations of initial-value type. More considera-
tion is needed for boundary-value problems.

The application of Chebyshev series and the selected
points method is straightforward, but it is simplified by
an additional property of the special points. The
Chebyshev polynomials satisfy the orthogonal summation
relations

[in if r = s = 0

L«o« otherwise and r,s <m,
(10)

where x, are the zeros of Tm(x). This enables a
Chebyshev series for a function f(x) to be found from
the function values /(*,) = / , by summation instead of
by the solution of a set of linear equations. If the
coefficients in the series are br we have

(11)

In the iteration the functions yM are represented by
Chebyshev series

M = £ arTr{x),
r=0

(12)

and some simple starting function, usually a constant, is
taken for yw. The right-hand side of equation (8) is
evaluated at the points xh using the recurrence method
given by Clenshaw (1955) for the y values. A Chebyshev
series for /(»+') is then constructed using the formulae
(11), and j/"+') is found by integrating this series using
equations (5) and the initial condition. If the iteration
converges the differential equation is satisfied at the
points Xj.

The method of Clenshaw and Norton (1963) appears
to be identical to this except that they use collocation

over the different set of points given by x, = cos m
m
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Chebyshev collocation methods

Since the Chebyshev polynomials satisfy an orthogonality
relation over these points also this is just as convenient
computationally. The use of the zeros seems better
justified on account of the selected points principle, but
there is probably little difference in practice.

This method again generalizes immediately to sets of
first-order equations, and also to higher-order equations
where some economy can be made in the amount of
work involved.

Linearization method
For the first-order equation (8) the iteration for the

linearization method takes the form

-, (13)

which is obtained from the Taylor expansion of f(x, y)
in terms of y — yM, where y is the true solution.
Second-order terms are omitted and y put equal to
j,(n+i) If |_y — yW\ is small one would expect this type
of method to converge for either initial or boundary-
value problems, though it is not obvious how small
\y — y<*)\ needs to be. Kalaba (1959) has shown that
in certain cases the iteration will certainly converge.

The application of the selected points principle need
hardly be described; each iteration involves just one
solution of a linear equation by the method given above.
However, the values of yM at the points x, must be found
as in the Picard method, .and the function <>//<>}> must
be calculable.

This method also generalizes to simultaneous equations
and higher-order equations, but the method becomes
rapidly more complex as the order of the system increases,
since all the first-order partial derivatives of the functions
are needed.

Other possibilities
There are other iterative schemes for non-linear

differential equations to which Chebyshev series can
easily be applied. A whole set of such schemes which
contains the Picard method as a particular case is
suggested by Nicolovius (1961). These schemes use the
Taylor's series with the remainder included in the form
of an -integral; the different methods are obtained by
retaining different numbers of terms.

For equation (8) we have

i) 1

rl

\
JXQ

which for p = 1 gives the Picard iteration.

dry(x)

Since the higher derivatives , are rather compli-

cated functions of the partial derivatives of/(x, y), these

methods become rapidly more complex as p increases,

unless f(x, y) is particularly simple. Consequently I
have only considered the method with p = 2 in addition
to the Picard method. This gives iteration of the form

|}(*-0<*. (15)
Here just two series integrations are required at each
step of the iteration, so that more work is involved than

y y
in the Picard method. The derivatives r- , ^- are also

Ix ly
needed and this again might be inconvenient. The
applications of Chebyshev series and the selected points
principle are the same as those for the Picard process.

Practical results
Some indication has already been given of the amount

of work involved in these methods, at least for a single
iteration of the processes. From this it appears that
the Picard method is the simplest and most easily applied
to large sets of equations. It is, however, obviously
necessary to consider how many iterations are needed
for convergence, and indeed whether the different
methods all converge in comparable cases.

I give below a comparison of the three methods out-
lined for three simple first-order non-linear differential
equations with known solutions. The equations are:

(•) / = 1 + y2, y(0) = 1, interval (0, 1),
solution y = tan x.

(ii) / = V(l - y2), y(P) = 0, interval (0, 1),
solution y = sin x.

(iii) y' = e-y, y(0) = 0, interval (0, 1),
solution y = In (1 + x).

In all cases the initial function was taken as a constant,
and identical tests for convergence of the methods were
made. The number of terms in the series was initially
taken as 6 but was automatically increased, so that the
last term should not be greater than 2~20 times the first
term, and the iteration was continued until corresponding
coefficients in two successive iterates agreed to 20 binary
digits. These tests were chosen just for simplicity and
are not expected to be adequate in all circumstances.
(If the solution function is nearly odd or even, the
criterion for increasing the number of terms is clearly
unsatisfactory.)

All the methods converged and the results are given
in Table 1. They were obtained using the Oxford
University Mercury computer programmed in Autocode;
the linearization method used in addition Mercury
Autocode matrix facilities which involve slow auxiliary
transfers. Since these are incidental to the process the
linearization is better than is indicated by the times given.

I also give three examples comparing the Picard and
linearization methods for boundary-value problems.
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Table 1

METHOD

Picard

Linearization

Nicolovius
0 = 2)

No. of Iterations
Time (sec.)
Final no. of terms

No. of Iterations
Time (sec.)
Final no. of terms

No. of Iterations
Time (sec.)
Final no. of terms

EQN.

(0

17
35
12

11
90
11

33
87
12

EQN.

(ii)

8
10
7

5
35
7

6
10
7

EQN.

(iii)

12
15
9

6
48
8

11
24
9

Here the number of terms in the series was fixed
throughout the iteration. The equations are

(iv) / ' + 2 + tl = o; y(0) = 1, XI) = 2;
using 11 terms [from Milne (1953), p. 104].

(v) / ' + sin 0 0 + 1 = 0 ; y(0) = 0, y(l) = 1;
using 8 terms

(yi) y"=l-Sy2;
using 8 terms

[from Fox (1957), p. 86].

= 4,XD=l;
[from Collatz (I960)].

In all cases the iteration was terminated when all
coefficients in the series agreed to 0-00001. Both
methods converged for all the equations and Table 2
gives the number of iterations taken.

For these equations both methods are adequate,
though for equation (vi) Picard is rather slowly
convergent.

Use of the methods in a step-by-step form for initial-value
problems

So far I have described methods in a form which
attempts to find the solution of a differential equation
as a Chebyshev series valid in the whole of the required
range. This is not the only possible way of using them;
for initial-value problems they can also be used as step-
by-step methods with very little added complication.
The equation can be solved in a sub-range with one
end-point at the initial point, then the solution can be
used to provide starting values for the next range, and
this can be repeated as often as necessary.

It is difficult to find a general rule for choosing the
interval sire which applies to all methods. For the linear
equation matrix method, however, I give a rule which
is convenient in practice and should approximately
minimize the total time involved in the calculation.
Naturally, many assumptions have to be made to
establish this rule.

The time for solving the problem is usually dominated

Table 2

METHOD

Picard
Linearization

EQN. (iv) EQN. (v) EQN. (vi)

9 7 26
4 4 5

by the solution of the sets of simultaneous equations; if
there are n unknowns this time is proportional to n3.
So the time for the solution in a single interval using n
terms may be taken to be

T, = A/i3. (16)

I now consider whether there is any gain in time if
this interval is halved and a smaller number of terms
used in each of the halfrintervals so that the accuracy
is approximately the same. This last requirement may
be represented by requiring that the last coefficients of
the series be approximately equal--assuming that
similar behaviour occurs in both intervals. Suppose
that the series coefficients in the original interval are
ao,. .-. an, and in a half-interval are b0, . . . bm, then we
require

bm = an (17)

approximately.
Another relationship between the a-, and b, can be

obtained by considering the infinite Chebyshev expanT

sions in the corresponding intervals, which should agree
approximately with the finite series. The Chebyshev
coefficients cs of a function f(x) in the range (a, b) are
given by

where a = {b - d)\2, j3 = (b + a)/2.
Expanding /(<x£ + j3) by Taylor's theorem, we find

where a < r\ < b. Now using the orthogonality pro-
perties of the Chebyshev polynomials we get

d'f(v)
dx1

•dl
-i2)

The dependence of the integral on a will vary with the
particular function. Taking just the a.' term into
consideration, halving a divides cs by 2' and so we may
take

btx2->a,. (19)

Suppose also that the terms of the first series decrease
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in a roughly constant ratio k, that is a, x k~s ao.
Condition (17) now gives

2-mk-mao = k~"ao,
and

«log k
m = log (2*y

(20)

Now the time T2 for the calculation using the smaller
interval is given by

and this will be smaller than T, if

2sil3\ogk <log(2/t)

A: < 14-39.
or

(21)

This implies that time will certainly be gained by
halving unless the series is rapidly convergent; with a
computer which is normally able to keep only eight or
nine decimals the last terms would be negligible after
6 or 7 terms with a k value satisfying condition (21).
So about this number of terms should be used, and if
these do not give adequate representation of the series
the interval should be reduced rather than the number
of terms increased.

Prediction with Chebyshev methods
Finite-difference predictor-corrector methods obtain

high accuracy with few evaluations of the functions in
the differential equations by using information from
previous steps. In the step-by-step forms of the methods
I have described the only use that is made of a previous
interval is to provide starting values for the next. But
here also more information is available and can be used,
at least for the iterative methods, to obtain a better
starting approximation for the iteration.

A starting approximation for a new interval can be
constructed so that it has derivatives at the initial point
which agree up to some order with those of the solution
for the previous interval. First the derivatives of the
known series can be evaluated by successive differentia-
tion and evaluation at the end point. Then a series can
be constructed in the second interval by repeated series
integration, so that it has these derivatives at the begin-
ning of the range. The number of derivatives used in
this way can vary from one to the length of the whole
series.

I applied this method using all possible derivatives to
both the Picard and linearization methods. I also used
just the first two derivatives with the Picard method.

I give a comparison of these two modifications of the
Picard process with the original method for three sets
of simultaneous equations

(vii) y\ = y2 , y{(l) = 0

y2 = - exp (—2JKI), J 2 ( l ) = l -

Solution yi = log x; y2 = 1/x.

(viii) y[ = y2 , j / ,0) = 0

y'i = y3 , yiO) = 1
y'i = 2 exp (-3j>,) , y}(l) = 1.

Solution yx = log x; y2 = 1/x; y} = — I/A:2

Solution yx — cos x; y2 — — sin x.

In all the solutions the constant interval h = 1 was
used, and the number of terms was also kept constant.
The number of terms in the series is specified by N, and
the calculations were terminated when successive iterates
differed by less than E. Table 3 gives the number of
iterations taken in the first 5 steps.

I also give the two versions of the linearization method
for equations (vii) and (viii). The results are given in
Table 4.

These modifications to the Picard and linearization
processes do give some improvement in all cases, but it

Table 3

EQN. PARAMETERS

N = 6
E = 00001

(vii)
N = 6

E=000001

N=6
E=0- 00001

(viii)
N = 8

E=000001

N = 6
E=0-00001

(ix)
N = 8

E=000001

PICARD 1ST AND 2 N D ALL
(ORDINARY) DERIVATIVES DERIVATIVES

7,6,5,5,4. 7,4,3,3,3. 7,5,3,3,2.

8,7,6,6,5. 8,5,4,4,3. 8,6,4,3,3.

10,7,6,6,5. 10,6,4,4,4. 10,7,4,4,3.

10,7,6,6,5. 10,5,4,4,3. 10,7,4,3,2.

9,8,8,9,8. 9,6,6,7,6. 9,5,5,5,5.

8,8,8,8,8. 8,6,6,6,6. 8,4,3,3,3.

EQN.

(Vii)

(viii)

PARAMETERS

N = 6

E = 0-0001

E = 000001N = 6
E = 000001

Table 4

LINEARIZATION

4,3,3,3,3.

4,3,3,3,3.

4,3,3,3,3.

USN
DERI

4,2

4,3

4,3

VATIVES

2 2 2

,2,2,2.

,2,2,2.
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is not always very much. The second set of results for
equation (ix) with the Picard method, however, show a
considerable improvement. It is interesting to note the
difference between the cases N = 6 and N = 8 for this
equation; the poorer results for N=6 appear to be
caused by the series being only just long enough to
represent the function.

It is difficult to come to any general conclusions from
these results, particularly as equations (vii) and (viii)
have similar solutions. It does seem possible that the
amendments will produce considerable improvement in
some cases, but more experience is needed to be sure of
this.

Unlike finite-difference predictor-corrector methods
this method does not need any special starting procedure,
since the ordinary process is used in the first interval.

Conclusions
The methods described provide generally applicable

ways of solving differential equations giving the solution

in Chebyshev series form. They should certainly be
reliable for initial-value problems if a sufficiently small
interval is used, but for boundary problems convergence
is not certain. These methods often involve more work
than conventional methods, but it does provide the
solution in a form which is sometimes very useful.

The Picard method is often simpler and more con-
venient than the linearization method as it does not
require the solution of a set of simultaneous equations;
however, for certain types of equation considered in the
Appendix linearization is much better. More experience
is required to determine the relative merits of the various
alternative forms of the methods.
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Appendix
Stability properties and related phenomena

To investigate the stability properties of the methods
when used as step-by-step processes I used the following
two examples:

(x) y'= - lQy + lOx2 - 8.v - 1, j(0) = 0

(xi) y' = - 10y, + 6y2,

y'z — 13 • 5>-, — 10y2,

= 0-6666666

1 [from Fox and
Goodwin (1949)].

Many ordinary methods suffer from induced instability
when used on these examples, on account of the large
negative exponential complementary functions which
are not well represented. Instability takes place if such
a complementary function is represented by the process
as an increasing function instead of a decreasing function,
and this happens with both Runge-Kutta and predictor-
corrector type methods unless a very small interval is
used, since they are both based on the truncated Taylor's
series which is slowly convergent.
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The method for linear equations and the Picard-
Chebyshev method both gave interesting results when
used to solve these two equations.

Firstly the linear equation method gave good results
as long as the solution was well represented by the
Chebyshev series, even though the complementary
function would need many more terms. An even more
important point is that there was no sign of instability
when the method was used over a number of steps. For
example (xi) intervals in x of 1 and 2 were stable with
only 6 terms in the series, and the accuracy remained
good; for interval 2 the solution for y2 at x = 11 was
0-000045, correct in all places.

The stability of this method for equations with large
negative exponential complementary functions can be
demonstrated theoretically by showing that the repre-
sentations of these functions always decrease.

Consider a set of s simultaneous linear equations with
constant coefficients which may be written in matrix
form

' = Ay, (22)

where A is an (s x s) non-singular matiix. A may be
taken non-singular for otherwise the number of
independent equations could be reduced. The selected
points method is carried out as described for equation (3)
except that the series coefficients are now vectors a,.
and b,.

For this type of equation the selected points method
and the method equating coefficients given by Clenshaw
(1957) are equivalent, for they both have error terms
which are multiples of Tn(x), and the vanishing of the
error at the zeros of this function is sufficient to deter-
mine the coefficients uniquely.

Equating coefficients gives

b,. = Aan r = 0, . . . n - 1, (23)

then equations (5) give

2ra,. = A(ar_ , — ar+ ,), r = 1,.. . . n - 2

2(n — 1 )<*„_, = / * a n _ 2

2nan = Aan_{.

Now putting B = 2A~'\ which is permissible since A is
non-singular, we get

an_, = nBa,,

a,,-.2 = (" — l)#a,, i - ; «(« — D#2a,,

a,,- 3 = (« — 2)/?a,,_2 + a,,_ ,

= {n(n — 1)(« — 2)Bi + nB) a,,

and, from the general equation, it follows by induction
that «„_,- is a polynomial in B with positive coefficients
multiplying a,,; if / is even it is an even polynomial and
if / is odd an odd polynomial.

The initial conditions can be written in the form

\a0 — a, + a2 • • • = a

or

where
u — v = a

u = ia0 + a2 + a4 +

v = a, + a3 + a5 +
(24)

So if n is even u is an even polynomial in B with
positive coefficients multiplying a,,, and v is odd. If n
is odd this is reversed. This gives an in terms of a.

Now a may be expressed as a linear combination of
the latent vectors ex, of A corresponding to latent roots
A,, that is

V

i

The a, are also latent vectors of B corresponding to the
latent roots 2A,~'.

If the solutions of the differential equations for
a = a, for negative A,- are decreasing, then the method
will be stable in the sense 1 have indicated.

Consider therefore a single latent vector a correspond-
ing to a negative A. The problem now reduces to a
scalar one, for all the vectors will be multiples of a,
and we may replace an by ana, etc., and B by 2A~'.

If n is even equation (24) now gives

u = Ra,,, R>0,

v = Sam S < 0.

Since u — v=l then (/? — S)an > 0 and an > 0. The
value at the other end of the range is (u + v)a, and

| = U — v

since u > 0, v < 0, so that the function values decrease.
Similarly if n is odd we have

u = Ran, R<0,

v = San, S > 0.

Again u — v = 1, so now (/? — S)an > 0 and an < 0,
and the modulus of the value at the other end of the
range satisfies

\u + «|< |M| + |W|= U — v

and again the functions decrease.
So for both possibilities the Chebyshev representation

of a negative exponential function decreases, and this
occurs even though the representation of the function
might be very poor. Consequently no instability should
be caused by functions of this kind. Functions cor-
responding to complex latent roots are not covered by
this theory, but in practice the method did not suffer
from induced instability for any of the equations 1 tried.

One would also expect that the results for linear
equations would indicate similar properties for the
linearization method for non-linear equations. This
was verified in practice for one type of non-linear
equation which has properties similar to equations (x)
and (xi). The equations considered were obtained from
one-dimensional Schrodinger equations by the Madelunq
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transformation (Hartree, 1958, p. 154). The solution of
the transformed equation is slowly varying compared
with the solution of the original equation, but with the
Runge-Kutta and certain predictor-corrector methods
I tried, a small interval was still needed for stability.
The linearization method, on the other hand, was stable
for large intervals.

The Picard-Chebyshev method, on the other hand,
behaves in a much less satisfactory manner for this type
of equation. In theory the Picard process converges in
any interval for linear equations with constant coefficients,
since it just produces the truncated Taylor's series of
corresponding order, and this series is always convergent
for exponential and trigonometric functions. The
process does not always converge, however, if it is
carried out using Chebyshev series with a fixed number
of terms.

I tried both examples (x) and (xi) using a fixed number
of terms which were sufficient to represent the solutions
but not the complementary functions. Here the iteration
behaved asymptotically, and the optimum accuracy
obtained was greater when the number of terms was
larger; also, when different initial conditions were used,
the process diverged sooner. If the number of terms
was sufficient to represent the complementary function
well, either as a result of using a small interval or a
large number of terms, then the process did converge.

This behaviour can again be explained theoretically
by considering the form of the iteration. For this
purpose it is convenient to consider the form of the
equations for a general interval (a, a + h) with initial
conditions y(a) = a and the differential equations (22).
When this equation is transformed to the interval
(—1, 1) the new differential equation will be of the form

h

r
(25)

Putting B = ^A and replacing y* by y the iteration

takes the form
y'U+\) —

As before we get
2rcr = B(ar_, - ar+,), r = 1,. .
2{n- l)cn_, = Ban.1
2ncn = Ban_x

and the initial conditions give
ic0 = a + c, - c?

.n~2

(26)

(27)

Here the a, represent the Chebyshev coefficients of yu),
and the cr those of y(J+i). In view of the initial con-
ditions which are satisfied by all the yu) only n of the
coefficients are linearly independent. So the new
coefficients cr can be expressed jusl in terms of a,,. . .,an.

In equation (27) a0 occurs only in the equation for
C\. Using the initial conditions on the ar we get

c i = 2 {2 (a + «i — «2 • • •) - "2},

and the iteration may be expressed ii.« partitioned matrix
form

B - f
\B

B -B ..

-IB

$B

« 1
a2

« 3 +

Ba
0
0

01 c = Pa +d.
The iteration will converge if all the latent roots cf P

are less than unity in modulus. For a six-term series,
with n = 5, I found that P has a latent root M satisfying

where A is any latent root of B.
It is now interesting to see the effect of changing the

interval h. If v is a latent root of A then the correspond-

ing latent root of B will be A = -^v, and the inequality

becomes

In example (xi) with v = — 19 we therefore require
h < 2/19 for convergence with this number of terms.

As the number of terms increases one would expect
the latent roots to become smaller and eventually to be
all less than unity in modulus.

The asymptotic behaviour of the iteration is explained
by the choice of the initial vector. If the initial vector
does not contain any component corresponding to the
large negative latent root, then the process will at first
converge, but the other components will inevitably be
brought in by rounding error and grow rapidly as the
iteration proceeds, thus causing divergence.

It is interesting that the convergence of the Picard-
Chebyshev process is poor for just those equations where
instability occurs with Runge-Kutta and other methods.
They are both caused by the presence of the large
negative exponential complementary functions.
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