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Temperature in many natural aquatic environments follows a diel cycle, but to date, we know little on how diel thermal cycles
affect fish biology. The current study investigates the growth, development and physiological performance of wild Atlantic
salmon collected from the Miramichi and Restigouche rivers (NB, Canada). Fish were collected as parr and acclimated to either
16–21 or 19–24◦C diel thermal cycles throughout the parr and smolt life stages. Both Miramichi and Restigouche Atlantic
salmon parr grew at similar rates during 16–21 or 19–24◦C acclimations. However, as smolts, the growth rates of the Miramichi
(−8% body mass day−1) and Restigouche (−38% body mass day−1) fish were significantly slower at 19–24◦C, and were in
fact negative, indicating loss of mass in this group. Acclimation to 19–24◦C also increased Atlantic salmon CTmax. Our findings
suggest that both life stage and river origin impact Atlantic salmon growth and performance in the thermal range used herein.
These findings provide evidence for local adaptation of Atlantic salmon, increased vulnerability to warming temperatures, and
highlight the differential impacts of these ecologically relevant diel thermal cycles on the juvenile life stages in this species.
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Introduction
Ectotherm physiology is strongly influenced by ambient tem-
perature. Suboptimal temperatures can stress fishes, reduce
their feed intake and consequently their growth (Jonsson
et al., 2001; Handeland et al., 2008; Breau et al., 2011;
Volkoff and Rønnestad, 2020). Growth rate has been a par-
ticularly important area of research because overall size of
the fish can impact wild fish population age-size structure,
population dynamics and inter-species relations (Thackeray
et al., 2013; Carozza et al., 2019; Huang et al., 2021). The
current understanding of temperature effects on growth rate
in fishes is generally based on individuals acclimated to stable
temperatures (Elliott and Hurley, 1997; Martell and Kieffer,
2007; Chadwick and McCormick, 2017; Scheuffele et al.,
2021). However, thermal stability is an unnatural condition
in temperate rivers where temperature oscillates (3–15◦C
amplitude) diurnally (Lynch et al., 1984; Malcolm et al.,
2004). Diel thermal cycles have been shown to influence
food intake (Diana, 1984; Flodmark et al., 2004), digestion
efficiency (Mehner et al., 2011; Coulter et al., 2016) and
routine metabolic rate (Oligny-Hébert et al., 2015; Morash et
al., 2018), all factors that influence growth rate. In addition,
exposure to cycling temperatures compared to stable temper-
ature acclimation in the laboratory have been shown to alter
aspects of physiology of Atlantic salmon such as their routine
metabolic rate (Beauregard et al., 2013; Morash et al., 2018),
fatty acid composition (Ge et al., 2021) and haematology
(Tunnah et al., 2017) and have been reviewed elsewhere
(Morash et al., 2021). Despite the biological significance and
ecological relevance of diel thermal cycles, compared to our
understanding of the effects of stable temperatures, relatively
little is currently known about their impacts on overall growth
and development of fishes.

The Atlantic salmon is a keystone fish species that sup-
ports the culture, economy and ecology of Nordic countries
and North America (Gardner Pinfold, 2011; Myrvold et al.,
2019). In the past 30 years, however, there have been signif-
icant declines in their global population and average body
size, owing at least partly to climate warming (Swansburg et
al., 2002; COSEWIC, 2010; Mills et al., 2013; Chaput et al.,
2019; DFO, 2019; Dadswell et al. 2021). In one of the most
productive river systems for Atlantic salmon, the Miramichi
River (NB, Canada), water temperature can reach and even
exceed 30◦C in July/August, with diel thermal cycles as wide
as 9◦C (Caissie et al., 2013; Corey et al., 2017). The typical
summer diel thermal cycle here spans ∼17–22◦C with mean
of summer maximums across 21 sites of 29.5◦C (Caissie et
al., 2013). Laboratory experiments of Atlantic salmon parr
(juvenile freshwater life stage) acclimated to constant tem-
peratures have shown that water temperatures of 16–20◦C
elicit the fastest growth whereas temperatures between 22 and
27◦C limit growth (Elliott and Hurley, 1997; Jonsson et al.,
2001). Therefore, water temperatures in the Miramichi River
are often outside the thermal optima for wild Atlantic salmon
growth. In another highly productive Atlantic salmon river,

the Restigouche River (DFO, 2022), bordering northern New
Brunswick and Quebec, overall water temperature is cooler
(mean of summer maximums across 21 sites 25.4◦C) than the
Miramichi River and has a smaller variability throughout the
day (Caissie et al., 2013). To date, the effects of different ther-
mal cycles on fish in ecologically, and importantly, thermally
distinct streams are still unknown. However, recent in situ
evidence from Atlantic salmon parr from rivers with different
baseline thermal regimes shows variations in the temperature
for the onset of behavioural thermoregulation (Corey et al.,
2020). These differences in behaviour in salmon parr from
thermally and geographically distinct streams suggest that the
thermal nature of their natal river may impact their tolerance
to temperature stress that is likely underpinned by aspects of
their physiology.

The effects of water temperature are perhaps most influ-
ential during the smolt life stage of Atlantic salmon (Gillis et
al., 2023). Smolts are juveniles preparing to transition from
freshwater phenotype to saltwater phenotype during migra-
tion from freshwater streams to the ocean. The relationship
between water temperature and initiation of smolt migration
has been speculated to be related to a specific and/or cumu-
lative temperature threshold but can also be impacted by day
length and water discharge rates (McCormick et al., 1998;
Whalen et al., 1999; Zydlewski et al., 2005; Teichert et al.,
2020; Frechette et al., 2022). Predictive models suggest that
the mean temperature in the first 90 days of the year is a signif-
icant driver of the variation in onset of smolt migration timing
across streams within a watershed (Frechette et al., 2022).
The survival success of the downstream migrants is also
known to be dictated by environmental temperatures, and the
smolts’ ability to meet certain ‘smoltification windows’ that
are largely driven by temperature (McCormick et al., 1997).
While Atlantic salmon smolt migration generally occurs when
water temperature remains < 15◦C, cases of exposure to
much warmer water temperatures are beginning to emerge.
For example, in hydropower regulated rivers in the southern
range of the species, it is not uncommon that the water
temperature rises > 20◦C towards the end of smolt migration
period, especially for smolts for which efficient migration is
delayed by downstream passage issues at hydropower dams
(e.g. Babin et al., 2020). Similar ‘high-temperature events’
during smolt migration have also recently been observed in
unregulated natural rivers such as the Petitcodiac River in
eastern Canada where water temperature rapidly exceeded
20◦C during the peak of the smolt migration (personal com-
munication, K. Samways, University of New Brunswick), or
may occur when smolts are being trapped in downstream
by-pass holding tanks with a smaller water volume while
waiting for handling or transport downstream (MacLean,
2023). Exposure to rapidly changing and cycling tempera-
tures is likely to become more common in the future due to
warming climate scenarios (Borggaard et al., 2019; Thorstad
et al., 2021; IPCC, 2022). Currently, in both the Atlantic
salmon parr and smolt life stages, the effects of growth and
metabolism under these conditions remain untested.
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In this study, we investigated how wild Atlantic salmon
parr and smolt growth and development differ at two
ecologically relevant diel thermal cycles: 16–21 vs 19–
24◦C. We chose these thermal cycles as they reflect natural
summer temperature conditions that are readily observed in
both cool and relatively warmer rivers in Atlantic Canada
(Caissie et al., 2013), while simultaneously representing a
possible transition from ‘optimal’ to ‘physiologically stressful’
conditions, respectively (see e.g. Elliott and Elliott, 2010;
Breau et al., 2011). We focused on comparing growth of
salmon from the Miramichi River (a relatively ‘warmer’ river)
to those from an on average ∼4◦C cooler, neighbouring
Atlantic salmon-producing river system, the Restigouche
River (Caissie et al., 2013). We predicted that Restigouche
salmon, compared to Miramichi salmon, would develop more
poorly, and grow more slowly at 19–24◦C (vs 16–21◦C)
because this warmer thermal cycle is currently beyond the
temperatures they typically experience in their natal river,
but could represent a future warmer river scenario. We also
predicted that Miramichi salmon would develop and grow
poorly at 19–24◦C (vs 16–21◦C) but to a much lesser extent
compared to the Restigouche fish owing to their warmer natal
environment. The assessment was done primarily to obtain a
better understanding of between-population differences in the
parr life stage. However, we continued the assessment using
the same thermal comparisons through the smolt life stage,
realizing that this thermal exposure is currently rare for wild
smolts, but not unforeseen during natural smolt migration
period especially considering future climate change scenarios.
In addition, some of the southernmost populations of Atlantic
salmon smolts in Maine, USA, are already migrating in these
warmer temperatures (personal communication, G. Goulette,
NOAA). We assessed salmon growth rate, Fulton’s condition
factor, anaerobic performance and ability to tolerate acute
warm exposures.

Materials and Methods
Animal collection, care and acclimation
We collected a total of 200 wild Atlantic salmon (age 1+ and
2+; parr that had spent two or three summers in the freshwa-
ter streams, respectively) from the Rocky Brook (n = 100; an
∼500-m section of third-order stream of the Miramichi River
at the collection site 46◦43′2.34′′N; 66◦38′58.17′′W) in Octo-
ber 2018 and the Chain of Rocks Brook (n = 100; an ∼500-m
section of a third-order stream of the Restigouche River at the
collection site; 47◦57′54.9′′N; 67◦11′43.0′′W) in September
2019 by electrofishing over 2 days (Fisheries and Oceans
Canada (DFO) permits SG-RHQ-18-158 and 20 190 812-
009-01-S-P, respectively). We transported the salmon parr
to the Crabtree Aqualab at Mount Allison University (NB,
Canada) using a 750-L insulated transport tank filled with
river water (∼15◦C), which was kept oxygenated by period-
ically injecting oxygen as required to maintain a minimum
oxygen saturation of 9 mg/L. Upon arrival, we transferred
the salmon parr into 300-L circular fibreglass tanks (60 cm

tall, 92 cm diameter). We provided tanks with recirculating
freshwater, at a 12:12 light/dark photoperiod. We initially fed
salmon to satiation once daily with a diet of crushed freeze-
dried krill to mimic more natural food as they do not directly
take commercial fish pellets. We gradually transitioned their
diet to pelleted feeds (EWOS Enviroclean pigmented pel-
lets) by mixing it in with the freeze-dried krill at increas-
ing concentrations. After 1 month of laboratory acclimation
at 16–21◦C, we tagged each salmon with a unique visible
implant elastomer (Northwest Marine Technology) in their
dorsal fin. Subsequently, we divided salmon into different
tanks based on their river origin and designated acclimation
temperatures (the 16–21 or 19–24◦C diel thermal cycle). We
simulated diel thermal cycles with a temperature change rate
of ∼0.42◦C h−1, a temperature maximum at 19:00 h and
minimum at ∼07:00 h. Mid-daylight temperatures at 13:00
and mid-nighttime temperatures at 1:00 were 18.5◦C and
21.5◦C, respectively. We acclimated salmon to these thermal
conditions for at least 1 month after tagging before conduct-
ing further experiments. All care and subsequent experimental
procedures were approved by Mount Allison Animal Care
Committee following guidelines from Canadian Council on
Animal Care (protocol #101929).

Experimental methods: growth,
development and survivorship
Approximately once a month from 15 November 2018 to 25
September 2019 for Miramichi fish and 15 October 2019
to 23 April 2020 for Restigouche fish, we measured and
recorded salmon mass, fork length and life stage, and cal-
culated their growth rate (% body mass (BM) day−1) and
Fulton’s condition factor (k; Eq. 1). Before each measurement,
we fasted the salmon for 24 h then anesthetized them in
a 5-L solution of 0.1 g L−1 tricaine mesylate buffered with
0.2 g L−1 sodium bicarbonate. Once anesthetized, weighed
and measured, we screened individuals for the presence or
absence of sexual precocity and classified their life stage (parr,
transitioning to smolt or full smolt). Salmon with a distinct
silvery body without parr marks were considered smolts
(McCormick, 2012). Any fish mortalities were recorded daily
throughout the experiment.

K = Mass (g)

Fork length(mm)3
· 105 (1)

Anaerobic capacity
We assessed anaerobic capacity by chasing fish (parr [n = 7–
11] and smolts [n = 7–8] from each combination of tem-
perature and river origin; see figures for exact n for each
treatment) and recording the time taken until they exhaust
(‘Time to Exhaustion’; Kelly et al., 2014). Unique individ-
uals were used for each trial and fish were not repeatedly
measured. Individuals were chased in a bucket (42 cm high,
48 cm diameter) filled with continuously aerated water at
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18.5 or 21.5◦C for salmon acclimated to 16–21 or 19–
24◦C cycles, respectively. We chased salmon by pinching their
tail periodically until they were exhausted (unresponsive and
can be emersed for 5 s without struggling). After the chase
test, salmon were allowed to rest for 3–5 min before being
returned to their original acclimation tank.

Acute thermal tolerance
We assessed acute thermal tolerance (CTmax) (Desforges et al.,
2023) in parr (n = 6–11) and smolts (n = 8) sampled from each
combination of acclimation temperature and river origin.
Unique individuals were used for each trial and fish were not
repeatedly measured. We first removed fish from their 16–21
or 19–24◦C acclimation tank into 18.5 or 21.5◦C (the mean
of each thermal cycle) aerated water baths, respectively. The
water bath was then warmed by 0.3◦C per minute and CTmax
was defined as the temperature where fish lost equilibrium
(Corey et al., 2017; Morgan et al., 2018). Salmon were
then transferred to a cool (16◦C), aerated recovery bucket
until they regained equilibrium before being returned to their
original acclimation tank.

Due to a mechanical failure within our recirculation sys-
tem, the Restigouche River smolts died prior to the comple-
tion of the time to exhaustion and CTmax tests. Therefore, no
data are available for these two metrics for this group.

Statistical analysis
We conducted all statistical analyses in R (2021; version
3.6.2).

Growth rate
We first related salmon mass (response variable) to growth
time (continuous predictor), acclimation temperature and
river origin (categorical predictors) using linear mixed-effects
model fitted with the function ‘lme’ (Pinheiro et al., 2016). We
then tested the significance (α = 0.05) of each predictor and
their interaction on growth rate (model slope) using ANOVA
(Type-III). We fit separate growth models for parr and smolts
due to potentially different growth behaviour between life
stages. For further insights into the effect of temperature, we
compared growth rates of 16–21 and 19–24◦C acclimated
salmon from each origin and life stage combination, using
pairwise t-tests. We accounted for the multiplicity of such tests
by adjusting their significance or alpha level (from α = 0.05
into αadj) using the Benjamini–Hochberg (BH) procedure with
a false discovery rate of 0.05.

Survivorship
We compared survivorship of salmon from different origins
and acclimation temperatures, by comparing (pairwise) their
specific Kaplan–Meier survival curves using log-rank tests
(Therneau, 2021). To account for the multiplicity of tests, we
adjusted alpha levels based on the BH procedure described
above.

Condition factor (k)
We analysed how condition factor (response variable)
depended on sampling day, acclimation temperature and their
interactions (all categorical factors) using a non-parametric
approach due to violations of assumptions, specifically using
the ‘nparLD’ model (Noguchi et al., 2012). We fit one
‘nparLD’ model for each origin that had different sampling
days. At each time point, we additionally tested for the effect
of temperature on condition factor of each origin group, using
Mann–Whitney U tests. We adjusted alpha levels using the
BH procedure, as above.

Time to exhaustion and CTmax

We first analysed how ‘Time to Exhaustion’ and CTmax
(response variables) were affected by acclimation temperature
(first factor), and the specific combination of salmon origin
and life stage (second factor). This combination method
allowed us to conduct our analysis without data from Res-
tigouche smolts that were omitted to avoid temperature bias
due to the lack of data from 16–21◦C smolts. However, since
temperature was found to be statistically insignificant for
‘Time to Exhaustion’, we omitted temperature as a factor
in the ‘Time to Exhaustion’ model. The insignificance of
temperature indicates that the available 19–24◦C data for
Restigouche smolts can be a fair representative for the smolts
and Restigouche group. Using the 19–24◦C data for Res-
tigouche smolts, a subsequent analysis was conducted with
only Life Stage and Origin as factors to ‘Time to Exhaustion’.
We assessed significance (α = 0.05) of all factors to CTmax and
time to exhaustion non-parametrically using permutation-
based ANOVA (Type-III) with the function ‘aovp’ (Wheeler
and Torchiano, 2016).

Results
Growth rate
Salmon grew exponentially over time at rates that varied
depending on acclimation temperature cycle for smolts (Time:
Acclimation temp; P = 0.001) and river origin for parr (Time:
Origin; P = 0.009; Supplementary Table S1; Fig. 1). Parr from
the Miramichi River, on average, grew 32% faster, at 1.11%
BM day−1 vs 0.81% BM day−1 for Restigouche parr (Table 1).
Parr from both origins grew at rates that were not signifi-
cantly different between acclimate temperature cycles (Time:
Acclimation temp: Origin; P = 0.905), unlike smolts (Time:
Acclimation temp: Origin; P = 0.005). Smolts from the Res-
tigouche River at 19–24◦C grew ∼38% slower at 0.90% BM
day−1 compared to 1.31% BM day−1 at 16–21◦C (P < 0.001).
In contrast, smolts from the Miramichi grew only marginally
slower at 19–24 (−8%) than 16–21◦C (P = 0.03).

Survivorship
Restigouche salmon parr and smolt life stages were less
likely to survive at the warmer 19–24◦C compared to
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Figure 1: Growth of Atlantic salmon (Salmo salar) collected from the Miramichi River and Restigouche River acclimated to 16–21◦C (turquoise)
and 19–24◦C (pink) diel thermal cycles, throughout the parr and smolt life stages. Day 0 represents the beginning of the experimental
acclimation of the parr. Boxplots’ central horizontal line represents the median; upper and lower hinges represent first and third quartiles;
whiskers represent maximum/minimum observation within 1.5-fold of the interquartile range. Coloured bands reflect 95% confidence intervals.
P values result from pairwise comparisons of growth rates (slope curve) between temperature groups. Beside each boxplot at the last time point
is the n for that group.

16–21◦C (Fig. 2), with a statistically lower survivorship
curve (P = 0.002; αadj = 0.025; Supplementary Table S2).
Restigouche salmon had a shorter average survival time at
19–24◦C (57 days) than at 16–21◦C (89 days), with fewer
surviving until the end of the experiment (∼40% vs ∼60%,
respectively; Supplementary Table S3). In contrast, Miramichi
salmon had similar odds of surviving 19–24◦C (76%) and 16–
21◦C (71%) until the end of the experiment. For Miramichi
salmon, survival probability across the life cycle did not
significantly differ between the temperature cycles (P = 0.849,
αadj = 0.050).

Fulton’s condition factor (k)
Regardless of river origin, salmon acclimated to 19–24 and
16–21◦C generally had similar condition factors, except at
specific time points for Miramichi fish (Acclimation temp:
Time; P < 0.001; Supplementary Table S4). In each of the
three months (days 174, 202 and 230, respectively) following
smolting (median smolting Day 134), condition factor for
Miramichi salmon was significantly higher in 19–24 than 16–

21◦C (P < αadj; Supplementary Table S5; Fig. 3). Condition
factor then returned to similar values between temperature
cycles, as observed for parr (Days ≤ 139). For Restigouche
salmon, a similar temporal trend in condition factor was
initially observed (Fig. 3). However, we did not observe a
divergence in condition factor between temperature cycles
after smolting occurred in Restigouche salmon, due to early
termination of the project, and not necessarily the absence of
such a phenomenon. We did not find significant differences
between temperature cycles (Acclimation temp; P = 0.483 and
Acclimation temp: Time; P = 0.229) in Restigouche salmon.

Anaerobic capacity
Time to exhaustion appeared independent of acclimation
temperature cycle (Acclimation Temp: P = 0.345; Fig. 4) but
dependent on salmon life stage and origin (Origin & Life
Stage: P < 0.001; Fig. 4). Further analysis showed that origin
was a major driver of the difference in time to exhaustion
(Origin; P < 0.001). On average, Restigouche parr exhausted
after ∼13 min of chasing, significantly longer than the
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Figure 2: Survival probabilities of wild Atlantic salmon (Salmo salar) collected from the relatively warm Miramichi River and the cooler
Restigouche acclimated to 16–21◦C (turquoise) and 19–24◦C (pink) diel thermal cycles. Coloured numbers represent the starting number of fish
for each group. Coloured bands reflect 95% confidence intervals for survival probabilities. Crosses (+) indicate when certain individuals were
withdrawn from the study for reasons unrelated to acclimation temperature cycle; such individuals do not affect survival probability. P values
shown result from log-rank tests comparing survival curves at 16–21 and 19–24◦C. The alpha level (α = 0.05) was adjusted (into αadj) using the
Benjamini–Hochberg procedure to account for multiple pairwise comparisons.

Table 1: Growth rates (% body mass (BM) day−1) for Atlantic salmon (Salmo salar) collected from the
Miramichi River and Restigouche River, acclimated to 16–21 or 19–24◦C diel thermal cycles

Life stage Origin Acclimation
temperature
(◦C)

Growth rate
(%BM day−1)

% Diff. in growth rates
(16–21 vs 19–24◦C)

Parr Miramichi 16–21 1.07 ± 0.21 6.8

19–24 1.15 ± 0.18

Restigouche 16–21 0.78 ± 0.23 6.0

19–24 0.83 ± 0.31

Smolt Miramichi 16–21 0.99 ± 0.05 7.7∗
19–24 0.92 ± 0.05

Restigouche 16–21 1.31 ± 0.12 37.7∗
19–24 0.90 ± 0.20

Growth rate values are presented alongside 95% confidence intervals. Asterisks (∗) denote significant (pairwise t-test;
P < 0.05) differences in growth rates.

∼7-min average for Miramichi parr (permutation-based
test; P = 0.027) and ∼3-min average for Miramichi smolts
(P < 0.001).

Acute thermal tolerance
Acute critical thermal tolerance, as assessed using CTmax
(Fig. 5), was unaffected by salmon river origin and life
stage as a combined factor (Origin & Life Stage; P = 0.238;
Supplementary Table S6), but significantly increased with
warmer cycling acclimation temperatures (Acclimation temp;
P < 0.001). On average, individuals at 19–24◦C (excluding
Restigouche smolts) had a CTmax ∼1◦C higher than those
at 16–21◦C. However, the increase in CTmax in the 19–
24◦C groups was significantly impacted by the interaction of

origin & life stage (Acclimation temp: (Origin & Life Stage);
P = 0.006). Average CTmax at 19–24 (vs 16–21◦C) was higher
by 1.2◦C for Restigouche parr, while this number was only
0.6◦C and 0.5◦C for Miramichi parr and smolts, respectively.

Discussion
Scientists’ understanding on the effects of temperature on
fishes has been largely based on experiments conducted at sta-
ble temperatures, even though natural thermal environments
have clear diel cycles. Here, we investigated the effects of two
ecologically relevant diel thermal cycles (16–21 and 19–24◦C)
on growth and development of wild Atlantic salmon orig-
inating from two thermally distinct and socioeconomically
important rivers in New Brunswick, Canada (Restigouche
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Figure 3: Condition factor (k) of Atlantic salmon (Salmo salar) collected from the Miramichi River and Restigouche River, acclimated to 16–21◦C
(turquoise) and 19–24◦C (pink) diel thermal cycles throughout the parr and smolt life stages. Vertical dashed lines indicate the median date for
parr–smolt transformation. Points represent means; error bars represent 95% confidence interval of means; asterisks mark significant differences
in k between temperature groups assessed using Mann–Whitney U tests with alpha levels adjusted using the Benjamini–Hochberg procedure to
account for multiple pairwise comparisons. Numbers of fish (n) for each treatment groups are shown beside their right-most point.

Figure 4: Time to exhaustion for chased Atlantic salmon (Salmo
salar) collected from the Miramichi and Restigouche River,
acclimated to 16–21◦C (turquoise) and 19–24◦C (pink) diel thermal
cycles, throughout the parr and smolt life stages. Number of fish used
for each group presented along the x-axis. Boxplots’ central
horizontal line represents the median; upper and lower hinges
represent first and third quartiles; whiskers represent the
maximum/minimum observation within 1.5-fold of the interquartile
range. ND denotes no data. P values shown are results from a
permutation-based ANOVA (Type-III) model.

and Miramichi). We found that parr growth was similar
between acclimation temperatures within each river, but Res-
tigouche River parr grew significantly slower than Miramichi
parr. In contrast, growth rate and survivorship for smolts
decreased at 19–24 relative to 16–21◦C in salmon from both
rivers, but particularly for those from the cooler Restigouche
River. Although the 19–24◦C cycle appears to adversely affect
salmon smolt growth, we did not observe any effect of thermal
cycle on overall condition factor (k). Anaerobic performance

Figure 5: CTmax of Atlantic salmon (Salmo salar) collected from the
Miramichi River and Restigouche River acclimated to 16–21◦C
(turquoise) and 19–24◦C (pink) diel thermal cycles throughout the
parr and smolt life stages. Number of fish used for each group
presented on the x-axis. Statistical significance of salmon life stage
and river origin as one factor (P = 0.238), acclimation temperature as
another (P < 0.001), and their interactions (P = 0.006) were assessed
using permutation-based ANOVA (Type-III); analysis excludes data
from Restigouche smolts from either thermal cycle. Boxplots’ central
horizontal line represents the median; upper and lower hinges
represent first and third quartiles; whiskers represent the
maximum/minimum observation within 1.5-fold of the interquartile
range. ND denotes no data.

was also not impacted by different thermal cycles, but Res-
tigouche River salmon took longer to exhaust than those
from the Miramichi. In contrast, CTmax overall was higher in
salmon in the 19–24◦C thermal cycle, but the differences were
dependent on river of origin and life stage. Atlantic salmon
parr from different river systems appear to respond differently
to these relevant thermal cycles for several of the physiological
metrics. The physiological impacts of these thermal cycles on
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fish from different river systems will provide valuable insight
for predicted future warming.

There was no effect of our two natural thermal cycling
acclimation conditions on the growth of salmon parr within
each river of origin. However, parr from the Restigouche
River grew 32% slower than those from the Miramichi on
average. We initially expected an overall decrease in growth
at 19–24◦C based on past research using stable acclimation
temperatures. For example, Norwegian Atlantic salmon parr
acclimated to a range of stable temperatures grew fastest at 16
to 20◦C, above which growth rate declined until it eventually
ceased at 24 to 27◦C (Jonsson et al., 2001). In another study
on European Atlantic salmon parr, growth rate peaked at a
stable 16◦C, then decreased to zero at ∼ 23◦C (Elliott and
Hurley, 1997). However, the optimal temperature for growth
in juvenile salmon, determined under controlled conditions,
is lower, ranging from 15 to 20◦C (Elliott and Hurley, 1997;
Jonsson et al., 2001; Elliott and Elliott, 2010). In another
study, the thermal optimum (Topt) for Atlantic salmon parr
was determined to be 15–19◦C (Gillis et al., 2023). These
differences between our study and others could possibly be
due to feed availability and consumption. Laboratory exper-
iments may also underestimate the effects of climate change
on Topt when compared to field-based measurements where
things like food availability are not controlled (Childress and
Letcher, 2017). Here, we fed the fish ad libitum each day
so food would not be a constraining factor. In addition, our
warmest thermal cycle was within the upper thermal limit for
juvenile salmon feeding in the laboratory or the wild (22–
24◦C; Cunjak et al., 1993; Breau et al., 2011). Smaller ration
size can decrease the Topt for growth in salmonids (Brett et
al., 1969; Elliott, 1976); therefore, our high rate of feeding
may have increased the Topt for growth in the laboratory.

It is also possible that the salmon in this study possessed
a relatively broad Topt range following acclimation to our
variable thermal environments, and this may help explain the
similar growth rates of parr from a given river of origin at
16–21 and 19–24◦C. Diel thermal cycles tend to broaden
the optimum thermal range for maximum performance as
shown in green sturgeon (Acipenser medirostris; Rodgers et
al., 2018) and alpine newt larvae (Triturus alpetris; Měráková
and Gvoždík, 2009). However, cycles also reduce maximum
performance in fruit flies (Drosophila melanogaster; Kjaers-
gaard et al., 2012) and a frog species (Bombina orientalis;
Arrighi et al., 2013). It is possible that animals in diel thermal
cycling environments benefit from a wider thermal perfor-
mance curve (da Silva et al., 2019), adopting a more thermal
generalist strategy vs thermal specialist (Rodgers et al., 2018).
The thermal generalist strategy may be used by our salmon
parr, explaining their similar growth rate at 16–21 and 19–
24◦C. Alternatively, if the Topt lies in the overlapping range of
our thermal cycles (19–21◦C), then both groups would have
been exposed to their Topt for similar amounts of time each
day enabling them to grow at similar rates.

Local adaptation to distinct thermal environments may
also explain why our Atlantic salmon parr did not exhibit a

decreased growth rate at 19–24◦C as predicted by previous
studies of Atlantic salmon from European origins (Elliott
and Hurley, 1997; Jonsson et al., 2001). Different habitats
are expected to exert different selection pressures leading to
different genotypic adaptations in salmonids (Dionne et al.,
2009; Weitemier et al., 2021; Zillig et al., 2021). The extent of
local adaptation for salmon populations has been extensively
discussed (in Garcia de Leaniz et al., 2007; Fraser et al.,
2011; Primmer, 2011), and evidence for its occurrence has
surfaced based on comparisons of physiology or genomics
of adult (Taylor, 1991; Lee et al., 2003; Unwin et al., 2003)
and juvenile (Zillig et al., 2023) salmon from different loca-
tions. For example, Sockeye salmon (Oncorhynchus nerka)
from warmer environments tend to have better swim perfor-
mance at warmer temperatures (Eliason et al., 2011). Atlantic
salmon from warmer southern rivers possessed hearts more
tolerant to acute warming (Gradil et al., 2016, North Amer-
ican salmon) and cardiac capacity or maximum heart rate
was also increased after warm acclimation (Anttila et al.,
2014, European salmon). The Atlantic salmon used in this
study were a population from the warmer Miramichi River
(summer Tmean 16–19◦C; Caissie et al., 2013) compared to
English and Norwegian rivers (summer Tmean 9–16◦C; Elliott
and Hurley, 1997; Jonsson et al., 2001) where most previous
growth rate studies were conducted. We hypothesize that
Miramichi River salmon may have developed the capability
to continue to grow during the warmer summer conditions
(19–24◦C) compared to the Restigouche salmon. However, it
is unclear whether such capability arises due to changes in
genetics (local adaptation) or phenotypic plasticity (acclima-
tion capacity) that arise from differences in developmental
temperature (Zillig et al., 2021; Andrews, 2008; Jonsson
and Jonsson, 2011). Historically, evidence for local thermal
adaptation for growth rate of Atlantic salmon, based on
individuals incubated at similar temperatures then acclimated
to different stable temperatures, is lacking (Jonsson et al.,
2001). The unimpaired growth of our salmon parr in labo-
ratory conditions at 19–24 (vs 16–21◦C) suggests that local
thermal adaptation took place. Further study is needed to
understand the facilitating mechanism and the variability of
the capacity for Atlantic salmon to adapt to local watershed
conditions and will be important for developing population-
specific management practices (Gayeski et al., 2018; Zillig et
al., 2021). This is especially important in systems such as the
Miramichi where a previous long history of supplementation
(i.e. stocking) may have influenced the once natural patterns
of local adaptation (Wellband et al., 2019). It is also important
to keep in mind that the availability and development/e-
mergence rates of prey, mainly different macroinvertebrates,
also respond to water temperature, so the effects of different
temperature regimes on parr growth may manifest differently
in situ vs in a laboratory study.

In a more local context, we also found that salmon
parr from the cooler Restigouche River overall grew
significantly slower than those from the Miramichi. Growth
of Restigouche smolts decreased significantly at 19–24◦C
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compared to smolts from the Miramichi. Restigouche salmon,
which are genetically distinct from salmon populations in
other river systems across Atlantic Canada (Dionne et al.,
2009), inhabit a river system that is generally ∼4◦C cooler
than the Miramichi (Caissie et al., 2013). Their cooler habitat
potentially reduces the need for an ability to grow optimally
at warm temperatures, explaining the lower growth rate in
parr compared to the Miramichi salmon and the reduction
in their growth and survival rate in smolts at 19–24◦C.
Notably, we only observed the warm-associated decrease
in growth rate in the smolt life stage. From a physiological
perspective, older and larger fishes are generally believed
to have reduced thermal tolerance (Cuenco et al., 1985;
Bjornsson et al., 2001; Morita et al., 2010; Audzijonyte et
al., 2020; Turko et al., 2020; McKenzie et al., 2021). From
an ecological perspective, smolts leave the Restigouche River
from the middle of May to late June at 6–16◦C (Peppar, 1982),
so it is unlikely that they would typically experience these
temperatures in the wild at present. Regardless, our findings
revealed the greater vulnerability of Restigouche salmon to
warmer and relevant thermal cycles, which will be important
to consider for the predicted warming climate. Indeed,
Atlantic salmon in the Northeast United States Shelf have
been assessed to have extremely high biological sensitivity
and climate exposure making them vulnerable to changes in
population productivity (Hare et al., 2016). Our data will
contribute to a knowledge base on the effects of climate
warming on Atlantic salmon, which has been identified as
an area of uncertainty in climate change predictions for
this species (Borggaard et al., 2019; Kocik et al., 2022;
Henderson et al., 2023).

Despite differences in growth, overall condition factor
throughout the growth periods remained unaffected by accli-
mation to either thermal cycle or between rivers. Our Atlantic
salmon kept high Fulton’s condition (>1) even at the warm
19–24◦C across both parr and smolt developmental stages.
However, we did note that Miramichi salmon at 19–24◦C
maintained a higher Fulton’s condition in the few months
after parr–smolt transformation compared to those at 16–
21◦C. Fulton’s condition factor has been a popular indicator
of proximate body composition and overall fish condition
(Baxter, 1998; Jin et al., 2015; Naeem et al., 2016). Typically,
it decreases in fish in unfavourable environments (Árnason et
al., 2009; Mazumder et al., 2016; Hvas et al., 2017; Castaldo
et al., 2021). A general decline in Fulton’s condition during
the post-smolt period may be attributed to the parr–smolt
transformation as it has also been observed previously after
smoltification (Shrimpton et al., 2000; Stefansson et al., 2008;
Codabaccus et al., 2011). The extent of decline in Fulton’s
condition during this period, differing between anadromous
vs landlocked populations (McCormick et al., 2019), has been
associated with differences in gill Na+/K+-ATPase (NKA)
activity and NKAα1b essential for successful sea-entry of
salmon (Björnsson et al., 1989; McCormick et al., 2019;
Nisembaum et al., 2020), and not necessarily their overall
condition. Based on these studies, it is difficult to attribute
differences in Fulton’s condition observed in the few months

post-smolt as an indication of poorer condition at 19–24◦C;
such differences may instead suggest a temperature-sensitive
smolting process for Atlantic salmon (Handeland et al., 2000;
Imsland et al., 2014). It is also important to note that these fish
remained in freshwater during this period. Fish with higher
Fulton’s condition tend to possess greater acute thermal and
hypoxia tolerance, and energy reserves (Mozsár et al., 2015;
Gallant et al., 2017; Rees and Matute, 2018; Turko et al.,
2020) that may lead to increased physiological performance,
but this was not tested here.

Despite differences in growth and some changes to Fulton’s
condition throughout development, we did not observe any
differences in anaerobic performance at the warm acclimation
temperature cycle. The effects of different stable acclimation
temperatures on fish anaerobic performance appear to be
variable/inconsistent (Kieffer, 2000). The fuel for anaerobic
activity, white muscle glycogen, generally remains at similar
levels regardless of stable acclimation temperature (Kieffer
et al., 1994; Kieffer and Tufts, 1998; Day and Butler,
2005), although there are exceptions (Wilkie et al., 1996).
Warming increased burst swimming speed in striped mullet
(Muglis cephalus; Rulifson, 1977) and goldfish (Carassius
auratus; Johnson and Bennett, 1995), but not consistently
in threespine sticklebacks (Gasterosteus aculeatus; Guderley
et al., 2001), and there was no effect on Atlantic salmon
parr (Zathey, 2018). Furthermore, the time to exhaustion
was not affected by acclimation temperature for four lake
trout populations (Salvelinus namaycush; Kelly et al., 2014).
Notably, these studies used fish acclimated to stable temper-
atures, which may be different physiologically compared to
those acclimated to ecologically relevant diel thermal cycles
(Oligny-Hébert et al., 2015; Morash et al., 2018; Rodgers et
al., 2018). We showed that 16–21 and 19–24◦C diel thermal
cycles did not affect the time to exhaustion of Atlantic
salmon, indicating unchanged anaerobic performance that
could be important in overcoming velocity barriers, prey
capture, and escaping predators. However, despite no effect
of thermal acclimation on anaerobic performance, there
would likely be differences in their aerobic capacity due
to the thermal influences on aerobic metabolism (Pörtner
and Knust, 2007). A warmer thermal acclimation profile
may increase metabolic demands that might not be met by
their capacity for oxygen uptake, which may force them to
rely on anaerobic processes/substrates sooner than at cooler
acclimation temperatures. Where anaerobic substrates are
limiting, this could potentially limit repeat bouts of anaerobic
activity at warmer temperatures.

Although time to exhaustion did not vary with acclima-
tion temperature, it is overall higher in Restigouche salmon
parr compared to those from the Miramichi. Variations in
anaerobic capacity between fish populations are thought to
be linked with differences in natal environment hydrology
and predatory intensity (O’Steen et al., 2002; Langerhans
and DeWitt, 2004) and not necessarily to temperature. For
example, mosquitofish (Gambusia affinis) in environments
with larger predators have been found to have faster burst
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swim speed (Langerhans et al., 2004). Similarly, Coho salmon
(Oncorhynchus kisutch) in coastal areas, presumed to be more
predator dense, have a higher burst swim speed compared
to those in interior zones (Taylor and McPhail, 1985). In
addition, domesticated rainbow trout (Oncorhynchus mykiss)
have reduced burst swimming performance compared to their
wild counterparts (Bellinger et al., 2014). The higher anaero-
bic performance of Restigouche salmon may be the result of
differences in their natal environment that is not temperature
related. This possibility awaits further investigation.

Acute thermal tolerance (as measured through CTmax)
increased with warmer acclimation temperature as is typically
observed in several species (Zhang and Kieffer, 2014; Comte
and Olden 2016; Corey et al., 2017). The CTmax of Res-
tigouche and Miramichi salmon increased by ∼0.5 and 1.2◦C,
respectively, for the +3◦C warmer acclimation cycle, which is
about the typical expected increase in CTmax for every 3◦C
found in other fishes (0.9–1.2; Beitinger et al., 2000; Comte
and Olden 2016; Morley et al., 2019). For some fishes under
warm temperatures, CTmax increased only slightly with warm
acclimation (Morrison et al., 2020; Reid and Riccairdi 2021),
which could indicate that the fish is approaching its thermal
ceiling and is unable to adjust CTmax. Our data indicate that
our temperature cycles were within the thermal breadth of
performance for Atlantic salmon in both tested populations.

In conclusion, we found that the effects of these two eco-
logically relevant thermal cycles on growth and physiological
performance were impacted by both river of origin and life
stage of the salmon. Salmon parr within each river system
appear to be able to grow just as well when exposed to
chronically cooler or warmer thermal cycles, which contra-
dicts the predicted decline in growth rate from research using
stable temperature acclimations. However, overall growth of
salmon from the cooler Restigouche River was significantly
slower despite common conditions. These differences could
be suggestive of local adaptation to distinct thermal regimes
between these salmon populations. In addition, smolts from
the Restigouche River appear to be more vulnerable to
warmer thermal cycles than those in the Miramichi. The
temperatures used in this experiment are currently unlikely
to be experienced by smolts in either river; however, future
changes in climate and/or anthropogenic changes to river
structures that inhibit or slow smolt downstream passage
could make this a reality in the future. Together, our findings
should inform evidence-based decision-making in support of
a river-by-river conservation approach for Atlantic salmon
in the Gulf region. It is unknown if local thermal adaptation
occurs across all/most Canadian Atlantic salmon populations,
and this could be a rewarding area for future research.
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