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Abstract

Gathering information from the scientific literature is essential for biomedical research,

as much knowledge is conveyed through publications. However, the large and rapidly

increasing publication rate makes it impractical for researchers to quickly identify all and

only those documents related to their interest. As such, automated biomedical document

classification attracts much interest. Such classification is critical in the curation of

biological databases, because biocurators must scan through a vast number of articles

to identify pertinent information within documents most relevant to the database. This

is a slow, labor-intensive process that can benefit from effective automation.

We present a document classification scheme aiming to identify papers containing infor-

mation relevant to a specific topic, among a large collection of articles, for supporting the

biocuration classification task. Our framework is based on a meta-classification scheme

we have introduced before; here we incorporate into it features gathered from figure

captions, in addition to those obtained from titles and abstracts. We trained and tested

our classifier over a large imbalanced dataset, originally curated by the Gene Expression

Database (GXD). GXD collects all the gene expression information in the Mouse Genome

Informatics (MGI) resource. As part of the MGI literature classification pipeline, GXD

curators identify MGI-selected papers that are relevant for GXD. The dataset consists of

∼60 000 documents (5469 labeled as relevant; 52 866 as irrelevant), gathered throughout

2012–2016, in which each document is represented by the text of its title, abstract and

figure captions. Our classifier attains precision 0.698, recall 0.784, f -measure 0.738 and

Matthews correlation coefficient 0.711, demonstrating that the proposed framework

effectively addresses the high imbalance in the GXD classification task. Moreover, our

classifier’s performance is significantly improved by utilizing information from image
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captions compared to using titles and abstracts alone; this observation clearly demon-

strates that image captions provide substantial information for supporting biomedical

document classification and curation.

Database URL:

Introduction

Knowledge-based biodatabases, e.g. Mouse Genome
Informatics (MGI) (19) and WormBase (31), provide
highly precise and well-organized information for sup-
porting biomedical research. Much information in such
biodatabases is manually collected and curated from the
literature by domain experts. Typically, curators first need
to scan through a vast number of publications to identify
those articles that are most relevant to the database—in a
process known as triage. Once the publications are selected
based on assessing the full text of the documents, curators
annotate detailed information within the text. However, the
large and rapidly increasing volume of published articles
and the limited ability of curators to quickly find all the
relevant documents related to their topic of interest create
a bottleneck in updating biodatabases with novel findings
(3). One way to address this challenge is through automated
document classification, that is, categorization of a large
collection of articles by relevance to a specific topic. Such
document classification can provide efficient and effective
means to support the labor-intensive manual triage process.
Hence, automated biomedical document classification is a
topic of much recent research (1,5,15,20).

Much work aimed to address biomedical document
classification over the past decade. The majority of the pro-
posed methods focus only on information extracted from
the title and abstract of the publications (1,6,8,9,11,12). For
instance, Almeida et al. (1) employed various classifiers (i.e.
Naïve Bayes, support vector machine) over a set of PubMed
abstracts for addressing triage in the mycoCLAP database,
which comprise articles discussing fungal proteins. Simon
et al. (28) presented an online available tool, BioReader,
that enables users to perform document classification using
different algorithms over their own corpus.

However, as our group and several others have noted
before (17,25,26), images convey essential information in
biomedical publications. Accordingly, the image caption,
which is a brief summary of the image, often contains
significant and useful information for determining the topic
discussed in publications. As such, several studies started
incorporating information obtained from the captions for
supporting document classification (5,13,14). Notably,
most biomedical publications are stored in Portable
Document Format (PDF), from which effective extraction
of image captions is challenging. The PMC Author

Manuscript Collection (24) provides a limited number of
publications in plain text format, where figure captions are
readily available for download.

In our own preliminary work (13), we presented an
effective classification scheme for supporting triage in the
Gene Expression Database (GXD), which aims to partition
the set of publications examined by MGI into those that
are relevant to GXD vs. those that are not. In that study,
we trained and tested our classifier over a relatively small
dataset of ∼3000 documents, harvested from PMC, for
which figure captions were available in addition to the
titles and the abstracts. The proposed framework used
a variety of features obtained from the different parts
of the publication to assess the impact of using captions
vs. title-and-abstracts only. Our classifier clearly showed
improved performance by utilizing information from cap-
tions, titles and abstracts (0.876 precision, 0.829 recall and
0.852 f-measure) compared to using title and abstract alone
(∼0.770 precision, recall and f -measure). That early study
has shown initial results, demonstrating the utility of image
captions as an important evidence source for automatically
determining the relevance of biomedical publications to
a specific area. However, as noted above, the number of
publications whose image captions are readily accessible
(through PMC) is limited.

Another work using image captions as an aid for classifi-
cation of a small dataset of ∼1000 document, was reported
by Burns et al. (5). They investigated the application of sev-
eral word embedding methods including GloVe (22), Fast-
Text (4) and ELMo (23), combined with different neural
network configurations for identifying scientific literature
containing information about molecular interaction. The
best performance attained over this small dataset was 0.820
accuracy. We note that the ‘black-box’ nature of neural-
network classification systems makes the results hard to
interpret, explain or justify, and as such—not as suitable
for supporting a biocuration pipeline.

Notably, the above two classifiers were only applied
to balanced datasets, in which all classes are of similar
size. However, biomedical data sets are typically highly
imbalanced, where relatively few publications within a large
volume of literature are actually relevant to any specific
topic of interest. Therefore, addressing class imbalance is
essential for building practical classifiers in the context of
biocuration triage.
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Sampling strategies, which balance the number of
instances in each class by either removing data from
the majority class (under-sampling) or adding artificially
generated data into the minority class (over-sampling),
have been widely used in document classification in the
face of data imbalance. In our preliminary work (12),
we proposed a modified meta-classification scheme using
a clustered-based under-sampling for addressing class
imbalance. The presented under-sampling strategy employs
K-means clustering to partition the majority class into
subsets of documents, each covering a cohesive sub-area
that has the potential to be individually distinguished from
the minority class. Our reported performance over a set
of ∼90 000 PubMed abstracts with an imbalance ratio
(i.e. the ratio between the number of minority to that of
majority instances) of ∼1:6, was 0.719 precision, 0.791
recall, 0.753 f -measure and 0.711 Matthews correlation
coefficient (MCC) (18).

Given the importance of image captions for supporting
triage, in this work we aim to integrate the information
from captions into our preliminary classification frame-
work described above, in order to develop an effective
classifier that supports the triage task in GXD under class
imbalance. Our reported performance over a large well-
curated dataset consisting of ∼60 000 PDF documents with
a higher imbalance ratio of ∼1:10 is 0.698 precision, 0.784
recall, 0.738 f -measure and 0.711 MCC. The experimental
results demonstrate that by integrating information from
captions, our classification scheme can effectively address
an actual triage task in the face of data imbalance. Notably,
our classifier is more efficiently applicable to biocuration
triage compared to a previous proposed neural-network
classifier (5) (see Section 3). Moreover, our statistical feature
selection identifies significant terms that support the classi-
fication decision, thus making the class assignment easily
interpretable.

Materials and methods

Data

In this work, we propose a binary document classifier
using information gathered from the title, abstract and
image captions to automatically identify the articles that
are relevant to GXD within the MGI database. We train
and test our classification framework over a large collec-
tion of publications curated by MGI throughout the years
2012–2016.

As the title and abstract parts of the scientific publica-
tions are readily available, we first download those from
PubMed for each article examined by MGI for curation. As
mentioned in the Introduction section, the full text of most

publications is stored in PDF. To harvest image captions
of all the publications curated by MGI that are available
only in PDF, we applied PDFigCapX (16), a tool developed
by our group, to extract images and their corresponding
captions from the files. We thus constructed a dataset com-
prising 58 362 documents, where each document consists
of a title, an abstract and captions for all images within
the respective publication. Among these documents, 5496
are labeled as relevant to GXD comprising the relevant
set, while the remaining 52 866 are labeled as irrelevant,
comprising the irrelevant set. The imbalance ratio, as noted
earlier, is ∼1:10.

Classification scheme

To address triage in the face of a large, imbalanced dataset,
we follow the approach described in our earlier work (12).
The proposed classification framework employs a meta-
classification scheme, which combines the results produced
by multiple simple classifiers (referred to as base-classifiers)
into a single classifier (referred to as meta-classifier) to
assign the final class labels to documents.

To train the base-classifiers, we first partition the irrel-
evant set into subsets using under-sampling to reduce the
gap between the number of relevant articles and that of
irrelevant ones. As we noted, the large irrelevant set covers a
variety of distinct sub-areas (e.g. mutant alleles and pheno-
types, Gene Ontology, tumor biology and quantitative trait
loci), where each sub-area forms its own cohesive subset.
Therefore, each such subset has the potential to be distinct
from the set of relevant documents. Hence, we employ a
cluster-based under-sampling strategy over the irrelevant
set to split the irrelevant class into heterogeneous subsets,
rather than the widely used random under-sampling strat-
egy. Notably, as the motivation for the under-sampling step
is to balance the size of each irrelevant subset with that
of the relevant class, the number of clusters is determined
based on the imbalance ratio within the dataset. Cluster-
based under-sampling partitions the irrelevant class into
topically coherent clusters, where each cluster corresponds
to a subset of irrelevant documents covering a distinct
topic; each such subset can be distinguished from the set of
relevant documents by training an effective base-classifier.

Specifically, we employ K-means clustering (2) to parti-
tion the irrelevant set into k clusters, using cosine distance
as the similarity measure. As such, the large collection of
irrelevant documents is divided into k subsets, each dis-
cussing a distinct sub-area. We then train k base-classifiers,
each used to distinguish the relevant set from one of the
k irrelevant subsets. As mentioned before, k is determined
based on the imbalance ratio, which is ∼1:10 within our
complete dataset. We ran experiments modifying k in the
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Figure 1. Our classification framework. The irrelevant class is partitioned into k (k = 8) subsets using K means clustering. Each such subset along

with the relevant set are used to train eight base-classifiers. The results obtained from the base-classifiers are then used by the meta-classifier to

assign the final class label to each document.

range 8–10. Best performance was attained when k = 8, and
thus we set the number of clusters k to 8 in the work
reported here. We use Random Forest classifiers (10) as
base-classifiers and support vector machines (SVMs) (7)
for the meta-classification, as this configuration has proven
effective in our earlier work (12). Figure 1 summarizes our
classification framework.

Document representation

K-means clustering is employed over the complete irrelevant
set, while the base-classifiers aim to distinguish each of the
irrelevant subsets from the same relevant set. We thus utilize
different feature selection steps to represent documents
when applying the K-means clustering from those employed
for the base-classifier training/testing, as discussed below.

Our initial document representation is a variation of the
bag-of-words model used in our earlier work, utilizing both
unigrams and bigrams. Using a limited number of features
to represent documents has proven effective in classification
(27). To reduce the number of features, we first identify
all gene, enzyme, protein, mutation and anatomy concepts
using the publicly available biomedical annotation tools
Pubtator (30) and BeCAS (21). We then substitute all gene
and protein concepts by the generic term PRGE, while the
specific mentions of enzyme, mutation and anatomy are
similarly replaced by the generic term ENZI, MUTN and
ANAT, respectively. We also remove standard stop words,
single letters, rare terms and overly frequent terms (see
details in (12)). The Z-score test, which we used in our
earlier work, is then employed to select the features whose
probability to occur within relevant documents Pr(t|Drel)
is statistically significantly different from that within irrel-
evant articles Pr(t|Dirrl). The higher the absolute value of
the Z-score, the more significant the difference is between
Pr(t|Drel) and Pr(t|Dirrl). Thus, we consider a term t to be
distinguishing with respect to our triage task only if the

absolute value of its respective Z-score is >1.96 (which
translates to P < 0.05 (29)).

To employ K-means clustering over the irrelevant class,
each document in the irrelevant training set is represented
as an m-dimensional binary vector of the form Vd =〈
Vd

1 , Vd
2 , . . . , Vd

m

〉
, where m is the number of distinguishing

features identified through the above feature selection, and
Vd

i = 1if the ith term appears in the document d, Vd
i = 0

otherwise.
Notably, the above process is applied to the whole

training set, selecting salient features for separating GXD-
relevant documents from all other articles. As each base-
classifier aims to distinguish between only one cohesive
irrelevant subset and the relevant set, we employ the above
feature selection strategy over each subset of documents
used for training the corresponding base-classifier, with
respect to the single set of relevant documents. Table 1
shows examples of distinguishing terms, selected through
the above process, for each of the base-classifiers.

The number of features selected (∼19 000) for each
base-classifier training/testing is still high given the number
of documents in the training set (<8500 for each base-
classifier, comprising the sampled irrelevant subset and the
relevant set). To further reduce the number of features, we
utilize feature binning, which we introduced in our earlier
work, to group together those terms that share similar
probabilities to occur in the relevant class, as well as in the
irrelevant sets (12). Specifically, the continuous probability
interval (0,1) is first divided into equal-width sub-intervals,
each of width 0.0001, as such setting has yielded the best
performance in our previous work (12). For binning a set of
M terms, we start with M bins — each containing a single
term. We iteratively merge two bins p and q into a single
bin if and only if the probabilities of all terms tp in bin p
and tq in bin q to occur within the relevant set, Pr(tp|Drel),
Pr(tq|Drel), respectively) fall into a common sub-interval,
while the respective probabilities of these terms to occur in
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Table 1. Examples of distinguishing terms (right column) used for text representation

when training/testing each of the eight base-classifiers (left column). The terms per

classifier were obtained by applying our feature selection process over the corresponding

sampled irrelevant training subset, with respect to the same relevant training set (recall

that ANAT is the generic term used to replace anatomy concepts)

Base-classifier Examples of distinguishing terms

1 average, change, follow, neuron, trace
2 ANAT weight, diet, fat, glucose, metabolism
3 antibody, inhibit, lysate, western, western blot
4 independent, immune, gate, vivo, cytometry
5 transcript, site, associate, sequence, fold
6 tumor, bind, cancer, inhibit, interact
7 wild type, stain, section, inflammatory, phosphoryl
8 scale bar, arrowhead, genotype, immunostaining, microscopy

irrelevant documents, (Pr(t_p|D_irrl), Pr(t_q|D_irrl)), also
share a sub-interval.

When training/testing the base-classifiers, each docu-
ment in either the corresponding sampled irrelevant train-
ing set, in the relevant training set or in the test set is
represented as a binary vector Gd =

〈
Gd

1, Gd
2, . . . , Gd

n

〉
,

where n is the number of term-sets generated via feature
binning, and Gd

j = 1 if a term contained in the jth bin occurs
in the document, 0 otherwise.

To train and test the meta-classifier, we apply the k
base-classifiers over the complete dataset, where k = 8 as
discussed above. Each document d is then represented as an
8-dimensional numerical vector Cd=

〈
Cd

1, Cd
2, . . . , Cd

8

〉
, where

Cd
l is the prediction score assigned by the lth base-classifier

to document d, namely

Cd
l = Pr

(
d ∈ the relevant set | Cl

)
, l ∈ {1, . . . , 8} , 1

is the probability of document d to be identified as relevant
by the lth base-classifier.

Experiments and results

Experiments

We conducted two groups of experiments, one for assess-
ing whether the image captions indeed provide substantial
information supporting the biocuration triage task and the
other for comparing the performance of our classifier to
that of a convolutional neural network (CNN) triage system
presented by Burns et al. (5). To ensure the stability of the
results, we employed stratified 5-fold cross validation in
all experiments. In each cross validation run, 80% of the
complete dataset is used for training and the remaining
20% is used for testing. When developing our classification
scheme, the training set is further split, such that 75% of the
training documents (60% of the original data) are used to

train the base-classifiers while the remaining 25% (20% of
the original data) are used for meta-classification training.
All experiments were conducted on a Mac machine with
3.2 GHz 8-Core Intel Xeon W processor and Radeon Pro
Vega 56 GPU.

To assess the impact of using image captions vs. title-and-
abstracts alone, we first conducted three sets of experiments
using the same meta-classification scheme while represent-
ing documents based on information extracted from the
two different parts of the publications. In the first, we rep-
resented documents by applying our feature selection only
to the title-and-abstracts of the articles. The average length
of the title-and-abstract per document is ∼200 words. In
the second, we used only the information extracted from
the image captions in our representation. The total image
captions per article comprise ∼1000 words on average.
In the third, the title, abstract and all captions of each
publication are concatenated and used as the information
source for feature extraction and document representation.

As mentioned in the Introduction, in recent years’ neu-
ral network classification models have been proposed for
supporting triage in biodatabases. We therefore compare
here the performance of our whole system to that of an
earlier proposed CNN classification framework (5). To
employ such deep learning-based classifier, we first trained
a 100-dimensional word embedding model using FastText
over the training set, as such embedding configuration
was reported to obtain the best performance (5). We then
applied their classification scheme and compared the per-
formance of such neural-network classifier with that of ours
over the large imbalanced dataset we use here.

Results and analysis

We report the results using widely employed standard met-
rics, namely precision, recall and f-measure. We also report
the MCC, which is a commonly used measure for evaluating
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Figure 2. Precision, recall, f -measure and MCC attained by our classifier using different sets of features. The best performance is attained

when articles are represented using features from titles, abstracts and captions (solid black bar). The highest values attained are indicated above

the bar.

Table 2. Performance attained by our classification scheme compared to that attained using the CNN classifier proposed by

Burns et al. (5). Standard deviation is shown in parentheses

Methods Precision Recall f -measure MCC

Our classifier 0.698 (.01) 0.784 (.02) 0.738 (.01) 0.711 (.01)
CNN classifier 0.740 (.04) 0.752 (.02) 0.745 (.01) 0.720 (.01)

classification in the face of data imbalance. MCC values
range from −1 to +1, where −1 indicates total disagree-
ment between the true labels and those assigned by the
classifier while +1 implies total agreement; an MCC of 0
corresponds to random class assignment.

Figure 2 summarizes the results from the experiments in
which we used information extracted from different parts of
the publication for document representation. Our classifier
attains the highest precision (0.698), recall (0.784), f -
measure (0.738) and MCC (0.711) when we used features
selected from the titles, abstracts and image captions
(right solid black column in Figure 2). Such performance
statistically significantly exceeds that attained based on the
title-and-abstracts alone (P � 0.001, two-sample t-test for
all measures). Furthermore, the precision, f -measure and
MCC attained using image captions alone (0.696, 0.721
and 0.690, respectively) are statistically significantly higher
than those attained using the title and abstract (P � 0.01,
two-sample t-test). Such improvement strongly indicates
that image captions indeed provide significant information
for supporting biocuration triage. As described in the
Experiments section, the average length of each title-and-
abstract in our dataset is about 200 words per document,

while the total image captions per document amount to
about 1000 words on average. In the experiments where we
use only the title and the abstract for training/testing the
base-classifier, the number of features selected is ∼5000,
while the number of features identified when we use image
captions alone is ∼15 000. That is, as image captions
comprise more words in total than titles and abstracts,
captions provide a larger number of informative features
for supporting classification.

Figure 2 also shows that combining title-and-abstracts
with image captions attained significantly higher recall, f -
measure and MCC (P � 0.01, two-sample t-test) compared
to that of our classifier based only on image captions,
while slightly improving the level of precision. The results
demonstrate that our classifier effectively addresses triage
under class imbalance by incorporating information from
the titles, abstracts and image captions.

Table 2 compares the performance of our system
attained when using information extracted from titles,
abstracts and image captions to that of an earlier proposed
CNN classifier (5). While the CNN classifier shows a higher
precision, our classifier attains a higher recall indicating that
more relevant documents have been identified. Moreover,
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while the CNN classifier shows slightly higher f-measure
and MCC, the differences are not statistically significant as
measured by the two sample t-test (P > 0.4).

Notably, the statistical feature selection together with the
classifiers we employ (Random Forest and SVMs) enables
us to provide the significant terms supporting the classi-
fication decision (e.g. gene manipulation, ectopic expres-
sion) and thus provide an explanation/justification for the
class assignments. Moreover, the distinguishing features we
selected have the potential to support detailed document
annotation as those features are important for identifying
the topics discussed in the publications. In contrast, due
to the inherent ‘black-box’ nature of neural networks, it
is difficult to trace the decision-making process in the
CNN classifiers. Moreover, timewise, each of the five cross
validation runs of our classifier (see Experiments), has taken
<40 min (wall clock), while each cross validation run of the
CNN classifier has taken over 4 h (wall clock). As such, our
framework takes less time to train than the CNN classifier
proposed in (5), making it more efficiently applicable in the
context of the biocuration triage task.

Last, comparing the implementation of our classifier
with that of the CNN classifier reported by Burns et al. (5),
we note that our classification scheme comprises several lev-
els, including document representation and training of both
the base-classifiers and the meta-classifier. The approach
presented by Burns et al. adopts a pre-trained CNN con-
figuration that uses available software packages and as
such appears less complex. However, training such a neural
network configuration requires setting over 10 parameters
(e.g. the dimensionality of the word embedding vectors, the
batch size and the number of epochs in the network training
process, dropout rate). In contrast, our scheme requires
setting only four parameters, namely the threshold defining
rare terms, the threshold for defining overly frequent terms,
the width of sub-intervals (w) for feature binning and the
number of base-classifiers (k). Hence, our framework has
fewer parameters and is simpler to set up compared to the
neural network classifier.

Conclusion and future work

We have developed a document meta-classification scheme
employing features gleaned from titles, abstracts and image
captions for supporting the biocuration triage task arising
in GXD, over a large imbalanced dataset. Our classifier
attains precision 0.698, recall 0.784, f -measure 0.738 and
MCC 0.711. This level of performance demonstrates that
our classification scheme effectively addresses imbalanced
biomedical classification in GXD. The results show that
using features obtained from the title, abstract and image
captions of publications attains the highest performance,

supporting the idea that image captions provide important
and useful information for identifying the topics discussed
within publications. Moreover, we show that our proposed
classifier is as effective as a CNN classifier while being both
more efficient and more transparent.

As image captions form an important information
source for addressing triage and statistical feature selec-
tion can indeed identify meaningful terms supporting
biomedical classification, we plan to develop an effective
classification scheme using a variety of features obtained
from image captions and associated sentences from the
full-text discussing images, to further improve classification
over large imbalanced datasets.

Ultimately, the tool described here will be incorporated
into the GXD/MGI literature triage process. The selection
of papers relevant for any areas of MGI corresponds to
the first step of the MGI literature triage whereas the
identification of papers for specific domains, such as gene
expression, corresponds to the second step of the triage. The
incorporation of the machine learning methods described
here will support the selection of GXD-relevant papers
and reduce the amount of manual curation required for
this task.
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