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Abstract
In cancer, copy number aberrations (CNAs) represent a type of nearly ubiquitous and frequently extensive structural genome variations. To
disentangle the molecular mechanisms underlying tumorigenesis as well as identify and characterize molecular subtypes, the comparative and
meta-analysis of large genomic variant collections can be of immense importance. Over the last decades, cancer genomic profiling projects
have resulted in a large amount of somatic genome variation profiles, however segregated in a multitude of individual studies and datasets.
The Progenetix project, initiated in 2001, curates individual cancer CNA profiles and associated metadata from published oncogenomic studies
and data repositories with the aim to empower integrative analyses spanning all different cancer biologies. During the last few years, the
fields of genomics and cancer research have seen significant advancement in terms of molecular genetics technology, disease concepts, data
standard harmonization as well as data availability, in an increasingly structured and systematic manner. For the Progenetix resource, continuous
data integration, curation and maintenance have resulted in the most comprehensive representation of cancer genome CNA profiling data with
138 663 (including 115 357 tumor) copy number variation (CNV) profiles. In this article, we report a 4.5-fold increase in sample number since 2013,
improvements in data quality, ontology representation with a CNV landscape summary over 51 distinctive National Cancer Institute Thesaurus
cancer terms as well as updates in database schemas, and data access including new web front-end and programmatic data access.

Database URL: progenetix.org

Introduction
Copy number aberrations (CNAs) are present in the majority
of cancer types and exert functional impact in cancer devel-
opment (1, 2). As understanding cancer biologies remains one
of the main challenges in contemporary medical and life sci-
ences, the number of studies addressing genomic alterations in
malignant diseases continues to grow. Progenetix is a publicly
accessible cancer genome data resource (progenetix.org) that
aims to provide a comprehensive representation of genomic
variation profiles in cancer, through providing sample-specific
CNA profiles and associated metadata as well as services
related to data annotation, meta-analysis and visualization.
Originally established in 2001 with a focus on data from
chromosomal Comparative Genomic Hybridization (CGH)
studies (3), the resource has progressively incorporated data
from hundreds of publications reporting on genome pro-
filing experiments based on molecular cytogenetics (CGH,
genomic arrays) and sequencing (whole-genome or whole-
exome sequencing—WGS or WES). Since the last publication
dedicated to the Progenetix resource in 2014 (4), changes
in content and features of the data repository and its online
environment have vastly expanded its scope and utility to
the cancer genomics community. For data content, addi-
tions include the complete incorporation of the previously
separate arrayMap data collection (5, 6) and of datasets
from external resources and projects such as The Cancer

Genome Atlas (TCGA; (7, 8)) or cBioPortal (9), as well
as the recurrent collection and re-processing of array-based
data from National Center for Biotechnology Informa-
tion (NCBI)’s Gene Expression Omnibus (GEO) or Euro-
peanMolecular Biology Laboratory-European Bioinformatics
Institute (EMBL-EBI)’s ArrayExpress (10, 11). Additionally,
data content updates have followed the previous methodology
of publication-based data extraction where feasible. Beyond
the data expansion, a tight integration with projects of the
Global Alliance for Genomics and Health (GA4GH (12)) and
ELIXIR—such as serving for implementation-driven develop-
ment of the Beacon application programming interface (API)
(13)—has led to an extension of the resource’s features as well
as adoption and promotion of emerging open data standards.

Here we present the latest updates on data content, struc-
turing, standardization, access and other modifications made
to the Progenetix resource.

Data expansion and new features
Genomic profiling data
Over the last two decades, thousands of cancer genome stud-
ies have used the GEO (14) for deposition of data from array-
based experiments. Data from GEO contribute a substantial
fraction of the genomic screening data in the Progenetix col-
lection and has again been expanded in both number of
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Table 1. Statistics of samples from various data resources

Data source GEO ArrayExpress cBioPortal TCGA Total

No. of studies 898 51 38 33 1939

No. of samples 63 568 4351 19712 22142 138663
Tumor 52 090 3887 19712 11090 115357
Normal 11 478 464 0 11052 23306

Classifications
ICD-O (Topography) 100 54 88 157 209
ICD-O (Morphology) 246 908 265 140 491
NCIt 346 148 422 182 788

Collections
Individuals 63 568 4351 19712 10995 127549
Biosamples 63 568 4351 19712 22142 138663
Callsetsa 63568 4351 19712 22376 138930
Variants 5 514 126 1184170 1778 096 2654 065 10716 093

aset of variants from one genotyping experiment; ICD-O, International Classification of Diseases for Oncology; NCIt, National Cancer Institute Thesaurus.

Table 2. Data growth by cancer loci

Cancer loci No.in 2014 No.in 2021

Hematopoietic and reticuloen-
dothelial systems

5269 18482

Lymph nodes 2345 5988
Breast 2271 15790
Cerebellum 1439 3465
Brain, NOS 1342 6608
Cerebrum 1201 1712
Liver 1180 3237
Stomach 1155 3176
Skin 1073 3343
Connective, subcutaneous and
other soft tissues

1058 2526

Kidney 1018 3617
Colon 1001 5182
Ovary 733 3963
Prostate gland 735 4485
Lung and bronchus 699 10321
Nervous system, NOS 667 926
Urinary bladder 587 1961
Cervix uteri 529 1331
Peripheral nerves incl.
autonomous

523 1479

Esophagus 454 1890
Pancreas 426 1620
Thyroid gland 404 1260
Heart, mediastinum and pleura 383 771
Bones, joints and articular
cartilage

350 1205

Spleen 278 636
Other 4522 16268
Total 31 642 115359

samples and represented platforms. Additionally, we system-
atically included suitable data from three more resources:
ArrayExpress (15), cBioPortal (16) and TCGA(17) project. As
in the previous database updates, we have also included data
directly derived from publication supplements and from col-
laborative projects. Table 1 shows statistics of samples within
the major sources. Table 2 reports the overall data growth and
sample counts stratified by cancer loci since the last update (4).

The ‘ArrayExpress Archive of Functional Genomics Data’,
hosted by EMBL-EBI, stores functional genomics data submit-
ted by research groups and projects. In this update, we have
incorporated the cancer-related genomic profiles which do not
have corresponding GEO entries using our analysis pipeline.

Overall, data from ArrayExpress added 3887 samples from
44 projects, which resolve to 143 distinct cancer types accord-
ing to the National Cancer Institute Thesaurus (NCIt). Similar
to the GEO data acquisition procedure, we have used a com-
bination of text mining methods and expert curation for
annotation of technical metadata and biomedical parameter.

The ‘cBioPortal for Cancer Genomics’ is an open-access
resource for cancer genomics data, representing different
types of molecular screening data from 19712 samples,
derived from 38 studies and mappable to 422 NCIt can-
cer types. The largest part of genomic data is based on
WES analyses from the Memorial Sloan Kettering-Integrated
Mutation Profiling of Actionable Cancer Targets or MSK-
TARGET (18) pipeline, with CNA data accessed directly as
segment files in genome version hg19/Genome Reference Con-
sortium Human Build 37. Data were converted into Genome
Reference Consortium Human Build 38 (GRCh38) with the
‘segment-liftover’ tool (19), and oncology classifications as
well as relevant clinical data were incorporated into our
database.

TCGAproject provides a set of multiomics data with exten-
sive structured metadata annotation for a large collection
of cancer types, currently through NCBI’s Genomic Data
Commons Data Portal (https://portal.gdc.cancer.gov). In this
update, we incorporated its copy number variation (CNV)
profiling data as well as transformed the relevant clinical
information into our system (Figure 1).

Data processing update
Genomic profiling data in Progenetix originates from a large
number of studies, which are based on different molecular-
cytogenetics- and sequencing-based technologies. In order to
maximize qualitative homogeneity of the final CNA calls,
we prefer to download source files with the least amount
of pre-processing and apply our in-house data processing
pipeline from the arrayMap project (5). Currently, our anal-
ysis workflow handles the raw-data-based processing for 13
Affymetrix single nucleotide polymorphism (SNP) array plat-
forms, including nine genome-wide arrays—10K (GPL2641),
50K (Hind240 and Xba240; GPL2004 and GPL2005),
250K (Nsp and Sty; GPL3718 and GPL3720), Genome-
wide SNP (5.0 and 6.0; GPL6894 and GPL6801, respec-
tively), CytoScan (750K and HD; GPL18637 and GPL16131)
arrays (GPL-prefixed platform coding in brackets according
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Figure 1. The currently available CNA data points in Progenetix and TCGA Progenetix database contain 115 357 cancer samples with 92 307 mapped to
the 51 defined critical nodes in NCIt ontology tree and 23050 samples not mapped to the tree (black), whereas TCGA repository contains 11 090
samples with 9103 samples mapped and 1987 samples not mapped to the tree (black). Colors of the stacked bar plot (left) match the branch colors on
NCIt ontology tree (right).

to GEO standard)—as well as the four cancer-specific
‘Oncoscan’ arrays - GPL18602, GPL13270, GPL15793 and
GPL21558 (accessible through GitHub repository baudis-
group/a.m._process). Our current model treats the most
prevalent copy number as the baseline and derives the rel-
ative copy number gain and loss per sample based on the
assumption that the relative gene dosage imbalance exerts
pathophysiological effects in cancer biology.

Allele-specific copy number variation
For the subset of SNP-array-based experiments—where the
status of both alleles can be evaluated separately—we have
analyzed allele-specific copy number data (ASCN) and incor-
porated 35 897 loss of heterozygosity (LOH) profiles into
the database. ASCN potentiates new analysis on the same
samples. First, probe-wise it gives an overview of germline
variant landscape, as used in determining the ancestry back-
ground. Second, it allows detection of LOH events, including
copy-number-neutral event (CN-LOH), which e.g. can be
commonly observed in hematological malignancies due to
a selective process for duplication of minor disease-prone
germline alleles (20, 21). Lastly, it acts as a second reference
for CNA to combat the variability caused by known wave
artifacts from array technologies (22). For all SNP arrays,
we have implemented a pipeline to determine probe-wise
B-allele frequency (BAF) of SNP probes and perform subse-
quent segmentation (23, 24). Subsequently, we use ASCN
to assess ancestry provenance of the samples (25) and store
the LOH regions of the samples in our genomic variants
database.

Metadata updates
NCIt ontology mapping
Since its establishment, Progenetix has made use of the ‘Inter-
national Classification of Diseases in Oncology’, 3rd Edi-
tion (ICD-O-3) (26) for cancer sample classification. While
the combination of the ICD-O Morphology and Topog-
raphy coding systems depicts diagnostic entities with high
specificity, the current ICD-O is limited in its represen-
tation of hierarchical concepts and does not easily trans-
late to modern ontologies. In comparison, NCIt (access
through http://bioportal.bioontology.org/ontologies/NCIT) is
a dynamically developed hierarchical ontology, which
empowers layered data aggregation and transfer between clas-
sification systems and resources. However, due to the com-
paratively recent development and ongoing expansions, NCIt
terms are rarely used in primary sample annotations. In the
recent Progenetix update, we performed a data-driven gen-
eration of ICD-O—NCIt mappings and added the derived
NCIt codes to all (existing and new) samples (mapping avail-
able through GitHub repository ‘progenetix/ICDOntologies’;
manuscript in preparation), to take advantage of NCIt’s hier-
archical structure for data retrieval, analysis and exchange
(Figure 4B).

Data summary based on the NCIt hierarchy tree
All cancer samples in Progenetix have been annotated with
an NCIt code, resulting in currently 788 distinct NCIt terms.
However, as the definition of increasingly specific NCIt terms
outruns their incorporation into the hierarchical tree, so far 98
of these terms are not represented in the tree hierarchy. For
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better illustration, we define 51 prominent nodes under which
we summarize and visualize the data collection (see Supple-
mentary material for the selection procedure). This brings
about additional 324 (60 in TCGA) terms not mappable to
the selected nodes, resulting in 23 050 (1987 for TCGA) sam-
ples excluded from the summary tree counts (black bar in left
panel of Figure 1). For terms with multiple occurrences in the
tree, we define the preferred path to the selected node by pri-
oritizingmorphology-based separation. The sample collection
in Progenetix compared to TCGA is summarized with ref-
erence to the NCIt coding system (Figure 1; Supplementary
Table S1).

CNV data content by cancer type
With cancer genomes grouped in the 51 NCIt nodes, we
assessed their differences in the CNV landscape. The frac-
tion of genome with a copy number alteration (CNV fraction)
varies widely among the cancer types with a global median
of 0.121 (Figure 2; Supplementary Figure S1). Among the
most studied cancer types, breast carcinoma shows a consis-
tent CNV profile as an earlier analysis with frequent chr1q,
8q, 16p, 17q, 20 gain and 8p, 16q, 17p, 18, 22q loss
(27); the CNV patterns in cervical (chr3 gain) and col-
orectal (chr7, 8q, 13, and 20q gain and 8p, 17p, and
18 loss) carcinoma also correspond with previous observa-
tion (28), similar to T-cell non-Hodgkin lymphoma (29),
myelodysplastic syndrome (30) and a number of malignant

epithelial tumors (31). In addition, we also present the
genome-wide LOH profile in the evaluated NCIt nodes clus-
tered by their LOH landscape (average LOH profiles of 42
out of 51 with at least 20 samples are shown in Supple-
mentary Figure S2; (32)). LOH profile of a cancer genome
complements its CNV profile with the information of allelic
loss. Here we highlight a few prominent patterns, which
have been previously reported: chr3p and 9 in esophageal
squamous cell carcinoma (33, 34); chr18q in colorectal car-
cinoma (35); and chr13q, 16q and 17p in hepatocellular
carcinoma (36).

Uberon anatomy ontology
While the ICD-O topography system provides organ- and
substructure-specific mapping rooted in traditional clinical
and diagnostic aspects of a ‘tumor entity’, ‘UBERON’ is a
cross-species anatomical structural ontology system closely
aligned with developmental processes (37). Its relationship
structure allows integrative queries linking multiple databases
(e.g. Gene Ontology (38) and Protein Ontology (39)) and
description logic query within the same organism (linking
related organs) and between model animals and humans. In
this resource update, we have mapped all existing ICD-O T
codes to ‘UBERON’ terms and additionally provided those
as part of the ‘Monarch’ initiative (40), with our latest
mapping table (made available through a GitHub repository
‘progenetix/icdot2uberon’).

Figure 2. The genomic CNV fraction across 51 NCIt umbrella nodes Each dot represents one sample’s CNV fraction range from 0 to 1 and the red
horizontal line indicates median CNV of the respective cancer type. Each cancer type contains between 104 and 11804 CNV profiles (median 904; See
Supplementary Table S1).
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Provenance by geography
As part of the curated metadata provided in the sample
representation, we have included geographic point coordi-
nates for each individual sample. As this information is often
missing from individual sample annotations, we have pre-
viously applied a mapping procedure to assign the samples’
approximate geographic origins (41, 42). For samples with
the submitter’s contact available from repository entries, a
default point location in the corresponding city was used—
otherwise that of the corresponding author of the associ-
ated publication was used. Associated publications were also
explored for more detailed descriptions of sample origin.
Point coordinates for each city were obtained using the exter-
nal geographic database GeoNames (www.geonames.org), as
detailed previously.

Provenance by ancestry group
While providing a good approximation for the geographic
origin of cancer profiling data, which can e.g. be useful for
epistemic validation and decision processes, the geographic
location of the studies provides limited specificity regarding
individual sample provenance, especially when assessing cor-
relations between genomic variants and ancestral population
background. Beyond the scope of high-penetrance variants
like mutations in the BRCA1/2 (43, 44) or RetinoBlastoma
(RB) genes (45) in cancer predisposition, other studies have
asserted an influence of genetic background on tumor devel-
opment (46–49). Previously we have developed a method for
deriving ancestry groups from unmasked germline variants in
cancer genomes, based on reference populations studied in
the 1000 Genomes Project (25). For samples in Progenetix
with accessible SNP data, population groups were assigned
based on the reference categories mapped to Human Ancestry
Ontology terms (Supplementary Table S2). Where available,
the respective data are now represented under the ‘popula-
tions provenance’ schema for the corresponding biosample
entries.

Updated data access modalities
Since the last release, we have adopted the GA4GH
data schema standards and migrated to Phenopackets (50)-
formatted response delivery with modified data access points
in the user interface. Information about API methods are
provided through the documentation pages (https://info.
progenetix.org/categories/API).

Data standards
In many genomic repositories, databases are structured
around experimental outcomes (e.g. variants from a DNA
sequencing experiments as collections of VCF files). Recent
attempts in evaluating sensible meta-schemas for the represen-
tation of genomic variants and related biological or technical
metadata, especially with respect to empowering data feder-
ation over flexible, networked resources, have led to a set of
emerging meta-models and data schemas (51). The data stor-
age and representation models for the Progenetix resource
have been designed to comply with concepts developed by
the previous GA4GH Data Working Group (12, 52) and
subsequent GA4GH work streams, documented e.g. by the
‘SchemaBlocks’ initiative (http://schemablocks.org). One of

the core concepts is the ‘individual—biosample(s) - variants’
meta-model, which is applicable to cancer-related analyses
with potentially multiple samples representing different stages
in the course of disease as well as the underlying genomic
background. This hierarchical model provides a solid repre-
sentation and connection between the physical source of the
data and the logical genotyping information and adapts to
various scenarios for data aggregation and analysis.

User interface
The completely re-designed user interface provides flexibility
and versatility in query parameters and types and optimized
the response delivery. Technically, the query interface for
retrieval of sample specific data is built on top of a forward-
looking implementation of the GA4GH Beacon API (13) with
features from the upcoming version 2 of this standard.

Figure 3 shows the current web interface to perform a CNA
query with start and end position range with filter options
for cancer type, tissue location, morphology, cell line or geo-
graphic location. The top panel of the result page shows a
summary with the number of matched samples, variants, calls
and the frequency of alleles containing the CNA (Figure 3E).
The ‘Phenopackets’ link returns a json document of biosam-
ples with the phenopacket-formatted response. The ‘UCSC
region’ links externally to a University of California Santa
Cruz (UCSC) browser track providing an overview of the
genomic elements which map to the region of the observed
variants. Also, customized visualization is enabled in the
linked page ‘visualization options’, e.g. for selected chro-
mosomal regions and grouping by subsets or studies. The
lower panel is organized in four sections: (i) the ‘Result’ tab
(Figure 3F) shows the genome-wide CNA by the percentage
of samples with yellow (+) as CN gain and blue (−) as CN
loss. Below the CNA plot is a table showing the list of sub-
sets as defined by ICD-O-3 and NCIt Ontology terms sorted
by frequency of matched samples within that subset. (ii) the
‘Biosamples’ tab (Figure 3G) shows information of matched
biosamples, i.e. description, classifications and external iden-
tifiers. The table can be downloaded in json or csv format.
The further detail of the biosample can be accessed by clicking
the biosample id. (iii) The ‘Biosamples Map’ tab (Figure 3H)
shows a world map with the matched geological locations
highlighted. (iv) the ‘Variants’ tab (Figure 3I) shows the vari-
ant ‘digest’ (concatenated format with chromosome, start and
end position, and type of the CNA) and its corresponding
biosample and callset. Likewise, the table can be downloaded
in json or csv format.

Figure 4 shows the additional functional interfaces and ser-
vices provided by the Progenetix project. Users can search for
publications or studies by publication title, author names or
the geographic location of the research center. Then, nav-
igation extends to the summary of publications with the
number of samples catalogued by technology and availability
in database as well as options to visualize the associated sam-
ples (Figure 4A). Users can also access samples from the NCIt
hierarchical tree or other classification systems (e.g. ICD-O
and UBERON) to select a subset of cancer types for summary
statistics and visualization (Figure 4B). Alternatively, users
can also upload their own data for single or multiple sam-
ples to visualize genome-wide CNA (Figure 4C). In addition,
a list of studies and cohorts can be selected in the naviga-
tion menu, including arrayMap (probe-specific arrays from
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Figure 3. Beacon-style query using fuzzy ranges to identify biosamples with variants matching the CNA range This example queries for a continuous,
focal duplication covering the complete MYC gene’s coding region with <= 6 Mb in size. A: Filter for dataset; B: filter for cancer classification (NCIt and
ICD-O-3 ontology terms available); C: additional filter, e.g. Cellosaurus; D: additional filter for geographic location; E: external link to UCSC browser to
view the alignment of matched variants; F: cancer type classification sorted by frequency of the matched biosamples present in the subset; G: list of
matched biosamples with description, statistics and reference. More detailed biosample information can be viewed through ‘id’ link to the sample detail
page; H: matched variants with reference to biosamples can be downloaded in json or csv format.

published studies (5)), diffuse intrinsic pontine glioma cohort
(53) and the ‘cancer signature’ cohort (54). All the functional-
ities and provided services are detailed in the documentation
pages at info.progenetix.org, which invite request submission
through the GitHub ‘issues’ tracker.

Other improvements
Genome version update
All samples have been updated to GRCh38. The process has
been completed in a step-wise manner. Preferably, for sam-
ples with available probe-specific array data, either GRCh38
mapped platform data files were used for re-processing of the
original files or alternatively, a lift-over of the probe data and
subsequent re-segmentation was performed. For those cases
where only called CNA data had been collected, we applied
our recently published ‘segment-liftover’ tool (19) for the effi-
cient re-mapping of continuous segments. Overall, more than
99.99% of probes and more than 99% of segments could be
recovered successfully.

Cell line collection
Cancer cell lines are important models for understanding
the molecular mechanisms of malignant diseases and have
a prominent role in pharmacological screening procedures.
Besides the primary tumor data, the Progenetix data collec-
tion also includes genomic profiling experiments using in vitro
models. Recently, we introduced a systematic update of cell
line annotations based on ‘Cellosaurus’, a comprehensive
knowledge resource on cell line data with extensive annota-
tions and mappings to a variety of classifications and ontolo-
gies (55). We meticulously assigned Cellosaurus ids for the
cancer cell line samples as well as the ICD-O morphology and
topography codes based on the NCIt term annotated by Cel-
losaurus. At this time, Progenetix includes a total of 5764
samples corresponding to 2162 different cancer cell lines,
representing 259 different cancer types (NCIt). While so far
we provide the option to search for cell lines by applying a
‘cellosaurus’ filter either in the web interface (e.g.‘cellosaurus:
CVCL_0030’ for ‘HeLa’ cell line samples) or in the API query,
work on a dedicated cell line data access tool is underway.
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Figure 4. Demonstration of further functionality pages: A. Publication search; B. NCIt hierarchical tree navigation A: Cancer-genomics-associated
publications are recorded with number of samples stratified by technology used. The publications can be filtered by keywords; B: Part of the sample
subsets contained in Progenetix under the hierarchical NCIt classification tree. It allows for selection of sample subsets at different levels; C: User can
upload custom segment files for data visualization.
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Conclusion
The Progenetix resource provides an extensive collection of
oncogenomic data with a focus on individual genome-wide
CNA profiles and the use of modern ontologies and data
schemas to render curated biological and technical meta-
data, as well as thorough references to external repositories
and annotation resources. Through aggregation of data from
thousands of individual research studies as well as several
consortium-derived collections, to our knowledge Progenetix
database currently constitutes the largest public, freely acces-
sible resource for pre-computed CNA profiles and associated
phenotypic information and additional metadata dedicated
to cancer studies. While the application of uniform genomic
data formats and a benchmarked data processing pipeline
minimizes biases from separate studies, the forward-looking
implementation of emerging ontology standards facilitates
the integrative and comparative analysis across a vast range
of cancer types. The tight integration with GA4GH prod-
uct development and standardization processes guarantees
the compatibility with emerging data federation approaches
and the widest re-utilization of the resource’s data. For the
future, besides the continuous maintenance and expansion
of the existing data types, we will work toward enhancing
clinical and diagnostic annotation, expanding cross-database
references and the types of genomic variant data as well
as active data sharing and integration through networked
services and platforms.

Supplementary data
Supplementary data are available at Database Online.
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