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Abstract
The BioCreative National Library of Medicine (NLM)-Chem track calls for a community effort to fine-tune automated recognition of chemical 
names in the biomedical literature. Chemicals are one of the most searched biomedical entities in PubMed, and—as highlighted during the 
coronavirus disease 2019 pandemic—their identification may significantly advance research in multiple biomedical subfields. While previous 
community challenges focused on identifying chemical names mentioned in titles and abstracts, the full text contains valuable additional detail. 
We, therefore, organized the BioCreative NLM-Chem track as a community effort to address automated chemical entity recognition in full-text 
articles. The track consisted of two tasks: (i) chemical identification and (ii) chemical indexing. The chemical identification task required predicting 
all chemicals mentioned in recently published full-text articles, both span [i.e. named entity recognition (NER)] and normalization (i.e. entity 
linking), using Medical Subject Headings (MeSH). The chemical indexing task required identifying which chemicals reflect topics for each article 
and should therefore appear in the listing of MeSH terms for the document in the MEDLINE article indexing. This manuscript summarizes the 
BioCreative NLM-Chem track and post-challenge experiments. We received a total of 85 submissions from 17 teams worldwide. The highest 
performance achieved for the chemical identification task was 0.8672F -score (0.8759 precision and 0.8587 recall) for strict NER performance 
and 0.8136F -score (0.8621 precision and 0.7702 recall) for strict normalization performance. The highest performance achieved for the chemical 
indexing task was 0.6073 F -score (0.7417 precision and 0.5141 recall). This community challenge demonstrated that (i) the current substantial 
achievements in deep learning technologies can be utilized to improve automated prediction accuracy further and (ii) the chemical indexing task 
is substantially more challenging. We look forward to further developing biomedical text–mining methods to respond to the rapid growth of 
biomedical literature. The NLM-Chem track dataset and other challenge materials are publicly available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-
NLM-Chem-track/.
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Introduction
Identifying named entities is an essential building block 
for many complex knowledge extraction tasks. Errors in 

identifying relevant biomedical entities are a key imped-
iment to accurate article retrieval, classification and fur-
ther understanding of textual semantics, such as relation 
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extraction (1). Chemical entities appear throughout the 
biomedical research literature and are among the most fre-
quently searched entity types in PubMed (2). Accurate auto-
mated identification of the chemicals mentioned in journal 
publications can translate to improvements in many down-
stream natural language processing tasks and biomedical 
fields and, in the near term, specifically in retrieving relevant 
articles, greatly assisting researchers, indexers and curators 
(3, 4).

Automated methods to recognize and identify chemicals in 
biomedical text have a long history (5–7). Previous work in 
biomedical named entity recognition (NER) and normaliza-
tion [i.e. entity linking (EL)] for chemicals includes several 
community challenges, including the Chemical Compound 
and Drug Name Recognition (CHEMDNER) (8) and BioCre-
ative 5 Chemical-Disease Relation (BC5CDR) (9) tasks at 
previous BioCreative workshops. A 2014 review of entity 
annotations in biomedical corpora found chemicals to be 
one of the types most frequently annotated (10), and chem-
icals are one of many entity types included in the Colorado 
Richly Annotated Full Text (CRAFT) corpus of full-text arti-
cles (11). More recent work has included chemical patents 
(12, 13)—which are an important source of information for 
chemical compounds—and chemical reactions (14, 15), with 
an increased focus on chemical reactions. Automated index-
ing, on the other hand, has typically addressed all biomedical 
entity types simultaneously (16, 17). The specific challenges 
that chemical names pose for automated indexing have long 
been recognized (18), however, and some recent efforts focus 
specifically on chemicals (19).

Few of these efforts have addressed full-text articles, how-
ever, which are required for the indexing and curation tasks 
and where information retrieval and extraction differ. For 
example, the full text frequently contains more detailed 
information, such as chemical compound properties, biolog-
ical effects and interactions with diseases, genes and other 
chemicals. Previous work released the first version of the 
National Library of Medicine (NLM)-Chem corpus (3), con-
taining 150 full-text articles annotated for chemical spans 
and identifiers. This work also demonstrated that training 
systems with full-text articles (rather than only abstracts) 
results in substantially higher performance for both NER and
normalization.

During the coronavirus disease 2019 pandemic, the 
biomedical literature experienced a rapid influx of articles as 
researchers searched to understand severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and provide effective 
prevention strategies and treatments (20). The resulting infor-
mation overload underscores the importance of automated 
methods to assist in searching, categorizing and extracting 
information from the literature (21). Correctly identifying 
chemicals is essential to these tasks, especially for the timely 
identification of potential treatments of both the acute and 
long-term effects of SARS-CoV-2 infection (22).

To support the efforts of increasing the efficiency and accu-
racy of the current state-of-the-art algorithms and foster the 
efforts of researching novel methods and achievements, the 
NLM-Chem track at BioCreative VII brought together the 
community to address two tasks:

• Chemical identification in full text: predict all chemicals 
mentioned in recently published full-text articles, both 

span (i.e. NER) and normalization (i.e. EL) using Medical 
Subject Headings (MeSH, https://www.nlm.nih.gov/mesh) 
(23).

• Chemical indexing task: predict which chemicals men-
tioned in recently published full-text articles should be 
indexed, i.e. appear in the list of MeSH terms for the 
document.

We developed a rich and comprehensive full-text corpus 
of chemical mentions to support the challenge. Each article 
in this resource contains manual annotations for chemical 
entities mentioned in the full text and manual indexing for 
the chemical substances representing the topic and content 
of the article with respect to chemicals. This resource is 
detailed in a study by Islamaj et al. (24) and is available
from https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-
track/.

The NLM-Chem track attracted worldwide participation. 
Ultimately, 17 teams submitted predictions. We received 53 
valid submissions for the chemical identification task, of 
which 50 were official, and the rest submitted after the 
deadline. We received 18 valid submissions for the chem-
ical indexing task, of which 5 were official, and the rest 
were submitted after the deadline. For the chemical iden-
tification task, 73% and 29% of the teams, respectively, 
had higher performance than the benchmark system pro-
vided by the organizers for the strict NER and normalization 
metrics. For the chemical indexing task, 50% of the teams 
had higher strict performance than the benchmark index-
ing system provided by the organizers. Participating teams 
explored different methodologies, with the majority focus-
ing on deep learning architectures. Both data and evalua-
tion scripts are available from the workshop webpage, the 
same link mentioned earlier. We encourage further partici-
pation from interested teams in developing biomedical text–
mining methods to predict chemical mentions (identification) 
and chemical topic terms (indexing) in biomedical full-text
articles.

After the challenge concluded, we performed several addi-
tional experiments. First, we identified a small set of straight-
forward improvements most frequently reported by the task 
participants and used these to update the benchmark sys-
tems. For the chemical identification task, these improvements 
resulted in a statistically significant 0.0331 increase in the 
strict F-score for the NER evaluation. For the chemical index-
ing task, these improvements resulted in a statistically signifi-
cant increase of 0.1382 in the strict F-score over the original 
benchmark system.

Second, after the conclusion of the challenge, we created 
a silver-standard corpus for chemical identification in full-
text articles (24). To the best of our knowledge, this corpus 
is the first of its kind. We created the silver-standard corpus 
from an ensemble of all 53 valid submissions to the chemical 
identification task, plus the original benchmark system. This 
manuscript provides a summary of the methods for the ensem-
ble predictions and for creating the silver-standard corpus; the 
complete details are given in a study by Islamaj et al. (24). 
In this manuscript, we show that adding the silver-standard 
corpus to the training data for the NER component of the 
updated chemical identification benchmark system results in 
an additional statistically significant increase of 0.0167 in the 
strict F-score measure for NER.
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Third, we updated the indexing for the 1333 articles in the 
NLM-Chem-BC7 Chemical Indexing corpus (24). We identi-
fied frequent differences between the indexing terms predicted 
by the challenge participants and the publicly available MeSH 
indexing. These were then presented to 11 expert indexers 
at the NLM to be accepted or rejected without knowing the 
source. This manuscript describes the methods used to cre-
ate the indexing submissions; a description of the manual 
annotation is provided in a study by Islamaj et al. (24). In 
this manuscript, we provide an evaluation of both the chemi-
cal indexing submissions and the updated benchmark system 
with respect to the updated annotations.

This article provides an extended description of the BioCre-
ative NLM-Chem track. First, it summarizes the NLM-Chem-
BC7 corpus and the evaluation methods used. It further 
describes the methods used by the participating teams and 
the benchmark system. Finally, the results of the task are pre-
sented in detail along with several post-challenge experiments 
to (i) improve the benchmark systems using the insights from 
the participants and (ii) create a silver-standard corpus. We 
show that using the silver-standard corpus as training data 
improves performance on the benchmark systems.

Methods
We announced the BioCreative VII NLM-Chem chemical 
recognition challenge in full-text articles in Spring 2021. The 
NLM-Chem corpus was made available as the training dataset 
in May 2021, with the BC5CDR and CHEMDNER corpora 
as additional data. A webinar was held in May 2021 for 
interested teams to introduce them to the motivation for the 
challenge and associated data. The testing dataset for the 
chemical identification task, which complements the NLM-
Chem-BC7 Chemical Identification task corpus, was manually 
annotated in April–June 2021. The testing dataset for the 
chemical indexing task was manually indexed via the regular 
indexing pipeline at the NLM in September 2021. All materi-
als provided to the participants, including a recording of the 
webinar, are publicly available at https://ftp.ncbi.nlm.nih.gov/
pub/lu/BC7-NLM-Chem-track/.

The NLM-Chem-BC7 corpus
The BioCreative community challenges aim to evaluate text-
mining and information extraction systems applied to the bio-
logical domain. The main emphasis is on comparing methods 
for scientific progress rather than on the purely competitive 
aspects. The most accurate measure of progress for identify-
ing and indexing chemicals from full-text articles is recently 
published and previously unseen. Therefore, an appropriate 
training dataset consists of articles that span a variety of 
journals, are rich in chemical mentions and cover a plethora 
of chemical-related topics to be representative of biomed-
ical literature publications that contain chemical mentions 
(3). Furthermore, given the goal of providing training data 
for chemical identification and indexing in full-text articles, 
the dataset needs to contain expert-annotated full-text arti-
cles. We describe the NLM-Chem-BC7 dataset in detail in 
a study by Islamaj et al. (24) and give an overview in the
following.

We specifically selected the NLM-Chem-BC7 corpus arti-
cles to (i) have no restrictions on sharing and distribution,

(ii) be useful for other downstream biomedical text–mining 
tasks and (iii) be suitable for testing real-world tasks. The 
article selection was therefore focused on recently published 
articles.

The organizers provided three collections of articles to the 
participants.

The NLM-Chem-BC7 Chemical Identification task train-
ing corpus consists of the 150 full-text articles described in a 
study by Islamaj et al. (3), doubly annotated by 12 expert 
NLM indexers for all chemical mentions and their corre-
sponding MeSH identifiers. Typically, an article is indexed 
with all medical subject terms that describe and identify its 
content, but for our study, we focus on chemical mentions. For 
this challenge, we augmented the NLM-Chem dataset with 54 
additional full-text articles, recently published in Spring 2021, 
to serve as the testing dataset for the chemical identification 
task. These articles were doubly annotated by the same group 
of experts, following the same annotation guidelines. These 
articles were enriched with the indexing terms corresponding 
to their chemical substances, as assigned during the regular 
manual indexing process.

We re-purposed the CHEMDNER (8) and the BC5CDR (9) 
corpora for the NLM-Chem track challenge. The CHEMD-
NER documents contain title/abstract annotations for chemi-
cal NER and do not include chemical normalization. How-
ever, as this could still be useful for training deep learning 
strategies, we converted all articles and their annotations into 
the BioC format (25), the same format as the NLM-Chem-
BC7 corpus. The BC5CDR corpus contains title/abstract 
chemical annotations and their MeSH identifiers; they were 
also converted to the BioC format. All articles were enriched 
with their chemical substance indexing terms assigned by 
the NLM indexers during the normal indexing process. The 
indexing data were filtered to select only the indexing terms 
representing chemical substances and provided in the same 
format.

Finally, the last collection, the NLM-Chem-BC7 Chemical 
Indexing corpus, consisted of 1333 recently published arti-
cles, which served as the test dataset of the chemical indexing 
task. These articles were published in Spring 2021 and under-
went the normal manual indexing process at the NLM during 
September 2021 after completing the NLM-Chem track chal-
lenge. These indexed labels were used as gold-standard data 
for task evaluation.

Benchmark methods for chemical identification and 
indexing
In previous work (3), the NLM-Chem track organizers 
(authors Re.I., R.L. and Z.L.) described a benchmark tool for 
chemical entity recognition and normalization to illustrate the 
value of the NLM-Chem full-text corpus. This tool was based 
on BlueBERT (https://github.com/ncbi-nlp/bluebert), a vari-
ant of the Bidirectional Encoder Representations from Trans-
formers (BERT) transformer language model (26) trained 
on PubMed abstracts and clinical notes, which was intro-
duced with the Biomedical Language Understanding Evalu-
ation (BLUE) benchmark (27). We fine-tuned the BlueBERT 
model (BlueBERT-Base, Uncased, PubMed + MIMIC-III) to 
perform chemical NER using the combined BC5CDR (9) and 
NLM-Chem training sets. Chemical mentions are assigned 
MeSH identifiers by our sieve-based normalization system 
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Multiple Terminology Candidate Resolution (MTCR), which 
is optimized for chemical mention normalization. MTCR first 
resolves all abbreviations that appear in the mention text 
using abbreviation definitions identified by Ab3P in full-text 
articles (28). Then, each mention text is mapped to a set 
of candidate MeSH concepts using multiple string-matching 
methods, applied in sequence, with the first method that 
returns a non-zero number of MeSH concepts used as the 
overall result. The earlier methods in the sequence provide 
higher precision, while the later methods provide higher 
recall. These methods can be briefly summarized as follows: 
‘exact match’ to terminology vocabulary (MeSH); ‘relaxed 
match’ allows for certain lexical variations in the sequence; 
‘relaxed plural match’ processes tokens using a conserva-
tive plural stemmer and ‘relaxed match’ to multiple chemical 
terminologies.

We adapted this chemical tagger to provide comparison 
methods for the chemical identification and chemical index-
ing tasks. For the chemical identification task, we updated 
the transformer NER model to BioBERT and the normal-
ization component to use the 2021 version of MeSH. Thus, 
the comparison method for chemical identification sets a very 
high benchmark. For the chemical indexing task, we added a 
component to return the MeSH identifiers from annotations 
found in the title and abstract as the set of indexed chemicals. 
The indexing component thus represents a straightforward 
baseline approach with relatively low precision but higher 
recall.

After the conclusion of the challenge, we made two 
improvements to the benchmark methods, which are hereafter 
called the improved benchmark systems. Both improvements 
are based on reports from the task participants and are dis-
cussed further in the Discussion section. First, while BERT-
based transformer models consistently provide strong perfor-
mance for chemical NER, many participants in the chemical 
identification task reported noticeable performance increases 
when using a variant of BERT trained with a biomedical 
vocabulary. We, therefore, replaced the BERT variant used in 
the NER component with PubMedBERT (29). Second, for the 
chemical indexing task, we noted that the information most 
frequently used to determine if a chemical should be indexed 
is the document structure and how frequently the chemical is 
mentioned, echoing previous work on identifying focus enti-
ties in scientific documents (30). Therefore, we created an 
improved indexing benchmark system that uses the number 
of times a chemical is mentioned in each document section 
(e.g. title, abstract, introduction and methods) as features for 
a logistic regression model to predict whether that chemical 
should be indexed. This model must be trained using the out-
put of the chemical identification system as input; however, 
the performance of the chemical identification system would 
be artificially high using the training data. We, therefore, cre-
ated a separate training set by selecting ∼1200 open-access 
full-text articles published within the last 20 years with pub-
licly available indexing. Half were chosen randomly from 
journals whose name includes either ‘chem’ or ‘molec’, and 
half were chosen completely at random. We then trained the 
model using the output of the improved benchmark system 
for chemical identification as features and the publicly avail-
able MeSH indexing as the gold-standard labels. We applied a 
threshold to the probabilistic predictions to trade off between 
precision and recall.

Ensemble methods
We explored ensemble predictions for both chemical iden-
tification and chemical indexing tasks. Ensemble methods 
combine predictions from multiple sources, frequently pro-
viding higher performance than any single prediction alone. 
Ensemble predictions over a sufficiently large corpus can 
therefore be used as a silver-standard corpus for training later 
automated systems (8). Ensemble methods have been applied 
previously in many biomedical natural language processing 
contexts, notably in the CHEMDNER task for chemical
NER (8).

To create the ensemble predictions for the chemical identi-
fication task, we performed separate procedures for the NER 
and normalization subtasks. For NER, we gathered the set of 
spans from the chemical mentions in all submissions, includ-
ing the original benchmark results. We then added a score to 
each mention span representing the proportion of submissions 
that included the span. Next, we applied a threshold, drop-
ping any mentions below the threshold. Any mentions that 
overlapped after applying the threshold were combined into 
a single mention using the lowest start index of the overlap-
ping mentions as the new start index and, similarly, the highest 
end index of the overlapping mentions as the new end index. 
For normalization, we gather all (document identifier, men-
tion text, MeSH identifier) tuples from the submissions and 
perform normalization by choosing the MeSH identifier most 
frequently associated with each (document identifier, mention 
text) pair.

We combined the results from all submissions to the chemi-
cal indexing task into an ensemble prediction, again including 
the original benchmark results. This ensemble gathers the 
(document identifier, MeSH identifier) tuples from the chem-
ical indexing task submissions and adds a score representing 
the proportion of the submissions that contain the indexing 
value.

Finally, while the participants returned chemical identifi-
cation annotations for 1387 articles, only 54 were used for 
evaluating the chemical identification task. Therefore, we per-
formed an experiment to determine if the ensemble prediction 
could be used to annotate the remainder as a silver-standard 
training set, focusing primarily on NER. We created the 
NLM-Chem-BC7 Chemical Indexing silver-standard corpus 
by applying the same procedure as the ensemble prediction 
to the 1333 articles not used to evaluate the chemical identi-
fication task. The resulting dataset contains 392 838 chemical 
mention spans, corresponding to 33 209 unique mention texts 
and 12 301 MeSH identifiers. The full description of the 
NLM-Chem-BC7 Chemical Indexing silver-standard corpus 
can be found in a study by Islamaj et al. (24). We use this 
corpus as a silver-standard training set for NER by choos-
ing and applying a threshold and then combining overlapping 
mentions. While silver-standard training sets may be used in 
several ways, in this work we simply add it to the training 
data for the NER model, so that the full training data con-
sist of the NLM-Chem training set, the BC5CDR training set 
and the NLM-Chem-BC7 Chemical Indexing silver-standard 
corpus.

Evaluation measures
The evaluation metrics used to assess team predictions were 
micro-averaged recall, precision and F-scores. Three different 
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result types were scored: false negative (𝐹𝑁) results corre-
spond to incorrect negative predictions, false positive (𝐹𝑃) 
predictions correspond to incorrect positive predictions and 
true positives (𝑇 𝑃) results correspond to correct predictions. 
Recall 𝑟 (also known as coverage, sensitivity, true posi-
tive rate or hit rate) is the percentage of correctly labeled 
positive results over all positive cases, 𝑟 = 𝑇 𝑃/(𝑇 𝑃 + 𝐹𝑁). 
Precision 𝑝 (positive predictive value) is the percentage of 
correctly labeled positive results over all positive labeled 
results, 𝑝 = 𝑇 𝑃/(𝑇 𝑃 + 𝐹𝑃). The F-measure 𝐹𝛽 is the har-
monic mean between precision and recall, where 𝛽 is a param-
eter for the relative importance of precision over recall. 𝐹𝛽 =
((1 + 𝛽2) ⋅ 𝑝 ⋅ 𝑟)/(𝛽2𝑝 + 𝑟). The balanced F-measure (F𝛽), 
referred to as ‘F-score’ in this work, can be simplified to 
𝐹1 = 2 ⋅ 𝑝 ⋅ 𝑟/(𝑝 + 𝑟) and is the primary evaluation metric.

We measure the precision, recall and F-score measures in 
a strict and approximate evaluation setting. Furthermore, the 
chemical identification task consists of chemical NER and nor-
malization using MeSH identifiers. The strict evaluation for 
NER requires an exact match between the predicted mention 
span and the annotated mention span. The strict evaluation 
for normalization tasks requires an exact match between the 
set of predicted MeSH identifiers and the set of annotated 
MeSH identifiers for the full text. The approximate evalua-
tion for NER considers a predicted mention span to match an 
annotated mention span if they overlap. For chemical entity 
normalization, which is evaluated in the chemical identifica-
tion task and the chemical indexing task, the approximate 
evaluation is the least common ancestor F-score (31). This 
measure identifies an approximately minimal set of ancestor 
identifiers sufficient to ensure that all predicted and annotated 
identifiers have at least one common ancestor in the set. Both 
the set of predicted identifiers and the set of annotated identi-
fiers are then augmented with the ancestor set. The augmented 
sets are then evaluated as for the strict normalization mea-
sure. This procedure allows partial credit for predictions that 
are closely related to the reference identifier. Note, however, 
that if many ancestors must be added, the approximate per-
formance measures may be lower than the strict performance 
measures.

Similar to previous BioCreative challenges, statistical sig-
nificance was measured using bootstrap resampling (32, 33). 
While the test set for the chemical identification task contains 
tens of thousands of chemical mentions, it only contains 54 
documents. Each sample for the chemical identification task 
was created by sampling 54 documents with replacement and 
then sampling passages with replacement within each docu-
ment until achieving the same number of passages as the orig-
inal document. This procedure results in pseudo-documents 
that vary from the original but remain representative—simply 
sampling passages, for example, skews the normalization 
evaluation since it is calculated with respect to the set of 
identifiers at the document level. We selected 10 000 samples, 
calculating the precision, recall and F-score for each submis-
sion. We then considered a submission to have statistically 
significantly higher performance than another submission if it 
has a higher F-score for at least 95% of the samples. We only 
calculated statistical significance for the strict measures and 
followed the same procedure for both the NER and normal-
ization evaluations. We also used bootstrap resampling for the 
chemical indexing task but instead sampled entire documents. 

We again selected 10 000 samples and considered a submis-
sion to have statistically significantly higher performance than 
another submission if it has a higher F-score for at least 95% 
of the samples.

Participation and team descriptions
We received 85 submissions from a total of 17 teams. The 
participating teams represent nine nations from Europe, Asia 
and North America. Two teams were from industry, with the 
remainder from universities. The teams reported sizes of 2–7 
(average 4), typically with backgrounds in natural language 
processing, machine learning, information retrieval and com-
puter science. Seventeen teams submitted a total of 59 runs 
for the chemical identification task, 6 of which failed the eval-
uation script and were not evaluated further. Three of the 
remaining 53 runs were considered unofficial because they 
were submitted after the deadline. For the chemical indexing 
task, 8 teams submitted a total of 26 runs, 8 of which failed 
the evaluation script and were not evaluated further. Of the 
remaining 18 runs, 13 were considered unofficial because they 
were submitted after the deadline. To illustrate the variety of 
solutions for these tasks, a subset of the teams submitted sys-
tem descriptions for this article. These teams are summarized 
in Table 1, along with their affiliations and the number of sub-
missions to each task. The system descriptions follow in order 
of increasing team number. 

Team 110: DETI/IEETA, University of Aveiro; Rui Antunes 
and João Rafael Almeida (identification and indexing tasks)
We participated in the NLM-Chem track using a three-stage 
pipeline composed of deep learning and rule-based strategies 
that solved chemical recognition, normalization and indexing 
steps.

Table 1. Summary of the teams contributing system descriptions for 
this overview of the NLM-Chem track, along with the number of valid 
submissions for each task

Team 
number and 
citation

 Submission count

Team affiliation Identification Indexing

110 (34) DETI/IEETA, University 
of Aveiro

5 5, 5a

114 (35) University of Western 
Ontario and Al Baha 
University

1

121 (36) Graduate Institute of 
Data Science, Taipei 
Medical University

5

128 (37) Department of Statistics, 
Florida State University

4 4a

130 (38) Scientific Databases and 
Visualization Group, 
Heidelberg Institute for 
Theoretical Studies

1a

139 (39) DMIS Lab at Korea 
University

5

141 (40) Medicines Discovery 
Catapult

1 1a

143 (41) NVIDIA 2
157 (42) Toyota Technological 

Institute
5 3a

aUnofficial submissions.
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In the first step, we tackled the problem of detecting chem-
ical mentions as a traditional NER task using the beginning, 
inside, outside (BIO) tagging scheme for token-level classifica-
tion (34). The text was represented using contextualized word 
embeddings, calculated from PubMedBERT (29), which were 
forwarded through a conditional random field (35) layer. We 
experimented with several corpora for training our deep learn-
ing model. Besides the original NLM-Chem corpus (3, 36) 
and the BC5CDR (9) and CHEMDNER (8) datasets prepared 
by the organizers, we also preprocessed the DrugProt dataset 
(37) and used some of the datasets—CRAFT, BioNLP11ID, 
BioNLP13CG and BioNLP13PC—prepared by Crichton et al.
(38).

In the next step, a sieve-based normalization process linked 
the chemical mentions recognized with their correspond-
ing MeSH identifiers. This workflow was composed of two 
sequential components: a rule-based system and a deep learn-
ing model. The rule-based component used exact text match-
ing to map chemical mentions to their corresponding MeSH 
identifiers. Mentions were mapped using a dictionary consist-
ing of entry terms and concept identifiers from MeSH, filtered 
to only retain concepts belonging to the ‘Drugs and Chem-
ical’ category; abbreviation mappings obtained through the 
use of the Ab3P tool (28) and finally, mappings from training 
gold-standard annotations to improve dictionary coverage. 
Any remaining unmapped mentions were processed using a 
deep learning approach: First, SapBERT (39) was used to cre-
ate dense representations for the remaining entities and all 
MeSH identifiers. Then, we measured the cosine similarity 
between each entity representation and all MeSH identifier 
representations, and for each entity, we selected the MeSH 
identifier with the highest similarity and above a specific
threshold.

For the chemical indexing task, we tested a rule-based strat-
egy and another based on term frequency-inverse document 
frequency (TF-IDF) scores. The rule-based approach started 
by extracting the MeSH identifier present in specific parts 
of the documents, namely the title, abstract and table and 
figure captions. We hypothesized that these sections of the 
document would be the most appropriate to find mentions 
of MeSH terms of interest. For each section, we defined fre-
quency occurrence thresholds to reduce false positives. For 
example, if the MeSH identifier was recognized in the title, this 
identifier needed a percentage of occurrence equal or superior 
to 10% within the document. In the second strategy, we mod-
eled the importance of each MeSH identifier using the TF-IDF 
weighting scheme.

Team 114: University of Western Ontario and Al Baha 
University; Robert E. Mercer and Mohammed A. Alliheedi 
(identification task)
For the NLM-Chem track, our team decided to take an 
already trained model and modify its performance with a rule-
based system rather than design and train a neural model from 
scratch. This method achieved moderate success.

The first step was to use Stanza to tokenize the text (40), 
and then some rules are invoked to modify this tokeniza-
tion. The initial tokenization step uses the package from 
the genome information acquisition project (41). The out-
put from this step is then analyzed with some rules that 
dealt with parentheses and other punctuation. Once the text 
is tokenized, it is processed using the Stanza named entity 

recognizer bc4chemd. Stanza tags each token as ‘Other’, or 
as single-token chemical names, or as multi-word chemical 
names using ‘Begin’, ‘Internal’ and ‘End’ tags. The output 
from Stanza is analyzed with 12 rules. One rule dealt with 
acronyms not found by Stanza, two rules tidied up some 
minor errors and the remaining rules added modifying words 
and phrases that were annotated as part of the chemical
names.

The next step is the normalization process. We downloaded 
MeSH 2021 and extracted all text items associated with each 
MeSH term. These are loaded in our Python program as 
a dictionary and mapped using case-insensitive exact match 
to provide the normalized MeSH identifier for any chemical 
name recognized. The last task is to provide the location and 
length of each chemical name.

The original Stanza finds 62.9% of the unique chemical 
names in the training set. After adding the post hoc rule-based 
corrections, Stanza finds 71.6% of the unique chemical names 
in the training set.

Team 121: Graduate Institute of Data Science, Taipei 
Medical University; Wen-Chao Yeh and Yung-Chun Chang 
(identification task)
We developed a BERT-based ensemble learning approach to 
recognize chemical entities. To determine which pretrained 
BERT model is best suited for this task, we evaluated the 
performance of BERT pretrained models with biomedical 
vocabularies using the NLM-Chem corpus under 10-fold 
cross-validation. The results demonstrated that the model 
by Alrowili and Shanker (42) and the PubMedBERT (29) 
model achieved the best performance out of all models 
tested. We then used ensemble learning with a majority vot-
ing mechanism to integrate them, selected via k-fold cross-
validation.

To perform chemical normalization, we adopted a dynamic 
programming-based method to link the MeSH identifier of 
recognized chemical entities. First, we extracted the MeSH 
identifiers from all training datasets as a knowledge base. 
Next, we use this knowledge base to map all chemical men-
tions predicted to their respective identifiers. We quantify 
the string similarity between chemical mentions identified 
in the text and terms in the knowledge base with edit dis-
tance, retrieving the most similar MeSH term and identifier 
if the string similarity is >90%. We used parallel program-
ming to save search time for a high volume of identification
terms.

For chemical NER, we achieved F-scores of 0.8521 and 
0.9183 on the strict and approximate evaluations, respec-
tively. Moreover, our model achieves high performance for 
chemical normalization, with F-scores of 0.8072 and 0.8015 
on the strict and approximate evaluations, respectively.

Team 128: Department of Statistics, Florida State University; 
Arslan Erdengasileng and Keqiao Li (identification and 
indexing tasks)
We developed a hybrid pipeline for chemical NER, chemical 
normalization and chemical indexing as follows:

Chemical NER: we first tried several variants of the 
BERT model, and PubMedBERT (29) achieved the high-
est F-score. We also trained models using different com-
binations of the current and related datasets (NLM-Chem, 
BC5CDR and CHEMDNER) to see if adding more data 
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would increase the performance. Our experiment showed that 
adding more data did not improve the NER performance. 
We then used a data augmentation technique, replacing each 
chemical mention (and a subset of non-chemical mentions) 
with random text, and found the procedure improved the
performance (43).

From the PubMedBERT output, we added some post-
processing steps. First, Ab3P, an abbreviation definition 
detector trained on PubMed abstracts, was used to recog-
nize abbreviations in the text (28). The full names and their 
abbreviations are linked within the same articles, and all 
occurrences received the same NER label. Second, chemical 
names can be part of other entity names, such as protein enti-
ties. We trained another BioBERT-based protein NER model 
to detect protein entities. The goal was to remove wrongly 
labeled chemical names that are part of protein names. Our 
best F-score on the test set is 0.8600.

Chemical normalization: we built a sieve-based pipeline 
using multiple dictionaries: MeSH (https://www.nlm.nih.gov/
mesh), Unified Medical Language System (UMLS) (44), Pub-
Tator annotations (45) and the NLM-Chem corpus. First, we 
scanned through dictionaries in a specific order. Second, we 
used Ab3P to process those unmapped chemicals to detect 
abbreviations and their long forms. Last, we scanned the long 
forms of abbreviations detected through the dictionaries in the 
same order in the first step. Our best F-score on the test set is 
0.8101.

Chemical indexing: we built a binary MeSH indexing 
classification system using a PubMedBERT model with engi-
neered features. In this strategy, we dealt with one MeSH 
term at a time by predicting whether it should be indexed. 
To remove the noise from the long text, we broke up full texts 
into sentences and selected the sentences with chemical men-
tions of the corresponding MeSH terms as input to the model. 
The labels are simply ‘True’ or ‘False’ based on whether or not 
the MeSH terms were used for indexing the articles. We added 
engineered features before the sentences, such as the section 
where the sentences were taken from and the chemical names 
whose MeSH terms were to be predicted. Our best F-score on 
the test set is 0.5681.

Team 130: Scientific Databases and Visualization Group, 
Heidelberg Institute for Theoretical Studies; Ghadeer 
Mobasher and Lukrécia Mertová (identification task)
We based our chemical entity identification model on the 
biomedical pretrained language model BioBERT (46), fine-
tuned using the BC5CDR-chemicals (9) and CHEMDNER 
corpora (8), which is publicly available (https://huggingface.
co/alvaroalon2/biobert_chemical_ner). We conducted our 
work on a professional-grade NVIDIA Tesla cluster, using 
one of its graphics processing unit nodes to run the model on 
the NLM-Chem corpora and evaluating fine-tuned BioBERT 
using the evaluation script provided by the organizers.

For chemical EL, we adopt a rule-based approach (47). 
The key concept is parsing the chemical entity into mean-
ingful sub-word components and then creating a compre-
hensive comparison. Each chemical is analyzed and parsed 
via the semantic analysis module and then processed via 
a similarity search module that queries internally stored 
reference databases. For this purpose, we enriched the 
MeSH database of descriptors (23) with synonyms from 
the PubChem database (48). The semantic analysis module 

uses rules according to International Union of Pure and 
Applied Chemistry nomenclature (49) to separate compo-
nents and assign different priorities according to the position 
and type. The similarity estimation provided by the simi-
larity search module deals with chemical-based errors and 
typos by considering the similarity of each chemical feature
separately.

We have evaluated the performance of the fine-tuned 
BioBERT, trained on BC5CDR chemicals and CHEMDNER 
corpora, using the evaluation script provided by the orga-
nizers. The parameter set used remains unmodified from the 
default setting. For our future work, we aim to resolve the 
issue arising from BERT tokenizers, develop joint learning 
of chemical NER and EL using pretrained transformer-based 
models and compare their performance with our preliminary 
approach (50).

Team 139: DMIS Lab at Korea University; Hyunjae Kim and 
Mujeen Sung (identification task)
Our overall system consists of two separate components, each 
responsible for NER and normalization. NER is accomplished 
through three steps: transfer learning, model ensemble and 
majority voting. In transfer learning, NER models, which 
are Bio-LM-large models with a linear layer (51), are first 
trained on a single source data and then fine-tuned on the tar-
get data (i.e. NLM-Chem). For source data, existing datasets 
such as BC5CDR and CHEMDNER and the new synthetic 
data NLM-Chem(syn) are used, which are created by replac-
ing entity mentions in the original NLM-Chem data with their 
synonyms using the Comparative Toxicogenomics Database 
(CTD) version released on 1 April 2021 (http://ctdbase.org/). 
Twenty differently trained NER models are combined to form 
an ensemble model, where the model aggregates predictions 
of every single model and outputs the majority as the final 
prediction. The output predictions of the ensemble model 
are modified by majority voting, a rule-based post-processing 
method. Majority voting collects all predictions within an arti-
cle, identifies the most common prediction for each input and 
changes all other predictions for the same input to match the 
most common.

In normalization, predicted entities in the NER stage are 
mapped into MeSH identifiers by a hybrid model consisting 
of a dictionary model and a neural model. The dictionary 
model first performs normalization based on exact matching 
between predicted entities and the dictionary, which is the 
same CTD version as in synonym replacement. The neural 
model further performs the process on entities that are not 
matched by the dictionary model. For the neural model, we 
use BioSyn (52) with the SapBERT encoder (39).

Team 141: Medicines Discovery Catapult; Robert Bevan and 
Matthew Hodgskiss (identification task)
We experimented with two approaches to chemical entity 
recognition while developing our system. First, we fine-tuned 
a PubMedBERT transformer model (29) using the NLM-
Chem dataset. Next, we fine-tuned two additional transform-
ers: one using the CHEMDNER dataset (8) and one using the 
BC5CDR dataset (9). We then trained a stacking model using 
the outputs of the three models in the hope it would offer an 
improvement over the single transformer model. We observed 
no such improvement and used the single transformer model 
in our final system. An additional challenge to consider when 
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working with the NLM-Chem dataset is that it comprises 
full articles, which contain passages with lengths greater 
than the 512 tokens PubMedBERT can process. We excluded 
these passages during training. For the evaluation, we split 
long passages into overlapping sequences of 512 tokens, 
processed these sequences individually and averaged the
outputs.

Our normalization system is built on the normalization 
sieve approaches presented in previous work (3, 53). We began 
by extending the MeSH database by adding synonyms from 
the following sources: Chemical Entities of Biological Interest 
(ChEBI) (54), UMLS (44), NCI Thesaurus (55) and Unique 
Ingredient Identifier (UNII) (https://fdasis.nlm.nih.gov/) and 
PubChem (https://pubchem.ncbi.nlm.nih.gov/). Next, we nor-
malized each of the terms in the database. More specifically, 
we lowercased and removed whitespace from each term and 
substituted Greek characters with their English equivalents. 
We implemented a set of string manipulation and substitution 
methods to try to improve recall. The string manipulation 
methods included stemming and non-alphanumeric charac-
ter removal. We adopted two string substitution methods: 
abbreviation expansion using Ab3P (28), where abbreviations 
are substituted for their typically less ambiguous long form 
and similar entity substitution using BioWordVec embed-
dings (56). Similar entity substitution works as follows: an 
entity is converted to a BioWordVec embedding, and the 10 
most similar embeddings—measured by cosine similarity—
are identified. Embeddings with cosine similarity below some 
empirically determined threshold are discarded. The strings 
corresponding to the remaining embeddings are then resolved 
to MeSH identifiers where possible, and the final MeSH 
identifier is determined by majority vote. We evaluated the 
precision of each data source and string manipulation/sub-
stitution method combinations and used this information to 
construct the optimal normalization sieve.

For the task of predicting whether an identified MeSH 
identifier belongs to an article’s index, we trained a logistic 
regression model using the following features: mention count, 
normalized mention count, the number of different passages 
the identifier is mentioned in, passage-type mention count 
(e.g. identifier mentioned three times in the abstract) and the 
identifier identity.

Team 143: NVIDIA; Virginia Adams and Hoo-Chang Shin 
(identification task)
For the NLM-Chem track, we perform NER using prompting-
based approaches with generative pre-training (GPT) (57) 
and T5-(58) style generative models. We use BERT-based 
NER models as our baseline. Our experiments show that the 
BioMegatron BERT–based model (59) performed better than 
BioBERT (46) baseline, possibly due to larger model and pre-
training text corpus sizes. We use model ensemble to boost the 
final performance by an additional ∼5%.

For our prompting experiments, our GPT (57) and T5 (58) 
models have a similar number of parameters as our BioMega-
tron model (345 M parameters). Text-to-text, or prompting-
based, methods are attractive, as many different tasks can be 
expressed as natural language questions and answers and the 
fine-tuning objective for prompt-style tasks aligns with the 
pretraining objective of these generative models. Addition-
ally, because all tasks share the same fine-tuning objective, 
a model can be tuned for multiple tasks at once, potentially 

benefiting from shared knowledge between tasks. We adopt 
this approach to convert NER into a natural language, text-
to-text problem. When preprocessing the training data and 
converting them into a format conducive to prompt-style 
question answering, long paragraphs are split into two to 
four sentences and a manually formatted prompt is added 
to the sentence. For example, we found prefacing sentences 
with the phrase ‘find entities:’ to be successful. In addition 
to the NLM-Chem track NER task, we also used a similar 
prompting-based set-up for the topic indexing and EL tasks 
with varying levels of success.

For EL, we also adopt the self-alignment pretraining 
approach described by Liu et al. (39). The idea behind this 
approach is to use a metric-learning loss to reshape the ini-
tial BioBERT embedding space such that synonyms of the 
same concept are pulled closer together and unrelated con-
cepts are pushed further apart. The concept embeddings from 
this reshaped space can then be used to build a knowledge base 
embedding index. This index stores MeSH identifiers mapped 
to their respective concept embeddings in a format conducive 
to efficient nearest neighbor search. We link query concepts 
to their canonical forms in the knowledge base by performing 
a nearest neighbor search—matching concept query embed-
dings to the most similar concept embedding in the knowledge 
base index. We use the UMLS dataset to pretrain BioBERT
for EL.

Team 157: Toyota Technological Institute; Tomoki 
Tsujimura and Ryuki Ida (identification and indexing tasks)
We built fully neural NER, linking and indexing models along 
with a TF-IDF-based indexing model to tackle the NLM-
Chem track. We treated the NER task as a sequential tagging 
problem using the beginning, inside, last, outside, unit scheme, 
which identifies the beginning, inside and last tokens of multi-
token mentions, as well as tokens outside of an entity mention 
or mentions comprising a single token unit. We decoded the 
entity labels via the Viterbi algorithm. Our NER model was a 
fine-tuned model of SciBERT (60) with a classification layer 
for the task. Our NER model achieved a strict F-score of 
0.8284.

We employed a model built at n2c2 2019 shared-task 
Track 3 (61) for the EL task. We regarded the EL task as 
a classification problem over all entities in the MeSH the-
saurus. Our model took the surface form of an entity as 
the input and encoded it using the SciBERT encoder. The 
encoded representation was then fed to the cosine similarity-
based output layer, producing the probability distribution 
over all entities. We automatically built additional training 
instances from synonyms recorded in the MeSH thesaurus 
to cover unseen entities during training. We also tried to 
augment the training instance using the BC5CDR dataset 
(9), but the model without augmentation produced our best 
result. To mitigate the underfitting problem, we overwrote the 
weight matrix of the output layer with the mean of the rep-
resentations from the input once during training, which we 
also performed when we participated in n2c2 2019. Finally, 
we employed Ab3P (28) at preprocessing to expand the 
abbreviations in the target documents. Our best test F-score
was 0.7954.

We built a neural indexing model that took a bag of sen-
tences as the input for the indexing task. For each MeSH entity 
in the target document, we gathered sentences containing the 
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Table 2. Official chemical identification results for strict and approximate NER measures

 Strict  Approximate

Rank Team/run Precision Recall F-score Signif. Precision Recall F-score

1 139/3 0.8759 0.8587 0.8672 2–16 0.9373 0.9161 0.9266
2 128/1 0.8544 0.8658 0.8600 4–16 0.9220 0.9304 0.9262
3 143/1 0.8535 0.8608 0.8571 4–16 0.9271 0.9235 0.9253
4 121/2 0.8461 0.8583 0.8521 6–16 0.9152 0.9215 0.9183
5 141/1 0.8338 0.8654 0.8493 9–16 0.8953 0.9309 0.9127
6 104/2 0.8687 0.8249 0.8463 9–16 0.9273 0.8791 0.9025
7 148/1 0.8692 0.8239 0.8459 9–16 0.9277 0.8761 0.9011
8 110/4 0.8394 0.8515 0.8454 11–16 0.9040 0.9229 0.9134
9 149/1 0.8226 0.8614 0.8416 11–16 0.8951 0.9204 0.9076
10 146/4 0.8219 0.8622 0.8415 11–16 0.8945 0.9235 0.9088
11 157/1 0.8476 0.8101 0.8284 12–16 0.9128 0.8670 0.8893
12 Benchmark 0.8440 0.7877 0.8149 14–16 0.9156 0.8492 0.8811
13 155/1 0.8312 0.7967 0.8136 14–16 0.9009 0.8596 0.8798
14 114/1 0.7219 0.5897 0.6492 15–16 0.8348 0.6919 0.7567
15 130/1a 0.7208 0.5211 0.6049 16 0.8933 0.6331 0.7410
16 116/3 0.8234 0.1916 0.3109 0.9196 0.215 0.3485

aUnofficial runs. This table only shows the run for each team with the highest strict F-score; complete results are shown in Supplementary Materials. Runs are 
ordered by strict F-score, descending. The strict F-score for each row is statistically significantly higher (P < 0.05) than the rows marked in the Signif. column. 
The highest value in each column is marked in bold.

entity and formed a bag of sentences. We inserted special 
tokens into the sentences to mark the entity spans. Our model 
encoded each sentence with the special tokens to the sentence 
representation by the SciBERT encoder. Then, the attention 
module aggregated the sentence representations to form the 
bag representation. The bag representation was fed to the out-
put layer to predict the probability of being the index. We 
also built an indexing model based on TF-IDF (62). The TF-
IDF model calculated the TF-IDF value for each entity and 
made decisions by comparing the value with the threshold. 
We found that our neural indexing model is more sensitive 
to noise than the TF-IDF model. As a result, our neural model 
and TF-IDF model got F-scores of 0.2736 and 0.4745, respec-
tively. As for the training, we trained each neural model five 
times with different random seeds and took the average of the 
outputs as the ensemble for the test submission. We tuned the 
hyperparameters using Optuna (63).

Results
Chemical identification results
The official chemical identification results for the NER mea-
sures (strict and approximate) are shown in Table 2. Each 
team was allowed up to five submissions, labeled Run 1 
through Run 5; we show only the run with the highest 
strict F-score for each team and provide the complete results 
in Supplementary Material. The highest strict F-score was 
0.8672 (Team 139, Run 3), and the highest-performing sub-
mission of 11 of the 15 teams had a higher strict F-score than 
the original benchmark. The approximate F-scores are highly 
correlated with the strict F-scores, even though ordering by 
approximate F-score produces slightly different rankings for 
the intermediate results (i.e. Ranks 5–10). While the absolute 
difference between many of the results is relatively small, the 
average difference between ranks which is statistically signif-
icant is 1.80. We also observe that the strict F-score of the 
Rank 1 submission is statistically significantly higher than the 
Rank 2 submission. 

The official chemical identification results for the nor-
malization measures (strict and approximate) are shown 
in Table 3. Each team was again allowed up to five submis-
sions, labeled Run 1 through Run 5. We again only show the 
submission with the highest strict F-score for each team, with 
the complete results provided in Supplementary Material. 
Note that the team submission reported in Table 3 may differ 
from the submission reported for the same team in Table 2 
since each table only shows the submission with the highest 
strict F-score for each evaluation. The highest strict F-score 
was 0.8136 (Team 110, Run 4), and the highest-scoring sub-
mission for 4 of the 14 teams had a higher strict F-score than 
the original benchmark. The approximate F-scores are highly 
correlated with the strict F-scores, even though slightly less 
than for NER. While the same submission had the highest
strict F-score and approximate F-score, ordering by approxi-
mate F-score produces significantly different rankings overall. 
For example, the submissions ranked 2, 3 and 4 according to 
approximate F-scores were ranked 3, 7 and 2, respectively, 
when ranked by strict F-score. Considering statistical signif-
icance, we see that the Rank 1 submission does not have 
statistically significantly higher performance than the Rank 2 
submission, unlike the NER evaluation. There are also a few 
submissions starting at Rank 5 (the original benchmark) with 
performances that are not statistically significantly different. 
We observe that the Rank 7 submission (Team 139, Run 2) has 
statistically significantly higher performance than the Rank 8 
submission, even though the Rank 5 and 6 submissions do 
not; we believe this is due to the sampling procedure slightly 
favoring the high recall of this submission. Finally, while the 
absolute difference between many of the results is again rel-
atively small, the average difference between ranks which is 
statistically significant is 1.64.

Chemical indexing results
Table 4 reports the chemical indexing results (strict and 
approximate) for the run using the NLM-Chem-BC7 Chemi-
cal Indexing corpus. Each team was allowed up to five official 
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Table 3. Official chemical identification results for strict and approximate normalization measures

 Strict  Approximate

Rank Team/run Precision Recall F-score Signif. Precision Recall F-score

1 110/4 0.8621 0.7702 0.8136 3–15 0.8302 0.7867 0.8030
2 128/2 0.7792 0.8434 0.8101 4–15 0.7258 0.8679 0.7864
3 121/1 0.7874 0.8281 0.8072 5–15 0.7530 0.8643 0.8015
4 157/3 0.7338 0.8683 0.7954 5–15 0.6954 0.8976 0.7760
5 Benchmark 0.8151 0.7644 0.7889 9–15 0.7917 0.7889 0.7857
6 141/1 0.7890 0.7849 0.7870 9–15 0.7192 0.8254 0.7628
7 139/2 0.7256 0.8505 0.7831 8–15 0.7113 0.8966 0.7883
8 155/1 0.7886 0.7644 0.7763 9–15 0.7309 0.7917 0.7551
9 104/1 0.6720 0.7475 0.7078 10–15 0.6319 0.8097 0.7039
10 149/2 0.6645 0.7451 0.7025 12–15 0.6260 0.8174 0.7033
11 148/4 0.6481 0.7629 0.7008 12–15 0.6043 0.8281 0.6923
12 146/1 0.5931 0.7816 0.6744 13–15 0.5418 0.8558 0.6581
13 114/1 0.8334 0.4645 0.5965 14–15 0.8273 0.5279 0.6368
14 143/1 0.4326 0.6541 0.5208 15 0.4418 0.8108 0.5664
15 130/1a 0.4575 0.4449 0.4511 0.5461 0.6093 0.5662

aUnofficial runs. This table only shows the run for each team with the highest strict F-score; complete results are shown in Supplementary Materials. Runs are 
ordered by strict F-score, descending. The strict F-score for each row is statistically significantly higher (P < 0.05) than the rows marked in the Signif. column. 
The highest value in each column is marked in bold.

Table 4. Official chemical indexing results with both strict and approximate measures using the updated indexing

 Strict  Approximate

Rank Team/Run Precision Recall F-score Signif. Precision Recall F-score

1 110/1 0.7417 0.5141 0.6073 2–5 0.7526 0.6779 0.6743
2 128/1a 0.5506 0.5867 0.5681 3–5 0.6437 0.7545 0.6507
3 Benchmark 0.4057 0.7005 0.5138 4–5 0.5233 0.8536 0.6135
4 157/1a 0.3553 0.7137 0.4745 5 0.4614 0.8729 0.5687
5 141/1a 0.4958 0.3061 0.3785 0.5459 0.4626 0.4687

aUnofficial runs. Runs are ordered by strict F-score, descending. The strict F-score for each row is statistically significantly higher (P < 0.05) than the rows 
marked in the Signif. column. The highest value in each column is marked in bold.

submissions and an additional five unofficial submissions, 
labeled Run 1 through Run 10; we show only the run with 
the highest strict F-score for each team and provide the com-
plete results in Supplementary Material. The NLM-Chem-
BC7 Chemical Indexing corpus was updated by expert NLM 
indexers in a double-reviewed, blind annotation experiment 
using frequent differences between the indexing terms pre-
dicted by the challenge participants and the publicly available 
MeSH indexing. Comparing the results for all submissions 
using the NLM-Chem-BC7 Chemical Indexing corpus to the 
results using the original indexing gold standard, reported in 
previous work (64), demonstrates both higher precision and 
higher recall for all submissions, with the F-score increas-
ing an average of 0.0982 (values shown in Supplementary 
Material). We also observe differences with the original sub-
mission rankings; this is expected, however. The highest strict 
F-score was 0.6073, and two of the four teams have a strict 
F-score higher than the original benchmark. The approxi-
mate F-scores are substantially higher than the strict scores 
(+0.0887 on average). The approximate F-scores are highly 
correlated with the strict F-scores, and ranking by approx-
imate F-score is very similar to ranking by strict F-score. 
Finally, we observe that all differences in the strict F-score are 
statistically significant. 

Ensemble results
We evaluated the ensemble NER results using the strict mea-
sure, determining the precision, recall and F-score as a func-
tion of the proportion of submissions containing the mention. 
Any overlapping mentions remaining after thresholding were 
combined into a single mention using the lowest start index 
of the overlapping mentions as the new start index and, sim-
ilarly, the highest end index of the overlapping mentions as 
the new end index. The results are presented in Figure 1. The 
maximum F-score is 0.8732 at a score threshold of 0.3519. 
When the threshold is high, precision is high, and recall is 
low, as expected. However, when the threshold is low, pre-
cision and recall are both low due to combining overlapping
mentions.

We evaluated the normalization ensemble results using the 
strict normalization measures. The normalization ensemble 
approach does not allow for tuning, so we determined the 
performance as a function of the proportion of submissions 
containing the annotation at the NER level. The results are 
presented in Figure 2. The maximum F-score is 0.8092 at a 
score threshold of 0.6667. As with the NER, when the thresh-
old is high, precision is high, and recall is low, as expected. 
However, when the threshold is low, precision and recall are 
both low due to combining overlapping mentions.
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Figure 1. Performance of the ensemble of all submissions using the strict NER measures as a function of the proportion of submissions containing the 
mention.

Figure 2. Performance of the ensemble of all submissions using the strict normalization measures as a function of the proportion of submissions 
containing the mention.

The evaluation of the indexing ensemble results can be seen 
in Figure 3. The score represents the proportion of submis-
sions to the chemical indexing task that included the identifier. 
The maximum F-score is 0.7474 at a score threshold of 
0.4737.

Improved benchmark and silver-standard results
Table 5 summarizes the results of the improved benchmark 
systems before and after adding the silver-standard corpus to 

the training data for the NER component. We show only the 
F-score of the strict evaluation for each task to highlight the 
improvements. All increases in the F-score are statistically sig-
nificant, using the same procedures as for used to determine 
statistical significance for the official submissions (P < 0.05). 
For the silver-standard experiment, we chose a threshold of 
0.35, which is equivalent to the threshold that produced the 
highest F-score for the NER ensemble. The improved index-
ing benchmark also requires a threshold; we used 0.07, which 
maximized the performance on the training data. 
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Figure 3. Indexing performance of the ensemble of all submissions as a function of the proportion of submissions including the identifier.

Table 5. Comparison of results of the original benchmark systems, 
improved benchmark systems and the improved benchmark systems with 
the NER component trained on the silver-standard corpus

Task and 
evaluation

Original 
benchmark 
system

Improved bench-
mark system 
(change)

Improved bench-
mark + silver 
standard (change)

NER, strict 0.8149 0.8480 
(+0.0331)

0.8647 (+0.0498)

Normalization, 
strict

0.7889 0.8149 
(+0.0260)

0.8213 (+0.0324)

Indexing 
(updated)

0.5138 0.6520 
(+0.1382)

n/a

All values are strict F-scores, and all increases in the strict F-score are statisti-
cally significant (P < 0.05). Since the silver-standard corpus and the indexing 
evaluation set comprise the same documents, we do not report indexing 
values using the NER component trained on the silver-standard corpus.

Discussion
In this section, we analyze the submissions to the NLM-Chem 
track and the post-challenge experiments. First, we analyze 
the submissions to the chemical identification task, fol-
lowed by the chemical indexing task. We then analyze the 
results of the ensemble experiments and the silver-standard
experiment.

Analysis of chemical identification task team 
submissions
Most teams separated the chemical identification task into dis-
tinct NER and normalization components, combined using 
a pipeline approach. For NER, systems based on BERT 
transformer models such as BioBERT (46) were popular and 
performed well. However, BioBERT uses a general vocabu-
lary, and many teams noted that BERT variants using a vocab-
ulary intended for biomedical text, such as PubMedBERT (29) 
and BioMegatron (59), have noticeably higher performance 
on the NLM-Chem corpus (43, 65–67). We further note 

that the one update to the benchmark for the chemical 
identification task was changing from BioBERT to PubMed-
BERT, resulting in a substantial performance improvement 
(0.0331 F-score for the strict NER evaluation). The strong 
performance improvement provided by using a BERT model 
with a biomedical vocabulary may reflect the specialized 
terminology used by chemical names.

In line with previous work on NER in chemicals (68), 
Teams 121, 139, 141 and 143 reported that ensemble methods 
are effective (65–67, 69). In addition, several teams reported 
that fine-tuning a BERT model directly on the additional 
datasets (BC5CDR and CHEMDNER) resulted in lower per-
formance than models fine-tuned on only the NLM-Chem 
data. However, Team 139 reported increased performance by 
pretraining on the additional datasets, followed by fine-tuning 
on NLM-Chem (67). Finally, Teams 128 and 139—the teams 
with the highest NER performance—augmented their train-
ing sets with synthetic data, either by replacing the annotated 
chemical mentions with chemical names from a lexicon or 
random strings (43, 67).

The normalization methods were significantly more var-
ied than those for NER; however, most teams used a hybrid 
of two or more methods, often in a sieve configuration (53). 
Almost all teams used a direct string match as their primary 
approach, employing an approximate match approach only 
if the direct match was unsuccessful. While abbreviations 
have many potential senses, these can be handled separately, 
and polysemy is otherwise not a critical issue for this task. 
The direct string-matching approach provides high precision 
and, if used with string transformations, also provides modest 
recall.

Most teams also used an approximate match for higher 
recall, but these methods varied. Teams 110, 139, 141 and 157 
reported converting chemical mentions and names to dense 
vectors and then identifying the closest matches using cosine 
similarity (67, 69–71). The results show that this approach 
seems to have been particularly effective at achieving high 
recall; the five runs submitted by Team 157 are notable for 
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achieving the five highest recall values for the strict normal-
ization evaluation (71). Team 121 found edit distance to 
be a useful approximate match method, although computa-
tionally expensive (66). Usage of additional chemical name 
resources seems to have been relatively limited, even though 
teams did report using UMLS (44), PubChem (48), NCI 
Thesaurus (55), ChEBI (54), UNII (https://fdasis.nlm.nih.gov/
srs/) and also the chemical mappings of PubTator (45). The 
teams did not seem to employ a separate step to filter non-
chemicals from the results, instead relying on the NER results 
to determine whether the span was a chemical or not. The 
three teams that predicted the greatest number of chemical 
annotations with composite identifiers (i.e. more than one 
MeSH identifier per mention) were also the three teams with 
the highest F-scores for the strict normalization evaluation. 
Overall, the normalization scores were significantly lower 
than the NER scores and not as tightly clustered toward the 
high end of performance. We note that strong NER perfor-
mance is necessary for good normalization performance but 
is not sufficient. In particular, the submission with the high-
est normalization score was ranked 15th in the NER scores. 
Finally, some teams reported cascading errors from the NER 
system, suggesting that an end-to-end approach might be
beneficial.

Analysis of chemical indexing task team 
submissions
The task participants reported finding the chemical indexing 
task significantly more challenging than the chemical indexing 
task. This subjective evaluation is supported by the number 
and types of submissions—a total of 18 valid submissions, 
with 13 unofficial—and by the significantly lower perfor-
mance relative to the chemical identification task. However, 
the evaluated performance of all submissions to the chemical 
indexing task is higher using the NLM-Chem-BC7 chemi-
cal indexing corpus than the original MeSH indexing (24), 
suggesting that the real utility of automated algorithms for 
MeSH term indexing is higher than can be measured using 
the publicly available MeSH indexing terms.

The teams reported that the most readily available infor-
mation for determining whether a specific chemical identi-
fier should be indexed is the document structure—where the 
chemical is mentioned in the document—followed by fre-
quency. This observation is in line with previous work on iden-
tifying key entities in scientific documents (30) and was the 
basis for the improved benchmark method for the chemical 
indexing task, which used the number of times the chemical 
appeared in each section as features, resulting in a substantial 
performance improvement. Team 128 found a binary classi-
fier with engineered features to be effective (43). Teams 110 
and 157 both reported using hybrid methods, including a TF-
IDF variant, to prioritize the chemical identifiers found during 
the identification task (70, 71).

Analysis of ensemble and silver-standard results
The ensemble results for NER show higher performance than 
any single participant in the task, underscoring the effec-
tiveness of ensemble methods for NER tasks. Moreover, the 
F-score is not overly sensitive to the threshold chosen for 
the proportion of submissions. For normalization, however, 
the maximum performance is somewhat less than the perfor-
mance achieved by the submission with highest performance. 

We note that the maximum performance for normalization 
is at a threshold of 0.67, much higher than the threshold for 
the maximum NER performance (0.35). This higher thresh-
old implies a need for higher precision and may be related to 
the normalization evaluation ignoring the number of times the 
chemical was identified in the document.

Error analysis of the NER ensemble results shows that 
the mention texts most often missed are considerably shorter 
than mentions on average. These mentions primarily com-
prise abbreviations (e.g. ‘PET’), with some chemical formulas 
(e.g. ‘H2O2’) and common names (e.g. ‘water’). The mention 
texts most often predicted erroneously are similar. However, 
we also see some partial mentions such as ‘sulfur’ instead of 
‘sulfur isotopes’ or chemicals that are a part of a name for a 
non-chemical, such as ‘glutathione peroxidase’.

Error analysis of the normalization ensemble results, on 
the other hand, is somewhat more diverse. For missed iden-
tifiers, the most apparent pattern is that many are com-
pound, such as ‘MeSH:D012965,MeSH:D014325’, referring 
to sodium chloride and tromethamine, from the mention 
‘Tris-buffered saline’. While compound identifiers are uncom-
mon overall, many participants made no attempt to identify 
them. Other identifiers frequently missed include common 
chemicals (e.g. ‘water’), especially high-level concepts (e.g. 
‘lipids’). Identifiers often predicted incorrectly include tech-
netium (MeSH:D013667) for the mention ‘TC’, which typi-
cally refers to total cholesterol.

The silver-standard experiment demonstrates that an 
ensemble of systems can be used to produce training data 
that increase the accuracy of the NER model. Moreover, the 
improved results for NER also translate to improved per-
formance for normalization. Unfortunately, we could not 
evaluate the improvements for the indexing since the silver-
standard documents are the same as those for the indexing 
evaluation. However, it seems reasonable to expect some 
indexing improvements.

The ensemble results for indexing show substantially 
higher performance than the submission with the highest per-
formance (+0.1401). Moreover, above a score threshold of 
∼0.57, the precision of the ensemble is >0.99. Error analysis 
of the indexing ensemble shows that missed identifiers form 
two types. The first type is very common chemicals, such as 
glucose, water and reactive oxygen species. The second type is 
not mentioned directly in the article where they are indexed; 
for example, glycosides (MeSH:D005960) is indexed in 12 
articles but is not directly mentioned in any, including in the 
full text.

Conclusion
We presented the NLM-Chem track at BioCreative VII, con-
sisting of two tasks: chemical identification—corresponding 
to chemical NER and normalization (EL)—and chemical 
indexing. Of the teams that submitted to the chemical iden-
tification task, 73% achieved a higher strict F-score than the 
benchmark system for NER, while 29% achieved the same for 
normalization. Participants described several improvements 
that reliably improved the quality of the results for the chem-
ical identification task. We demonstrated improvements to 
the benchmark identification system using only one of these: 
updating the deep learning transformer NER system to use 
a model trained with a biomedical vocabulary. Of the teams 
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that submitted to the chemical indexing task, 50% achieved a 
higher strict F-score than the benchmark system. Our results 
suggest that the utility of automated indexing predictions may 
be higher than that can be demonstrated using the publicly 
available MeSH indexing. Finally, we create a straightforward 
but substantially improved benchmark for chemical indexing.

Supplementary material
Supplementary material is available at Database online.

Data availability
The NLM-Chem track dataset and other challenge materials 
are publicly available at https://ftp.ncbi.nlm.nih.gov/pub/lu/
BC7-NLM-Chem-track/.
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