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The Bacillus cereus group of bacteria includes species that are of significant medical and economic importance. We pre-

viously developed the SuperCAT database, which integrates data from all five multilocus sequence typing (MLST) schemes

available to infer the genetic relatedness within this group. Since large numbers of isolates have been typed by other

techniques, these should be incorporated in order to provide the most comprehensive and truly global view of the B. cereus

group population. The SuperCAT system has been extended into a new database, HyperCAT, with two main additions. First,

an extended supertree approach was applied to combine the phylogenetic information available from MLST, amplified

fragment length polymorphism and multilocus enzyme electrophoresis. Secondly, a tree-independent clustering algorithm

was designed to build superclusters of genetically closely related isolates sharing identical genotyping data. The superclus-

ters were then mapped onto the supertree to generate an integrative genetic and phylogenetic snapshot of the B. cereus

group population currently incorporating 2143 isolates. HyperCAT is freely accessible at the University of Oslo’s typing

website, which has also been upgraded with TNT software, allowing improved and ultra-fast supertree reconstructions. In

addition, novel and advanced tools have been included for interactive viewing and navigation of trees, clusters and

networks.

Database URL: http://mlstoslo.uio.no/
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Introduction

The Bacillus cereus group is a group of bacteria which in-

cludes species that are of significant economic and medical

importance, such as B. anthracis, an obligate mammalian

pathogen and the causative agent of anthrax, B. cereus,

an opportunistic human pathogen causing diverse infec-

tions, and B. thuringiensis, an insect pathogen widely

used as a biopesticide worldwide. The other member spe-

cies are B. weihenstephanensis, B. mycoides and B. pseudo-

mycoides. B. cereus group organisms are genetically very

closely related at the genetic and genomic levels (1–4).

Due to the importance of B. cereus group bacteria, the

population structure and phylogenetic relationships of the

isolates within the group have been extensively studied

using diverse typing methods, in order to follow the evolu-

tion of strains or identify clones responsible for disease out-

breaks. Large-scale analyses have been conducted using

multilocus enzyme electrophoresis [MLEE; (1,5–7)], which

is based on electrophoretic mobility of 10–20 proteins,

fluorescent amplified fragment length polymorphism ana-

lysis [AFLP; (8–10)], which surveys the genome for length

and sequence polymorphisms using restriction enzyme

fragmentation and PCR, and more recently multilocus se-

quence typing [MLST; (4,11–17)], which compares the

sequences of PCR-amplified DNA products internal to six

or seven housekeeping genes. The separate typing studies
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have independently revealed that the B. cereus group

population is divided into multiple phylogenetic clusters,

in which the members of each species, with the exception

of the highly clonal B. anthracis, are frequently intermixed.

MLST has become the ‘gold standard’ for bacterial phyl-

ogeny, as it is unambiguous and truly electronically port-

able among laboratories (18,19). However, unlike other

bacterial species, which are most often typed using a

single MLST scheme, five separate schemes have been de-

veloped for the B. cereus group, based on different sets of

genes. Therefore, we recently developed the SuperCAT

database, which compiles and integrates MLST data from

all the published B. cereus group schemes into a single

resource (20), as well as provides tools for building a com-

bined phylogenetic tree of the B. cereus group population

using supertree techniques (available at the University of

Oslo’s typing website: http://mlstoslo.uio.no/). While MLST

data is currently available for 1430 B. cereus group isolates,

an additional 832 isolates have been typed by either AFLP

or MLEE. In order to provide the most comprehensive and

truly global view of the B. cereus group population, the

supertree approach employed in SuperCAT was extended

to incorporate AFLP and MLEE data. In addition to phylo-

genetic supertrees, a clustering algorithm was developed to

identify groups of genetically related isolates that share

common MLST and/or AFLP profiles. The data and analysis

tools are available in HyperCAT, an extension of the

SuperCAT database, which provides the B. cereus group re-

search community with an integrated on-line genotyping

resource. We describe below the main additions and fea-

tures in HyperCAT as well as the procedures for building

multi-datatype supertrees and superclusters.

Multi-dataype supertree
reconstruction

Integration of MLST, AFLP and MLEE-based phylogenetic

information into a common supertree was possible by

taking advantage of the matrix representation by parsi-

mony (MRP) technique (20–22), which consists in merging

trees that can be built individually from heterogeneous

data. The procedure is similar to that used to build

the multi-scheme MLST supertree in SuperCAT. Three

trees generated from the comparisons of AFLP profiles

were taken from the studies of ref. (8) (166 isolates), ref.

(9) (332 isolates) and ref. (10) (425 isolates), and a phyl-

ogeny based on MLEE profiles of 316 B. cereus group iso-

lates was from ref. (1) (239 isolates) and E. Helgason

(unpublished) (77 isolates). These were combined with the

phylogenetic trees built for each of the 26 gene fragments

from the five MLST schemes used to reconstruct the MLST

supertree in SuperCAT (20) (1400 isolates). In the combined

‘MLST+AFLP+MLEE’ dataset a total of 2262 isolates were

represented, of which 49 were excluded from further ana-

lysis because of conflicting data. Isolates were excluded be-

cause they exhibited incongruent phylogenetic positions in

the various trees (i.e. were located in different clusters of

the B. cereus group population depending on the typing

method used) or because the typing sequences or profiles

obtained from different collections or databases were in-

consistent. A global multi-datatype supertree was then re-

constructed by means of the MRP technique (Figure 1),

which first consists in recoding each individual tree into a

binary matrix representing the branching order (i.e. phylo-

genetic groupings) among the strains. The matrices for all

trees are then concatenated into a supermatrix from which

a common supertree can be inferred by a maximum parsi-

mony algorithm. For this step the ‘Tree analysis using New

Technology’ (TNT) software [(23,24), http://www.zmuc.

dk/public/phylogeny/TNT/] was used. TNT is specifically de-

signed for analysis of large datasets and permits ultra-fast

supertree building. The speed and algorithms implemented

in TNT enable a broader and more efficient exploration of

the tree space, thereby allowing the program to find more

parsimonious trees, compared to common softwares such

as PAUP and PHYLIP (25). Here, TNT was run using the

‘xmult’ command (all default options, except a search

level of 10), which automatically determines the search par-

ameters for the given dataset and runs a combination of

several tree rearrangement algorithms (sectorial searches,

tree-drifting and tree-fusing). Such combined search strate-

gies have been found to be most appropriate for large

datasets [for details, see ref. (25)]. The final supertree was

taken as the strict consensus of all equally most parsimoni-

ous trees. Because MLST, AFLP and MLEE are based on dif-

ferent amounts of genetic information, the supertree

procedure was weighted. In the AFLP studies of refs (8,9),

genetic profiles were based on 40 genomic fragments,

which can be considered as 40 genomic loci, while the

AFLP study of ref. (10) was based on 68 loci, and each

MLST gene represents one locus. The actual number of

characters analyzed by each typing method is very differ-

ent; while AFLP relies on restriction sites of 4 or 6 bp, a

given MLST locus includes 300–600 bp. The MRP supertree

technique combines trees, not the raw data used to build

them. Each AFLP tree was based on the combination of 40

or 68 loci, whereas a particular MLST gene tree gives the

relationships among isolates at one locus. Therefore a

weighting scheme based on the number of loci examined

by each method was employed. That is, the groupings

coming from the AFLP trees and from each of the 26

MLST gene trees in the MRP supermatrix were given a

weight of 40 [or 68 for the tree of ref. (10)] and 1, respect-

ively, for the parsimony search (since 26 gene fragments

were used, MLST was thus represented by a total weight

of 26). The MLEE study relied on 13 enzyme loci, and to

take into account the fact that MLEE is based on proteins,
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Figure 1. Weighted supertree of 2143 B. cereus group isolates based on phylogenetic information from five MLST schemes
and three AFLP studies available in HyperCAT. The supertree was inferred following the MRP strategy, with a weight of
40 or 68 given to the AFLP studies and a weight of 1 given to each of 26 MLST genes. For the sake of legibility, isolate

.............................................................................................................................................................................................................................................................................................

Page 3 of 10

Database, Vol. 2010, Article ID baq017, doi:10.1093/database/baq017 Database update
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq017/406464 by guest on 23 April 2024



the weight of the MLEE tree was set to 4 (i.e. 13/3).

Weighting was applied using the ‘ccode’ command in

TNT. To reduce the size of the binary supermatrix and the

amount of missing data to be treated, as well as to speed

up computations, the weighted supertree was built using

only one representative (chosen at random) from a set of

strains having identical typing profiles and was computed

in about seven hours (using a single processor on a Linux

Apache web server). To obtain statistical support values for

all groupings (i.e. internal branches) in the supertree the

maximum likelihood method was employed. Approximate

likelihood-ratio tests (aLRTs) for branches were computed

using PHYML 3.0 with Shimodaira-Hasegawa-like support

values (26–29; http://atgc.lirmm.fr/phyml/). aLRTs provide a

fast way of testing branch support and consist in compar-

ing, for a given branch, the likelihoods of the best tree

containing the branch (i.e. the current supertree) and the

best tree not containing the branch (keeping the rest of the

topology identical). If the difference in likelihood is statis-

tically significant, then the branch is supported. For each

branch the probability (or P-value) of being significant is

estimated [for details, see refs (27,29–31)]. PHYML was

run on the MRP supermatrix using a custom substitution

model representing binary data and the topology of the

supertree obtained by TNT, allowing the branch supports

to be computed in �4 h. The procedure described above

was also applied to reconstruct a supertree using the data

from the DNA-based typing methods only (MLST and AFLP,

2143 isolates). The ‘MLST+AFLP’ supertree is used as the

reference supertree in the HyperCAT database. It contains

�97% of the strains included in the database and is more

reliable than the ‘MLST+AFLP+MLEE’ supertree because

MLEE, which is based on protein profiles, has a much

lower resolution power than MLST and AFLP. This is

due to the fact that the DNA-based methods take every

nucleotide difference into account, including those that

are silent at the protein level, and also that differences in

protein sequences may not necessarily result in visible

differences in electrophoretic mobility. Thus, MLEE does

not clearly differentiate some of the major phylogenetic

clusters in the B. cereus group population (1,5,6). The

‘MLST+AFLP+MLEE’ supertree is merely provided as a tool

for exploring the phylogenetic positions of the 70 isolates

that have been typed only by MLEE and which are thus not

included in the reference ‘MLST+AFLP’ supertree.

Even though more than 2200 B. cereus group isolates

have been typed by either MLST, AFLP, or MLEE, there is

very little overlap between the data sets investigated

by the various methods. A total of 98 strains are common

to MLST and AFLP datasets, and 34 strains have been

characterized by all three methods. Nevertheless, the

‘MLST+AFLP’ and ‘MLST+AFLP+MLEE’ supertrees contained

the major clusters of the B. cereus group population. For

example, mapping onto the supertrees the seven clusters

(denoted I–VII) identified in the AFLP analysis of ref. (10)

confirmed that the overall phylogenetic structure of the

AFLP analysis was retained when combined with phylogen-

etic information arising from MLST and MLEE data, as

isolates from a given AFLP cluster are all contained within

a common subtree in the supertree and the grouping is sup-

ported by a high statistical value (aLRT probability> 0.95)

(Supplementary Figure S1). A similar result was ob-

tained when mapping the 10 phylogenetic branches

(denoted A–K) defined in the AFLP analysis of ref. (9)

(Supplementary Figure S2). Conversely, mapping the lin-

eages defined in the MLST study of ref. (11) indicated

that the phylogenetic signal coming from MLST data was

conserved when combined with that coming from AFLP and

MLEE, even though MLST was given a lower weight in the

supertree reconstruction (Supplementary Figure S3). The in-

tegration of multiple types of phylogenetic data demon-

strated that even though there is little overlap between

the isolate sets analyzed by the various typing methods,

the supertrees obtained in the integrated analyses ap-

peared to properly reconstruct the major groupings in the

population and to be robust to missing data, a behavior

that has been observed in numerous cases and for various

datasets in earlier studies (32–34). Overall, a large propor-

tion of the branches (�70%) in the supertrees have strong

statistical support (aLRT confidence level >95%). The

impact of missing data was further tested by including in

the supertree four replicates of the 34 strains for which

MLST, AFLP and MLEE data are available, using either all

data or data from one of the three typing methods. For

all 34 strains, the four replicates were always located in

the same phylogenetic cluster and mostly in the same sub-

tree (i.e. for 28 of the 34 strains the replicates were sepa-

rated by less than a dozen internal nodes), indicating that

missing data did not bias the general positioning of the

strains (Supplementary Figure S4). Precise within-clusters

Figure 1. Continued
names are not shown. The seven major phylogenetic subdivisions of the B. cereus group defined by ref. (10) are designated by
roman numerals (I–VII) and their branch support values (based on aLRT probabilities) are indicated when >95%. Superclusters of
genetically closely related isolates (sharing identical MLST or AFLP profiles) that have been computed independently using a
recursive approach and that contain 10 or more isolates have been mapped onto the supertree and are listed on the right (the
supercluster descriptions apply to most isolates of the superclusters, not necessarily all). Isolates belonging to a given supercluster
are drawn in the same color. As can be seen, isolates from the same supercluster are closely related in the tree. One exception
is indicated by an asterisk and corresponds to strain B. cereus F4430/73 of supercluster 157. The image was generated using
TreeDyn (44).
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branchings may however contain more uncertainty, thus

the multi-datatype supertrees should be used primarily as

a common framework to explore global relationships

among strains.

Multi-datatype supercluster
reconstruction

To complement the supertree approach, a tree-

independent clustering procedure was applied in order to

group isolates that share identical typing data. The proced-

ure is analogous to that of computing clonal complexes of

strains as is typically done with MLST data (35,36), but with

the objective of using information from the multiple

B. cereus group MLST schemes as well as results from the

multiple AFLP studies. For reasons explained in the previous

section the ‘MLST+AFLP’ dataset is used as the reference

dataset in HyperCAT, and thus MLEE profiles were not

included in the supercluster analysis. An algorithm was de-

signed to identify groups of isolates that share identical

MLST and/or AFLP profiles (Figure 2). For MLST, strains

were defined as sharing an identical profile if they shared

identical sequences at all loci of a given MLST scheme

[i.e. belong to the same sequence type (ST) using six or

Figure 2. Exploration of superclusters of genetically closely related B. cereus group isolates in HyperCAT. (A) Tabular view of the
superclusters. Each cluster is reported in a table, listing detailed information about the isolates and the genotying profiles
shared. In addition, pressing one of the three buttons above the table allows to view the phylogenetic positions of the isolates
in the multi-datatype supertree using Archaeopteryx, to extract from the supertree the subtree containing only the isolates
forming the supercluster, or to display a network graph showing the specific typing data shared between the isolates of the
supercluster. In the latter network, isolates having identical MLST and/or AFLP profiles are connected by blue and red lines,
respectively. Every isolate in the supercluster shares a profile with at least one other isolate. The network can be browsed
interactively using the ZGRViewer. (B) Graphical overview of all the superclusters resulting from typing information from five
MLST schemes and three AFLP studies. Superclusters were built using a recursive approach, grouping strains that shared identical
sequences at all loci of at least one of the MLST schemes and/or have identical AFLP profiles. The complete distribution consists
of 283 groups totaling 1152 isolates, and 991 singletons. The set of superclusters and singletons can be navigated using an
interactive bubble chart generated by means of the IBM/alphaWorks ‘many eyes’ system. Each supercluster is represented by a
pie proportional to the number of isolates in the supercluster and the pie is divided according to the species or sources of the
isolates included in the supercluster. Selecting or mousing over a supercluster brings up a window giving information about its
content (shown in the inset indicated by an arrow).
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seven loci, depending on the scheme]. The grouping was

done in a recursive manner. That is, if strain A had a profile

identical to strain B based on typing method 1, and was

identical to strain C based on method 2, then strains A, B

and C were grouped. All strains sharing a profile with B and

all strains sharing a profile with C in any of the two

DNA-only typing methods were subsequently added to

the supercluster, then all strains identical to the latter

strains were added, and so on until no further isolate shar-

ing an identical MLST and/or AFLP profile with the strains

currently in the group could be found. As a result of this

procedure, every isolate of a given supercluster shares iden-

tical genotyping data by at least one typing method to at

least one other isolate in the group (Figure 2A). Note also

that all superclusters that were built by this procedure are

mutually exclusive, i.e. a given isolate belongs to one and

only one group. Isolates that do not share typing profiles

with any other isolate in the database were classified as

singletons. In this analysis, no weighting scheme was

applied, as strains were simply treated as ‘identical’ or

‘non-identical’ to each other. A total of 283 superclusters

were identified, comprising a total of 1152 isolates, while

the remaining 991 isolates were singletons. Because of little

overlap between the isolate sets analyzed by the different

typing schemes, �90% of the superclusters were composed

only of isolates that have been typed by the same method

or scheme, and most of the clusters (�85%) were small (less

than five isolates). Due to the clustering procedure all

strains in a given supercluster may not be identical in any

one marker. However, they are likely to be closely related.

This was confirmed by mapping the 16 superclusters con-

taining 10 isolates or more onto the ‘MLST+AFLP’ super-

tree, showing that, with a single exception among

431 isolates (B. cereus F4430/73 in supercluster 157), isolates

belonging to a given supercluster branched in the same

subtree or nearby parts of the supertree (Figure 1). The

exception could be explained by the fact that B. cereus

F4430/73 has been typed by more methods than the

other members of supercluster 157, creating a bias in the

analysis due to variable amounts of data.

HyperCAT database features and
manipulation

HyperCAT currently contains 2262 isolates covering the di-

versity of the B. cereus group, including 110 B. anthracis,

841 B. cereus, 511 B. thuringiensis, 54 B. weihenstephanen-

sis, 115 B. mycoides, 8 B. pseudomycoides and 623 unclassi-

fied B. cereus group isolates. In HyperCAT isolates can be

selected according to various criteria such as name, source,

keyword, typing method, or phylogenetic cluster [using the

classification defined by ref. (10)]. The database provides all

the genotypes that are represented for each typing scheme

or method and for combinations of typing methods, with

tables listing the sets of isolates that have unique or iden-

tical genotyping profiles. The profiles correspond to the

STs, AFLP types (ATs) and electrophoretic types (ETs)

for MLST, AFLP and MLEE, respectively. Also, the phylogen-

etic position of isolates having a particular profile can be

highlighted in the ‘MLST+AFLP’ or ‘MLST+AFLP+MLEE’

supertree.

The supertrees can be browsed interactively by means

of the Java-based Archaeopteryx (http://www.phylosoft

.org/archaeopteryx/) and Treebolic2 (http://treebolic

.sourceforge.net/) viewing applications. Archaeopteryx has

superceded the ATV tool (37) previously used in SuperCAT.

In particular, Archaeopteryx includes mouse-driven naviga-

tion and can render trees in various styles, e.g. rectangular,

circular or unrooted. Supertrees can be colored by species

or by source of isolate, and subtrees corresponding to se-

lected subsets of strains can be highlighted and extracted.

Since supertrees contain only one representative from a set

of strains having an identical genotype, the representative

strain is labeled ‘Superprofile_X (Y strains)’ where X is the

genotype ID number and Y is the number of strains sharing

that genotype. Clicking on that label will then load the

corresponding table listing all isolates having that genotyp-

ing profile using the ‘Open Taxonomy Web’ function in

Archaeopteryx. Clicking on a singleton isolate will link

to the strain-specific information page. In addition to

Archaeopteryx supertrees can be navigated using

Treebolic which renders trees in 2D hyperbolic space.

While the region under focus is displayed in detail, the

rest of the tree is shown in a smaller size and the entire

tree remains visible at all times. In both Archaeopteryx and

Treebolic views, branches of the supertrees are colored ac-

cording to the seven main phylogenetic clusters of the

B. cereus group population defined by ref. (10), which

gives a global overview of the phylogenetic classification

of the strains. A given isolate was assigned to a particular

cluster if it was part of that cluster in the MLST-only,

MLST+AFLP and MLST+AFLP+MLEE supertrees. In total,

2144 of 2213 isolates could be consistently classified,

demonstrating the congruence between the supertrees.

HyperCAT also provides a number of options for navigating

and comparing the scheme-specific MLST-only supertrees

(taken from SuperCAT), the AFLP-only trees, the MLEE phyl-

ogeny and the multi-datatype supertrees, for the user who

wishes to explore the method-specific trees and/or judge

their congruence with the multi-datatype trees. Specific

pages give information on the strains exhibiting conflicting

typing data and allow to analyze their phylogenetic

positions.

The superclusters of isolates sharing identical MLST and/

or AFLP profiles can be explored using tabular and graph-

ical displays. Tables list the detailed composition of the

superclusters, and functions allow to view the phylogenetic
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position of the isolates in the ‘MLST+AFLP’ supertree and to

extract the subtree containing the isolates belonging to a

given supercluster. A graphical representation of the super-

cluster is also provided in the form of a network showing

the specific MLST and AFLP profiles that are shared be-

tween the isolates (Figure 2 A). The network is drawn in

scalable vector graphics (SVG) format using the ‘neato’ pro-

gram of the AT&T Graphviz package [(38,39); http://www

.graphviz.org/] and can be navigated using the Java-based

ZGRViewer [see below; (40); http://zvtm.sourceforge.net/

zgrviewer.html]. In addition, a graphical overview of all

the superclusters is given by an interactive bubble chart,

in which each cluster or singleton is represented by a pie

whose size is proportional to the number of isolates in the

cluster (Figure 2B). Superclusters can be colored according

to bacterial species or isolate origin, and sets of clusters

containing isolates from a given species or source can be

jointly highlighted. The interactive charts were generated

using the IBM/alphaWorks ‘many eyes’ data visualization

system (http://manyeyes.alphaworks.ibm.com/manyeyes/).

HyperCAT also offers the possibility to retrieve isolates

that share identical MLST, AFLP and/or MLEE profiles

based on user-selected subsets of isolates and typing meth-

ods, and to build superclusters following the recursive pro-

cedure described in this article.

As a further addition to HyperCAT, the superclusters

have been mapped onto the ‘MLST+AFLP’ supertree in

order to produce a combined and integrative genetic and

phylogenetic overview (‘snapshot’) of the B. cereus group

population (Figure 3). To generate this view, the isolates

belonging to a supercluster have been replaced in the

supertree by a randomly chosen isolate selected to repre-

sent the supercluster, and the phylogenetic position of the

supercluster is given by that isolate. The supercluster is

Figure 3. Phylogenetic snapshot of the B. cereus group population based on MLST and AFLP typing data for 2143 isolates. The
snapshot combines supertree and supercluster information. The supertree is represented as an unrooted network in which the
closely related strains belonging to a supercluster have been replaced by a representative isolate. Superclusters are drawn as
filled lightblue boxes, while singleton isolates are drawn as ellipses colored by bacterial species (red, B. anthracis; blue, B. cereus;
green, B. thuringiensis; brown, B. mycoides; purple, B. pseudomycoides; orange, B. weihenstephanensis; black, uncharacterized B.
cereus group isolate). The network can be browsed interactively using the ZGRViewer navigation buttons and mouse functions.
Clicking on an internal node loads a new page displaying the subtree including all descendants of that node in the supertree. An
example is given in the inset showing the subtree circled in red. The view in the upper right corner shows the display of the
supertree in hyperbolic space using Treebolic2.
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labeled ‘Supercluster_X (Y strains)’ where X is the cluster ID

number and Y is the number of strains included in that

supercluster. This representation allows to see in a single

graph the phylogenetic distribution of the superclusters

and singleton isolates. The snapshot has been drawn as

an unrooted network in SVG format using ‘neato’ and

can be browsed in ZGRViewer. ZGRViewer (40) is an

advanced graph visualization software based on the

Zoomable Visual Transformation Machine (ZVTM) particu-

larly suitable for large networks. The interactive snapshot

contains hyperlinks; middle-button clicking on a superclus-

ter or isolate name will link to an information page with

details about that cluster or isolate, and clicking on an

internal node will load a new page displaying the

subtree including all descendants of that node in the super-

tree (Figure 3). The isolates can be colored by species or

source.

In addition to the phylogenetic analysis tools described

above, HyperCAT also contains a number of pages present-

ing various statistics relating to strain distribution, data

content and overlap, as well as descriptions of the super-

tree and supercluster building procedures. HyperCAT pro-

vides hyperlinks to the Integrated Microbial Database,

StrainInfo [http://www.straininfo.net/; (41)], for additional

isolate information and links to database collections. All

data in HyperCAT, including tabular isolate and genotype

listings, superclusters, supertrees and networks, can be

saved and downloaded freely from the database. In par-

ticular, trees can be obtained in the recently developed

XML and PhyloXML standards (42).

Update of the SuperCAT database

As MLST is currently the gold standard for bacterial typing,

the SuperCAT database devoted to multi-scheme MLST

analysis of the B. cereus group, containing 1430 isolates,

has been upgraded accordingly. The superclustering tool

and associated graphical and tabular displays developed

for HyperCAT have been incorporated into SuperCAT for

analysis of MLST data only, for identifying groups of iso-

lates sharing identical MLST profiles in any of the five

schemes available. An MLST-based genetic and phylogenet-

ic population snapshot combining supertree and superclus-

ter information has also been generated. Furthermore, for

the reconstruction of the multi-scheme MLST supertree by

the MRP procedure, the parsimony step, which was origin-

ally carried out using the MIX program of the PHYLIP pack-

age (43), is now computed using TNT (23,24). For reasons

explained earlier, TNT showed an improved accuracy over

MIX and the use of TNT reduces the computation time from

two days to about four hours with the full dataset. Finally,

the ATV tree navigation tool has been replaced by its suc-

cessor, Archaeopteryx (37) and the hyperbolic viewer

Treebolic2 has been implemented.

Conclusion

In order to serve the B. cereus group research community

with the most comprehensive genotyping resource, we

have developed at the University of Oslo’s typing website

(http://mlstoslo.uio.no/) a new database, HyperCAT. This

database incorporates analysis tools combining genotyping

data not only from multiple MLST schemes, as provided in

the SuperCAT database, but also from the altogether dif-

ferent approaches AFLP and MLEE. While genotyping of

the B. cereus group of bacteria is currently essentially

done using MLST, HyperCAT provides a means to combine

MLST data with the phylogenetic information from hun-

dreds of strains that have been typed using other methods,

and therefore generates a truly global genetic snapshot of

the B. cereus group population with moderate to high

representativity of all member species. The multi-datatype

supertrees and superclusters developed herein provide a

common basis for revealing and displaying genotypic rela-

tionships among B. cereus group isolates, based on the

large amounts of heterogeneous typing data available for

this group of bacteria, an effort which would not be

straightforward by mere inspection and comparison of re-

sults from the two dozens of publications describing MLST,

MLEE and AFLP analyses of the B. cereus group population.

Supplementary Data

Supplementary data are available at Database Online.
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