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Abstract

Penicillium expansum, the causal agent of blue mold, is one of the most prevalent post-

harvest pathogens, infecting a wide range of crops after harvest. In response, crops have

evolved various defense systems to protect themselves against this and other patho-

gens. Penicillium–crop interaction is a multifaceted process and mediated by pathogen-

and host-derived proteins. Identification and characterization of the inter-species

protein–protein interactions (PPIs) are fundamental to elucidating the molecular mechan-

isms underlying infection processes between P. expansum and plant crops. Here, we

have developed PCPPI, the Penicillium-Crop Protein–Protein Interactions database, which

is constructed based on the experimentally determined orthologous interactions in

pathogen–plant systems and available domain–domain interactions (DDIs) in each PPI.

Thus far, it stores information on 9911 proteins, 439 904 interactions and seven host spe-

cies, including apple, kiwifruit, maize, pear, rice, strawberry and tomato. Further analysis

through the gene ontology (GO) annotation indicated that proteins with more interacting

partners tend to execute the essential function. Significantly, semantic statistics of the

GO terms also provided strong support for the accuracy of our predicted interactions in

PCPPI. We believe that all the PCPPI datasets are helpful to facilitate the study of

pathogen-crop interactions and freely available to the research community.
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Introduction

Penicillium expansum is a devastating phytopathogen that

causes decay in crop plants during post-harvest handling

and storage. This pathogen has a broad and variable host

range, including apple, citrus fruit, pear, tomato, kiwifruit,

maize and rice (1). As P. expansum exhibits physiological

tolerance to many adverse environmental conditions, it can

easily infect wounds and quickly spread through decaying

tissue during storage and subsequent processing stage. Blue

mold decay, resulting from P. expansum infection, causes

significant agricultural losses worldwide, which is respon-

sible for a major economic problem. Moreover, myco-

toxins produced by molds can be deleterious to human

health (2). Therefore, controls of blue mold and patulin

contamination in major crops (in particular pome fruits)

have received much attention (3). With the purpose of

reducing the use of chemical fungicides, it is necessary to

understand the molecular mechanisms of fungal infection

and develop eco-friendly strategies for controlling this glo-

bal post-harvest disease (4).

The symptoms of blue mold decay caused by P. expan-

sum are very similar across different crop hosts. This sug-

gests that the mechanism of pathogenicity may have a

common mechanism (5). Typically, the infection process

includes the following steps: attachment to host tissue, se-

cretion of plant cell wall degradation enzymes and exopo-

lysaccharides, release of toxins, acquisition of iron and the

production of effector proteins (6). In fact, protein–protein

interactions (PPIs) form the regulatory networks that co-

ordinate diverse cellular functions (7). Based on whether

the interacting proteins are derived from the same or differ-

ent species, PPIs are typically classified into two categories:

intra-species PPIs, where the two interacting proteins are

derived from the same species, and inter-species PPIs,

where the two interacting proteins are produced from dif-

ferent species (8). Pathogen–crop PPIs, a class of inter-

species PPIs, play crucial roles in initiating the infection

process and inducing a plant defense response (9).

Recently, several genes (e.g. GOX2, IDH) have been re-

ported to be involved in the initial signaling cascades that

stimulate the growth of P. expansum on crops (10, 11).

Although these enzymes may have a role in pathogenicity,

there is evidence that more complex interactions are taking

place during the initial stages of infection and diseases de-

velopment (10). To facilitate an effective approach for

studying such complex interactions, bioinformatics has

been suggested and employed to study the protein

interaction networks at a genome-wide scale (12). While

some proteomic studies have identified inter-species PPIs in

model organisms, only a few have focused on pathogen–

plant interactions. Therefore, research on effector biology

in P. expansum is rather scarce (Table 1). In the current

study, we constructed an interactomic resource for

P. expansum by identifying potential protein–protein inter-

action from experimentally verified interacting orthologs

in pathogen–plant systems. Thus far, we obtained 439 904

non-redundant PPIs between P. expansum and seven crops

including apple, kiwifruit, maize, pear, rice, strawberry

and tomato. These interactions have been entirely verified

by both interolog mapping and DDIs supporting. In order

to facilitate the use of these datasets, we have developed a

searchable database, the Penicillium-Crop Protein–Protein

Interactions (PCPPI), and described it here. PCPPI features

a user-friendly interface for database search, information

browse and interaction visualization. This resource and

related documents are freely accessible at http://bdg.hfut.

edu.cn/pcppi/index.html.

Materials and Methods

The general process of data collection, extraction, integra-

tion, prediction, verification, and annotation is illustrated

in Figure 1.

Data collection and extraction

A total of 10 663 P. expansum protein sequences were

downloaded from the EnsemblFungi database (release 29,

http://fungi.ensembl.org/Penicillium_expansum/Info/Index)

(21). The proteome datasets of apple (Malus domestica,

95 232 sequences) (22), kiwifruit (Actinidia chinensis,

39 761 sequences) (23), maize (Zea mays, 38 914 sequen-

ces) (24), pear (Pyrus communis, 45 217 sequences) (25),

rice (Oryza sativa, 42 132 sequences) (26), strawberry

(Fragaria ananassa, 45 377 sequences) (27) and tomato

(Solanum lycopersicum, 33 785 sequences) (28) were ob-

tained from the following databases: GDR (ftp://ftp.bio

info.wsu.edu/species/Malus_x_domestica/Malus_x_domes

tica-genome.v3.0.a1/genes/), KIR (ftp://bdg.hfut.edu.cn/

kiwi/Actinidia_chinensis), maizeGDB (http://ftp.maizegdb.

org/MaizeGDB/FTP/maize_proteome/), GDR (ftp://ftp.bio

info.wsu.edu/species/Pyrus_communis/Pcommunis-draft_ge

nome.v1.0/genes/), EnsemblPlants (release 29, http://plants.

ensembl.org/Oryza_sativa/Info/Index), GDR (https://www.
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rosaceae.org/node/4230473) and Solgenomics (release 2.4;

ftp://ftp.solgenomics.net/tomato_genome/annotation/), re-

spectively. Additionally, the interactome datasets of patho-

gen–host interactions were obtained from the HPIDB

database (06-16-2015 release, 43 276 pairs; http://www.

agbase.msstate.edu/hpi/main.html) (8). To implement the

interolog method, we kept 361 interacting protein pairs from

pathogen–plant interactions. Eventually, the DDI datasets

were taken from the Database of Protein Domain

Interactions (DOMINE) (09-2010 release, 26 219 pairs) (29).

Table 1. Summary of PPIs among different species

Database Content Comment References

PHI-base It stores information on 2875 genes, 4102

interactions, 110 host species, 160

pathogenic species and 181 diseases.

Not provide PPI datasets. (13)

PHISTO 23 661 PHIs between human and 300

pathogen strains.

No plants are included. (14)

HPIDB It integrates experimental PPIs from

several public databases.

Only 1% of the datasets involves plants. (8)

CAPIH It provides PPIs between human and three

model organisms.

It is a human specific database. (15)

XooNET It contains 4538 proteins and 26 932

possible interactions.

It is a rice and Xoo specific database. (6)

Human-Plasmodium

system

516 PPIs between proteins from these two

organisms.

It is a human specific database. (16)

HoPaCl-DB It provides 3585 experimentally validated

interactions.

It is a human specific database. (17)

PPIRA It contains 3074 potential PPIs between

119 R. solanacearum and 1442

A. thaliana proteins.

It is an A. thaliana and R. solanacearum

specific database.

(18)

VirHostNet 2.0 It is dedicated to the virus-host PPIs. It is a human specific database. (19)

VirusMINT It stores over 5000 interactions involving

more than 490 viral proteins.

It is a human specific database. (20)

Figure 1. The flowchart for construction of PCPPI database.
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Sequence homology analysis

The protein sequences of pathogens and plants in the 361

interacting protein pairs were selected and integrated.

Then, the TBLASTP query was performed to detect the

homologous proteins with an E-value cutoff 1E-5 (30).

While the homologous proteins in apple, kiwifruit, maize,

pear, rice, strawberry and tomato were identified against

plant proteins, the homologous proteins in P. expansum

were analyzed with pathogen proteins.

Prediction of potential PPIs

First, protein orthologs were mapped back onto the inter-

actome datasets of pathogen–plant interactions. Any two

proteins with orthologous mapping onto any one of these

PPIs in pathogen–plant systems were recorded as a protein

group with potential interaction. Then, each PPI was fil-

tered by referring to the experimentally verified DDIs data-

sets, and only those PPIs carried with known DDIs were

reserved.

Annotation of protein information

After predicting the protein interactions, we collected all

the interacting proteins involved and annotated them as

follows: (i) the basic information, including protein name/

synonyms, protein sequences, nucleotide sequences of the

corresponding genes, MW (molecular weight) and theoret-

ical PI, is annotated referring to UniProt Knowledgebase

and GenBank; (ii) the biological function of proteins, such

as the Pfam domain (31) and gene ontology (GO) annota-

tion (32).

Utility

Database implementation

Currently, PCPPI operates on a Linux, Apache, MySQL

and PHP (LAMP) stack. MySQL is used for storage, main-

tenance, and operation of the datasets. The front-end user

interface is implemented in PHP, which is a popular script-

ing language designed for dynamic web development. A

well-defined and packaged JavaScript called jQuery is used

to improve website performance and enhance user experi-

ence. Also, the online BLAST program is employed for

homology search and the Vis.js library (http://visjs.org/) is

embedded within the web pages to display the predicted

PPI datasets. Links, including Browse, Download and

Documentation, are also provided in the navigation tool

bar located on the top right of each web page.

Query option

PCPPI was developed in an easy-to-use mode. To access

the database content, three search categories are provided:

(1) Basic Search; (2) Paired Search; and (3) Batch Search

(Figure 2A).

The basic search option provides an interface for query-

ing the PCPPI with accession numbers (identifiers) or the

keywords of gene/protein names. The full name and abbre-

viation are both feasible, where they are automatically nor-

malized with synonyms. The species should be firstly

specified by choosing their respective names in dropdown

list.

The paired search options are accession number centric.

Users can find the potential protein–protein interactions

with the identifiers. The identifier of proteins in P. expan-

sum should be typed in the left text box, and the identifier

of proteins in crops should be entered in the right box.

Records will be found only if these two proteins interact

with each other.

The batch search option allows users to input a list of

protein identifiers, or upload a file. Before submitting, the

algorithms should be specified by selecting the setting

‘Show only pair wise interactions between the specified

proteins’ or ‘Show all interactions involving specified

proteins’.

The Paired Search and Batch Search are provided in the

Advanced Search column.

Detailed information

After searching, the results are displayed in a tabular for-

mat, containing PCPPI AC, Protein ID (in P. expansum),

Protein name (in P. expansum), Protein ID (in crops),

Protein name (in crops), DDI annotation (Figure 2B). From

this table, users can browse the detailed information for

each protein by clicking on the target Protein ID. Briefly,

Protein names, Protein sequence and length, Molecular

weight (MW), Theoretical PI, Pfam domain and GO anno-

tation are presented in the detailed description of each

interacting protein (Figure 2C). Access to known data-

bases’ interpretation of corresponding descriptions is also

provided. In addition, the Vis.js library, a web browser

applet integrated into the web pages, is used to visualize

and analyze the involved protein interactions (edges) and

the corresponding members (nodes), where proteins are

graphed as nodes (one dimension) and interactions are

graphed as edges (two dimension). It is hoped that this in-

formation will effectively aid users exploring the relation-

ship between the proteins of interest. Finally, users can

interact with the network and save the results in a text

format.
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Figure 2. The search functions of PCPPI database. (A) Three search categories for querying. (B) The results are shown in a tabular format. Users can

visualize the detailed information by clicking on the Proteins ID in P. expansum and/or crops. (C) The detailed information for each interacting

protein.
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Results

Building the interactome and data statistics

PPIs, which play essential roles in metabolic pathways and

signal transduction, were identified based on the assump-

tion that evolutionarily conserved proteins would form

conserved interactions. This process is well known as inter-

action ortholog mapping and served as a proven and effect-

ive method for predicting interactomes (33). Over the

years, it has been successfully applied within many model

species, such as yeast (34), Arabidopsis (35), rice (36),

Brassica rapa (37) and tomato (38). In this work, a total of

245 proteins responsible for pathogenicity in P. expansum

have been predicted by using the orthologous mapping

method. Meanwhile, 740–2270 proteins in diverse hosts

that interact with the pathogenic proteins have been identi-

fied (Table 2). Finally, an easy-to-use and affordable web-

based resource for analyzing protein interaction networks

in pathogen–plant systems was developed.

In order to analyze the composition and topology of the

constructed interactome, proteins of P. exponsum in the

interaction networks were classified into free ends (with

only one interaction), pipes (two interactions) and hubs

(multiple interactions) of different sizes (minor hubs, small

hubs, medium hubs, major hubs and super hubs) according

to our previous work (Figure 3A) (38). As displayed in

Figure 3B, the hub distribution shows an uneven distribu-

tion as a great deal of proteins belongs to the categories of

free ends and major hubs.
Furthermore, the proteins in free ends and major

hubs were assigned to molecular function and biolo-

gical process categories according to the GO annotation

from the Gene Ontology Consortium (Table 3). The results

suggest that the proteins in major hubs are significantly

enriched for protein kinase activity and mitogen-activated

protein kinase (MAPK) cascade that could be activated

by different stimuli in plant growth and defense

(Hypergometric test) (39). Additionally, the proteins in

free ends tend to possess oxidation–reduction process and

electron carrier activity. As expected, these enrichments

are generally consistent with the studies utilizing 2D-DIGE

proteomics, which found that a majority of proteins are

involved in protein metabolism, redox homeostasis and

metabolic processes (40).

Table 2. Summary of PPIs and proteins in different species

Species name Common name Number of PPIs Number of proteins

Malus domestica Apple 100 120 2270

Actinidia chinensis Kiwifruit 51 538 1196

Zea mays Maize 63 922 1347

Pyrus communis Pear 75 055 1608

Oryza sativa Rice 65 140 1425

Fragaria ananassa Strawberry 33 240 740

Solanum lycopersicum Tomato 50 889 1080

Penicillium expansuma Blue mold 439 904a 245

aIt includes the PPI datasets of Penicillium expansum interacting with the seven crops above.

Figure 3. (A) Different categories of proteins classified according to our previous study. (B) Frequency distribution of the different categories in

P. expansum. Value is the average of protein interactions from seven species.
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Evolutionary conservation of domain–domain

interactions

Generally, conserved domains are the main functional and

structural units of proteins and play important roles in

PPIs by forming interactions in diverse ways (heterotypic

or homotypic) (41). DDIs, acting as the building blocks of

PPIs, are more conserved than the PPIs themselves (42). In

the present study, all of the final reserved PPIs were veri-

fied by DDIs supporting. This will not only increase the

confidence of our predictions, but also provide more de-

tailed information about which domains are potentially

involved in mediating the binding of two interacting pro-

teins. Notably, the LysM domain (Pfam: PF01476) is

known to be involved in interacting with a variety of en-

zymes and has a general peptidoglycan binding function

(43). Proteins carrying LysM domain in plants have been

implicated in the recognition of carbohydrate patterns

commonly associated with pathogen surfaces and thus play

a role in the response to pathogen infection (44). As a

widely distributed protein motif, there are total 106 do-

mains that interact with the LysM domain in the datasets

of experimentally observed DDIs (Supplementary Table

S1) (29). Furthermore, a total of 1869 PPIs in 35 pro-

teins were identified in the LysM datasets in PCPPI

(Supplementary Tables S2 and S3). Functional annotation

revealed that these 35 proteins are almost the LysM recep-

tor kinases, which play critical roles in chitin elicitor sig-

naling. While kinases could aid in restricting bacterial/

fungal growth on plants, plant pathogens may utilize

effector proteins to degrade kinases and thus block defense

responses (45).

Accuracy evaluation

The datasets of PCPPI are predicted from orthologous

interactions and further filtered based on the DDI informa-

tion, which have been entirely well studied through the ex-

periments. To confirm the feasibility of the integrative

approach that DDI filtration could improve the precision

of prediction, an independent dataset of 361 protein pairs

was randomly selected from the 360 249 455 possible

interactions between P. expansum and tomato, and then

used as the testing data (Supplementary Table S4).

Correspondingly, the 361 protein interactions were

referred as the experimental data. Subsequently, the

involved DDI information was identified and analyzed be-

tween each protein group. Finally, 56 PPIs with known

DDIs were found in the experimental data (Supplementary

Table S5), which is significantly higher than the number of

eight for the testing data (P-value< 1E-3, T-test;

Supplementary Table S4). This result undoubtedly con-

firms the usefulness of DDI information for improving the

accuracy of our predictions.

Furthermore, the above analysis of GO annotations has

presented the enriched biological themes and func-

tional proteins that clustered in P. exponsum. Other than

co-evolution, the proteins in crops commonly perform a

given function together with the interacting proteins in

Table 3. The enrichment (Hypergometric test) and frequency of each GO term annotation (biological process and molecular

function) for free ends and major hubs were calculated

GO term Description Free ends Major hubs

Frequency P value Frequency P value

The category of biological process

GO:0000165 MAPK cascade – – 0.0513 3.27E�08

GO:0006464 Cellular protein modification process 0.0235 0.0058 – –

GO:0006468 Protein phosphorylation – – 0.5769 7.90E�67

GO:0006511 Ubiquitin-dependent protein catabolic process 0.1059 5.12E�10 – –

GO:0016310 Phosphorylation – – 0.3205 4.58E�26

GO:0043044 ATP-dependent chromatin remodeling 0.0118 0.015 – –

GO:0055114 Oxidation–reduction process 0.5882 2.73E�24 – –

The category of molecular function

GO:0004672 Protein kinase activity � � 0.9744 9.28E�136

GO:0005524 ATP binding 0.2471 2.24E�09 � �
GO:0008233 Peptidase activity 0.0706 0.0014 � �
GO:0016491 Oxidoreductase activity 0.5765 1.47E�34 � �
GO:0016538 Cyclin-dependent protein serine/threonine kinase regulator activity � � 0.0128 0.014

GO:0019948 SUMO activating enzyme activity 0.0118 0.016 � �
GO:0036459 Ubiquitinyl hydrolase activity 0.035 0.00012 � �
GO:0051903 S-(hydroxymethyl)glutathione dehydrogenase activity 0.0118 0.016 � �

Database, Vol. 2017, Article ID baw170 Page 7 of 9

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

170/3053440 by guest on 19 April 2024

Deleted Text: -
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw170/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw170/-/DC1
Deleted Text: ,
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw170/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw170/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw170/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw170/-/DC1
Deleted Text:  
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/baw170/-/DC1


P. exponsum as they cannot work individually (46).

Therefore, investigating the sharing of GO terms between

two interacting proteins could also support the reliability

of our predicted datasets in PCPPI. In the present study,

the semantic relationships of GO terms in the biological

process category were analyzed and calculated for the two

proteins of each predicted PPI according to the method

described by Lin (47). The highest semantic similarity for

every PPI was retained and the final average values of the

interactomes between P. exponsum and apple, kiwifruit,

maize, pear, rice, strawberry and tomato were 0.793,

0.638, 0.737, 0.867, 0.868, 0.543 and 0.830, respectively.

These values are all significantly higher than a value of

0.10 which would be expected for a randomized connec-

tion (P-value<1E-10, Wilcoxon test). Therefore, the

significant overlap of the identified GO terms between

P. exponsum and crops greatly support the quality of the

predictions generated in PCPPI as well.

Conclusion

In summary, PCPPI is the first web database providing

comprehensive information about predicted PPIs involved

in the pathogenicity and virulence of P. expansum on crop

plants. Identifying these interactions is helpful to elucidate

the molecular mechanisms underlying fungal pathogen-

icity, signal transduction and metabolic pathways. These

datasets could be used for both theorists and experimental-

ists to reassemble protein complexes, expand existing path-

ways, as well as discover potential new antibiotic targets.

In order to provide up-to-date data on protein interactions,

we will continue to collect and incorporate the latest data-

sets of PPIs and DDIs, and develop new methods to predict

potential protein interactions. Moreover, we will reiterate

the process of database structure and user interface design

to enhance the web content and functionality.

Supplementary Data

Supplementary data are available at Database Online.
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