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Abstract

Physiological and molecular similarities between organisms make it possible to translate

findings from simpler experimental systems—model organisms—into more complex

ones, such as human. This translation facilitates the understanding of biological proc-

esses under normal or disease conditions. Researchers aiming to identify the similarities

and differences between organisms at the molecular level need resources collecting

multi-organism tissue expression data. We have developed a database of gene–tissue

associations in human, mouse, rat and pig by integrating multiple sources of evidence:

transcriptomics covering all four species and proteomics (human only), manually cura-

ted and mined from the scientific literature. Through a scoring scheme, these associ-

ations are made comparable across all sources of evidence and across organisms.

Furthermore, the scoring produces a confidence score assigned to each of the associ-

ations. The TISSUES database (version 2.0) is publicly accessible through a user-friendly

web interface and as part of the STRING app for Cytoscape. In addition, we analyzed the

agreement between datasets, across and within organisms, and identified that the agree-

ment is mainly affected by the quality of the datasets rather than by the technologies

used or organisms compared.
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Introduction

Model organisms have helped understanding many essen-

tial biological processes and the genes involved in their

normal and abnormal functioning, i.e. in disease.

Experiments in model organisms, especially in animal

models, have been interpreted and subsequently translated

into the human system with great success (1–3).

Physiological and molecular similarities across species

allow translation from simpler systems to more complex

ones. Analysis of the common tissue-expression profiles be-

tween animal models and human has been essential to

bridge between in vivo experiments and translational

medicine, which is notably relevant when evaluating toxi-

cological consequences to treatment prior to trials in

humans (4–6). Systematic investigation of the physiological

and molecular similarities is currently possible in view of

the accumulating experimental data on tissue-level expres-

sion for different organisms (7–9).

The most widely used techniques for measuring mRNA

expression levels on a high-throughput scale are high-

density oligonucleotide microarrays and in particular RNA

sequencing (RNA-seq). Tissue expression datasets provide

data of varying quality, and the technology platform of

choice can have an important impact on quality. Provided

sufficient sequencing depth, RNA-seq has advantages over

microarrays in terms of better discrimination between iso-

forms and the ability to discover new transcripts (10).

Nonetheless, several studies (10–13) have shown that ex-

pression estimates derived from RNA-seq and microarray

correlate well and complement each other. The quality of

datasets can be furthermore influenced by the quality of

the genome assembly and annotation of the respective spe-

cies. Genome quality will have impact on the mapping rate

and accuracy in RNA-seq experiments, and on the design

of correct oligonucleotides in microarray experiments,

while a poor genome annotation will obviously decrease

the size of the gene set being measured in each experiment,

irrespective whether RNA-seq or microarray. Due to being

more studied, human and mouse have better quality gen-

omes than pig, which also has a smaller and less reliable

set of annotated genes (14).

Several resources provide spatial information on gene

expression based on a single organism (15–17) or a single

technology (18), or collecting data on multiples species and

technologies (19, 20). Here, we present a database of

gene–tissue associations in human and three mammalian

model organisms. By gene–tissue association, we denote

the expression or simply presence of the mRNA or corres-

ponding protein in that tissue. Certain applications (e.g.

cellular signaling or protein interaction pathways) require

information about where proteins are present, irrespective

of their origin of expression.

The first version of the database was implemented as

part of a comprehensive comparison of human tissue ex-

pression datasets (21) and integrated multiple datasets made

with several technologies. In this version, we further include

10 transcriptomic datasets from mouse, rat and pig includ-

ing both microarray and RNA-seq derived data for each or-

ganism. Most of the RNA-seq data was processed in-house,

mapping reads to newest genome assemblies and quantify-

ing transcript levels using latest genome annotations. We in-

tegrate this data with tissue expression evidence from

manually curated UniProtKB (22) annotations and auto-

matic text mining. All gene–tissue associations provided are

benchmarked and scored to make all the data comparable

within each organism and between organisms. With such a

unified scoring it is possible to compare the associations

across organisms and technologies and therefore establish

the overall independent confidence of the interactions.

Including animal data in TISSUES and making them com-

parable to the already existing human datasets conspicu-

ously complements the database and allows translation of

tissue–expression profiles from any of the species to any of

other. All data are freely available via a web interface

(http://tissues.jensenlab.org/) where gene tissue expression

can be visualized and downloaded, or further through the

Cytoscape App, stringApp (http://apps.cytoscape.org/apps/

stringapp), which allows users to easily visualize tissue ex-

pression into a network from the STRING database.

Materials and methods

In this new version of the TISSUES database, we add tissue

expression data from mouse, rat and pig to the existing

human gene–tissue associations. In this effort, we integrate

data collected from different sources of evidence (tran-

scriptomics, text mining and manual curation) and make

them comparable both among datasets and across species.

For the transcriptomics datasets, we chose large-scale ex-

periments with expression measured in several tissues in

healthy individuals. We have specifically selected samples

corresponding to the adult life stage in all datasets except

from one of the pig datasets, where all the animals used in

the study were juvenile (12–16 weeks old).

As described below, we score each of the datasets ac-

cording to their quality by benchmarking them against a

gold standard set of gene–tissue associations derived from

the UniProtKB tissue annotations for human proteins. This

common scoring scheme facilitates correlation analyses be-

tween datasets, between the species covered, and, at the

gene level, for homologs.

Page 2 of 12 Database, Vol. 2018, Article ID bay003

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bay003/4851151 by guest on 20 M

arch 2024

http://tissues.jensenlab.org/
http://apps.cytoscape.org/apps/stringapp
http://apps.cytoscape.org/apps/stringapp


A first step in integrating tissue expression data from

multiple sources is standardizing gene and tissue identi-

fiers. We obtained a dictionary of aliases (gene/protein

names) and identifiers for protein-coding genes for all four

organisms from the STRING database (23). We used this

dictionary to map the gene/transcript identifiers in each

dataset to the corresponding Ensembl protein identifiers

(from now referred to as STRING identifiers). When two

or more genes/transcripts mapped to the same STRING

identifier, we used the average of their expression value. If

a gene/transcript could be mapped to more than one

STRING identifier, it was filtered out.

To standardize the names used for tissues, we mapped all

tssues available in the datasets to the Brenda Tissue

Ontology (BTO) (24). The directed acyclic graph structure

of ontologies allowed us to propagate expression calls to par-

ent tissues. We selected a set of 21 major tissues for assessing

the agreement between datasets and for visualization in the

web interface. The mapping from tissue names to BTO terms

is available at doi:10.6084/m9.figshare.4640710.

Text mining

We used the dictionaries together with a previously pub-

lished and highly efficient named entity recognition (NER)

engine (25) to identify, using dictionaries, genes/proteins

and tissues co-mentioned in Medline abstracts (26).

Species disambiguation of names was performed by look-

ing for explicit mentions of the species names, including

both Linnaean binomina and common names, as in the

STRING database (23).

The NER results were used to extract scored gene–tissue

associations for the studied species. The co-occurrence of

gene–tissue terms is scored based on whether the terms

appear within the same sentence or only within the same ab-

stract (weighted counts) normalized by how much the gene

and tissue is mentioned with other tissues/genes (27). The

final result was a set of gene–tissue associations for mouse,

rat, and pig genes, which had been extracted and scored

exactly as previously described for human genes (21).

Mouse transcriptomics datasets

Mouse GNF Gene Expression Atlas

We downloaded the microarray data from the Mouse

GNF1M Gene Atlas (GSE1133) (28), measuring expres-

sion in C57BI/6 mice, from the BioGPS portal (18). The

dataset contains information for 36 182 probe sets (includ-

ing controls), which we first mapped to gene identifiers via

the probeset annotation file (gnf1m.annot2007.tsv) and

then to STRING identifiers via our dictionary. Expression

values were averaged across probesets corresponding to

the same gene and across biological replicates. The mapped

version of the GNF Mouse Gene Expression Atlas from

BioGPS provides information on 15 390 genes in 78 tis-

sues/cell types, 64 of which could be mapped to BTO

terms.

Mouse GNF V3 Gene Expression Atlas

The microarray data from the GNF Mouse GeneAtlas V3

(GSE10246) (29), with expression measured in C57BI6

mice, was also obtained from BioGPS. The data were al-

ready normalized and expression values were averaged

across bio-replicates. We downloaded a probeset annota-

tion file corresponding to the MOE430_2 array platform

from BioMart (30) and used it for mapping probe identi-

fiers to Ensembl gene identifiers. These were further

mapped to 16 795 STRING identifiers using our diction-

ary, and 64 out of the total of 91 tissues and cell types

were mapped to BTO terms.

Mouse RNA-seq for evolutionary dynamics, MIT

In this atlas, which also covers four other mammals includ-

ing rat, RNA-seq was used to sequence polyA-selected

RNA from nine tissues in mouse with three biological rep-

licates (31). Two of the three biological replicates were

inbred strains, while the third was from an outbred line.

Paired-end sequencing was performed with fragments of

36–50 bases in two individuals and, respectively, 80 bases

in the third individual. We downloaded the FASTQ files

from ArrayExpress (32) (E-MTAB-2801) and processed it

using the pipeline described later. We quantified expres-

sion in FPKM units for 22 048 STRING identifiers and

mapped all nine tissues to BTO terms.

Mouse RNA-seq, ENCODE/CSHL

The mouse transcriptomic data produced at CSHL under

the ENCODE project (33) was similarly based on RNA-

seq to sequence polyA-selected RNA, in this case generat-

ing paired-end Illumina data (2� 101 bases) for 22 tissues

with two biological replicates in C57BI/6 mice (34). We

downloaded the files containing gene expression quantifi-

cation in FPKM units for each sample from the Encode

Portal (35). We were able to map 21 of the 22 tissues to

BTO terms and a total of 22 048 STRING protein

identifiers.

Rat transcriptomics datasets

Rat Array Atlas

The expression of �7000 rat genes was measured by array

across 11 peripheral and 15 brain tissues in Sprague
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Dawley, Wistar and Wistar Kyoto rats, using two to three

samples from different or same strain per each tissue (36).

Normalized data were obtained via BioGPS. The annota-

tion file for the RG_U34A array chip used in the study was

used for mapping the 7999 probeset identifiers to a total

number of only 4731 STRING identifiers. 25 of the 26 tis-

sue names could be mapped to BTO terms.

Rat transcriptomic BodyMap

The Rat transcriptomic BodyMap study used RNA-seq to

profile expression across 11 tissues and four developmental

stages for 32 individuals in Fisher 344 rats (37). We

obtained processed data for the adult developmental

stage with expression measured in FPKM units and anno-

tated with Ensembl gene identifiers from ArrayExpress

(E-GEOD-53960). We further mapped these to 19 554

STRING identifiers using the dictionary and averaged the

expression values across biological replicates.

Rat RNA-seq for evolutionary dynamics, MIT

This data come from the same study as the previously

described MIT RNA-seq mouse atlas (31). Expression

was measured using RNA-seq on polyA-selected RNA

from the same nine tissues with three biological

replicates. We downloaded the FASTQ files from

ArrayExpress (E-MTAB-2800) and processed them using

our pipeline, thereby quantifying expression for 19 566

STRING identifiers.

Pig transcriptomics datasets

Pig Array Atlas

The study used microarrays to measure expression in 62

tissues/cell types in juvenile Landrace pigs, including genes

inferred by orthology and not annotated in the pig genome

at the time (38). From the BioGPS portal we obtained the

RMSD normalized expression values for probesets, which

we mapped to gene names via the annotation provided in

the file and further to STRING identifiers via our diction-

ary. For each of the resulting 14 850 protein-coding genes,

we averaged expression across probesets and biological

replicates. We were able to map 53 of the tissues/cell types

to BTO terms.

Pig RNA-seq Aarhus

This dataset consists of RNA-seq data on polyA-selected

RNA from ten porcine tissues with two biological repli-

cates in Landrace boars (39). Since only BAM files with

TopHat alignments against the Sus_scrofa.Sscrofa10.2

genome build were available, we downloaded these from

ArrayExpress (E-MTAB-1405) and performed transcript

abundance quantification and normalization across all

samples using Cuffnorm from the Cufflinks suite (40).

Pig RNA-seq WUR

The dataset produced at the Wageningen University

under the FAANG project (Functional Annotation of

Animal Genomes) consists of RNA sequencing data for

eight porcine tissues and three different breeds (duroc,

large white, pietrain). Five of the tissues were sequenced

in one individual from each breed, whereas the remaining

three tissues were sequenced only in one individual (large

white). We obtained the raw FASTQ files from the

European Nucleotide Archive (study: PRJEB19268,

ERP021264) and processed the data using our RNA-seq

processing pipeline. We treated the samples from differ-

ent species as biological replicates, averaging the expres-

sion values for each gene across the three individuals

when available.

Human transcriptomics datasets

To assess how well datasets agree with each other across

organisms, we further make use of the four human tran-

scriptomic datasets, which were already integrated and

described in detail in the first version of TISSUES (21).

Two of them were obtained by microarray technologies,

namely Exon Array (41) and GNF (28), and the other two

by RNA-seq, namely HPA RNA-seq (42) and RNA-seq

Atlas (43).

Processing of RNA-seq datasets

For mapping raw RNA-seq reads to reference gen-

omes and quantifying gene expression levels, we used

the genome assemblies (mmgrc38ens83, rnor6ens83

and Sus_scrofa.Sscrofa10.2) and annotation files

(Mus_musculus.GRCm38, Rattus_norvegicus.Rnor_6.0

and Sus_scrofa.Sscrofa10.2) corresponding to Ensembl re-

lease 83 (44).

We used the STAR RNA-seq aligner (45), version

2.5.0b, to map reads to reference genomes. In order to

keep higher confidence alignments only, we filtered out

alignments containing non-canonical splice junctions

(–outFilterIntronMotifs RemoveNoncanonical), as well

as novel splice sites of low confidence (–outFilterType

BySJout).

To quantify expression and normalize expression values

across samples, we ran Cuffnorm v2.2.1 (40) directly on

the BAM files generated by STAR, together with gtf anno-

tation files. The RNA-seq processing pipeline can be found

at https://github.com//opalasca/rnaseq_processing.
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Gold standard

Manually curated annotation

To evaluate the quality of the gene–tissue associations

from each dataset and to assign directly comparable confi-

dence scores, we compare all datasets to a gold standard as

was done in the first version of TISSUES (21). We import

the manual annotations of tissue expression provided by

UniProtKB for all four organisms (46), which we include

in the Knowledge channel of the database.

Because the number of manual tissue annotations in

mouse, rat, and especially pig is much lower than in human

(Supplementary Table S1), we cannot directly use them as

gold standard for deriving confidence scores. Instead, we

opted to generate gold standard datasets for mouse, rat,

and pig through orthology-based transfer of the human tis-

sue annotations, under the assumption that a large portion

of orthologous genes are similarly expressed in homolo-

gous tissues across mammals (31 47).

Orthology-based transfer of annotations

Ortholog/paralog assignments were derived from the orthol-

ogous groups (OGs) defined in eggNOG 4.5 (48).

Specifically, we downloaded the files comprising OGs

across mammals (maNOG.members.tsv.gz) and across ro-

dents (roNOG.members.tsv.gz) from the eggNOG down-

load page. We used the latter file to obtain 1:1 orthologs

between mouse and rat, and the former file for all other

orthology relationships. Because eggNOG and STRING use

the same identifiers, no identifier mapping was necessary.

To construct the gold standard dataset in each of the

three animal models, we used only 1:1 orthologs between

human and the organism in question. For the comparative

analyses of datasets across technologies and organisms, we

extracted both 1:1 orthologs between each pair of organ-

isms and 1:1:1:1 orthologs across all four organisms

(Supplementary Tables S2 and S3).

Confidence scoring

To make the datasets comparable, we converted the raw ex-

pression scores into a common scoring scheme. This scheme

requires first evaluating the agreement of the datasets with

the gold standard for the corresponding organism. As in the

previous TISSUES version (21), we quantify this agreement

using fold enrichment and convert raw expression into con-

fidence scores. Fold enrichment is defined as the fraction of

gene–tissue pairs in the dataset also found in the gold stand-

ard divided by the fraction expected when randomly sam-

pling genes and tissues from the gold standard. To calculate

the fold enrichment in a given dataset, we select the genes

and tissues that are in common between the dataset and the

gold standard, sort the gene–tissue pairs by raw expression

value and calculate fold enrichment in sliding windows of

100 pairs (Figure 1). We then fit the resulting curves (raw

expression, fold enrichment) using sigmoidal functions to

define how raw expression scores translate into fold enrich-

ment (confidence score) for each dataset:

Confidence score ¼ a0 þ a1 � a0ð Þ= 1þ e�a2 log10 xð Þ�a3ð Þ
� �

;

where x is the mean expression value of a 100-pairs bin.

To test if the use of orthology-based inference in the gold

standard affected the fold enrichments, we repeated these

analyses using instead the actual UniProtKB tissue annota-

tions for each organism as gold standard. These analyses gave

consistent but less robust results due to the use of much

smaller gold standard sets, in particular for rat and pig

(Supplementary Figure S1). Since the number of protein–tis-

sue pairs in the orthology-based gold standard sets are almost

2-fold smaller than the original human gold standard, we

also tested whether the previously published results (21) for

transcriptomic datasets were reproducible with a gold stand-

ard reduced to 1:1 orthologs with either of the three organ-

isms. We observed only minor changes in fold enrichment

values, indicating that the scores are robust, irrespective of

size of the gold standard dataset (Supplementary Figure S2).

Figure 1. Schematic representation for calculating fold enrichment and

fitting its relationship to raw expression values. For a given dataset, we

select gene–tissue pairs and their raw expression scores for a subset of

tissues, which are common between all datasets and a subset of genes

common between the dataset and the gold standard. Next, we sort

these gene–tissue pairs by their raw expression value, and traverse

them in sliding windows of a pre-defined size. The enrichment corres-

ponding to each bin is then calculated as the fraction of gene–tissue

pairs from that bin found in the gold standard, divided by the fraction of

pairs that would be expected by random. Next, we use appropriate

functions (see text) to fit the relationship between fold enrichment val-

ues and mean raw expression values in their corresponding windows.
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The final step in our scoring scheme is to transform the

confidence scores into stars, which are used to score other

types of evidence than expression datasets within the

TISSUES database. Stars represent the confidence that a

gene is expressed or present at all in a certain tissue. Gene-

tissue associations with negative scores are not included in

the database. To this end, we used a single, monotonic cali-

bration function for all datasets from all organisms, which

we calibrated on the text-mining results for human gene–

tissue associations (Supplementary Figure S3). We chose to

use this particular set of associations, because it is large,

facilitating robust results, and because text-mining is also

available for other types of associations, allowing unified

confidence scores across TISSUES and the related data-

bases COMPARTMENTS (27) and DISEASES (49). The

calibrated functions used for transforming raw expression

values into final confidence star scores are available in

Supplementary Table S4.

Correlation between datasets

We analyzed the agreement between datasets across or-

ganisms and technologies (microarray vs. RNA-seq) by

computing Pearson correlation coefficients between the final

star confidence scores for all pairs of datasets. We per-

formed computations both at the level of individual tissues

and across multiple tissues, the latter by pooling gene–tissue

associations from the tissues that are common between each

pair of datasets. To calculate the correlation between two

datasets, we constructed vectors of the final star confidence

scores for gene–tissue pairs involving only genes observed in

both datasets. When comparing datasets from different or-

ganisms, 1:1 orthologs were used for selecting the set of

common observed genes. Associations with negative scores

(stars) were filtered out prior to this analysis.

Results and discussion

In this study, we compare gene expression in human and

three mammalian model organisms across 14 different

transcriptomic datasets and 21 major tissues. Figure 2

shows an overview of which tissues are covered by which

datasets. We present results from benchmarking of all the

datasets and quantify the agreement between tissue expres-

sion data created using different organisms and different

transcriptomic technologies (RNA-seq vs. microarrays).

Finally, we describe a web resource that makes it easy to

view the tissue expression of a gene of interest.

Figure 2. Summary of tissues present in each dataset. We mapped the newly integrated datasets from mouse, rat and pig, as well as the already exist-

ing human datasets, to 21 major tissues of interest. This figure shows which of these tissues are covered by which datasets.
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Benchmarking of model organisms

Correlation between raw expression values and fold

enrichment

Starting from the intuition that the higher the estimated

abundance level for a specific gene in a tissue, the more

confident we are that the gene is expressed in that tissue,

we assess the correlation between expression values and

confidence by comparing each transcriptomic dataset from

each organism to a gold standard dataset corresponding to

that organism. Since the gold standard datasets, derived

from UniProtKB gene–tissue associations for human, are

reliable but very incomplete, we cannot estimate the preci-

sion of a dataset. Instead, the quality of each dataset is esti-

mated in terms of the fold enrichment of gene–tissue

associations found within the gold standard compared to

random chance. As expected, the comparison showed a

clear correlation between fold enrichment and raw expres-

sion values (Figure 3).

Comparison of expression across organisms

To assess how well expression from a model organism can

be used as a proxy for expression in human, we analyzed

how well the datasets agreed with each other across organ-

isms and across technologies (microarray vs. RNA-seq).

For this, we performed two distinct analyses. First, we

computed Pearson’s correlation coefficients for the vectors

of confidence scores of gene–tissue associations across all

pairs of datasets. Second, we benchmarked all the datasets

Figure 3. In order to obtain confidence scores for each gene–tissue pair, we assess the relationship between raw expression values and fold enrich-

ment, defined as the agreement between each dataset and gold standard datasets specific to the organism. The gold standard datasets are based on

the UniProtKB protein tissue annotations in human, filtered for 1-to-1 orthologs between human and each of the three organisms. The x-axis contains

raw expression values for gene–tissue pairs, in units specific to the type of experiment or processing of data (e.g. intensity units for microarray stud-

ies, FPKMs for RNA-seq), and averaged across bins of 100 pairs.
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against the UniProtKB gold standard to show how quality

of the datasets influences the measured agreement.

In the correlation analyses, we first computed the correl-

ation between each two datasets based on the set of com-

mon tissues and common genes, using 1:1 orthology

relationships when datasets belonged to different organisms

(Figure 4A). To account for possible biases arising from

this, we repeated the analysis for individual tissues, using

the set of genes common to all datasets (Supplementary

Figure S4). We additionally looked at the correlation across

tissues and datasets for six tissues covered by most of the

datasets, which clearly showed that tissues cluster together

across datasets irrespective of the organism of origin

(Supplementary Figure S5).

Second, to study the possible causes of the observed

agreement or disagreement between datasets, we looked at

the Receiver Operating Characteristic curves (ROC curves)

resulting from the comparison of each dataset to gene–tis-

sue pairs in UniProtKB. The ROC curves account for the

ratio of true positives and false positives as a function of

the calibrated scores (Figure 4B). The True Positive Rate

(TPR) and False Positive Rate (FPR) are calculated taking

into account only genes shared between UniProtKB and

each of the benchmarked datasets and four common tissues

to most of these datasets (nervous system, liver, heart and

kidney). RNA-seq WUR dataset was evaluated using only

nervous system and liver tissues since the other two tissues

were not available.

Both analyses show that the agreement between datasets

is mainly driven by the technical bias in the data as well as

the difference in quality of the datasets. We do not observe

a clustering of the datasets by either organism or technology

(microarray vs. RNA-seq). However, we observe the stron-

gest correlations between datasets produced in the same lab,

i.e. mouse MIT with rat MIT and mouse GNF with mouse

GNF v3, indicating that the technical bias plays an import-

ant role in how well datasets agree with each other. We also

observe that certain datasets have an overall higher agree-

ment to all the other datasets (HPA RNA-seq or mouse/rat

MIT). We interpret this as a result of their overall quality,

the higher the quality of the dataset the better the agreement

with other datasets. Indeed, the datasets that correlate well

with other datasets (i.e Human HPA RNA-seq) show also

better performance in the ROC curves than other datasets.

The TISSUES web resource

The TISSUES database can be accessed via the web inter-

face (http://tissues.jensenlab.org), which is designed to

cater to users who want to inspect the tissue–expression of

a protein of interest. The user is first presented with a

search interface that retrieves proteins by name, using the

synonyms list also used for the text mining evidence chan-

nel. Upon selecting a protein, the user is presented with a

results page, which contains an anatomical schematic and

three tables with further details on the expression evidence.

Figure 4. (A) Pearson’s correlation coefficients between final confidence scores of gene–tissue associations across datasets. For each pair of datasets,

we considered the set of common genes (genes being expressed in at least one tissue in each dataset), and common tissues between the two data-

sets. (B) In this panel, we compare the rates of True positives and False positives for each dataset for the common tissues to show that the correlation

between datasets is mainly influenced by quality rather than by organism or technology.
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To provide a high-level overview of the tissue expres-

sion of a protein, we created an anatomical schematic for

each of the four organisms (Figure 5). The schematics

cover 20 major tissues for the rat and 21 for the three

other organisms, the difference being that rats do not

have a gall bladder (50). For a given protein, each tissue

is colored based on the integrated confidence score,

which takes into account all evidence types. Hovering

over a tissue causes a popup to be shown, which summar-

izes the sources of evidence that support expression of the

protein in the tissue.

Whereas the anatomical schematic gives an overview of

tissue expression, it does not provide the full details of the

evidence in TISSUES. For this reason, the results page also

contains three tables, one for each of the three evidence

channels. These tables list the precise ontology terms for

the site of expression, thus often providing more fine-

grained information than the schematic. The Knowledge

and Experiments table lists the source of each piece of evi-

dence and contains a link out to the original source when

possible. In case of the Text mining table, we instead

provide an evidence viewer, which displays the abstracts

that co-mention a protein and a tissue, highlighting the rec-

ognized terms in the text.

To provide evolutionary context, a last table on the

page summarizes the tissue expression of orthologs and

paralogs of the query protein. In this table, homolog pro-

teins are annotated as either orthologous or paralogous

proteins according to EggNOG database (48). Each of the

entries in this table shows the tissue–expression correlation

with the query protein for the 21 major tissues (Pearson’s

correlation coefficient), which facilitates comparison be-

tween organisms.

A separate download page provides links to tab-

delimited files with the complete data for each evidence

channel as well as a tab-delimited file with the integrated

confidence score for every protein–tissue association.

These files are made available under the Creative

Commons Attribution 4.0 license to facilitate both large-

scale analyses and incorporation of the data into other

databases. Examples of the latter include Hetionet (https://

github.com/dhimmel/hetionet) and Pharos (51).

Figure 5. Summary figures for all the covered organisms. The web interface provides a comprehensive figure for each organism where the tissue as-

sociations for the queried gene are summarized. In this example, we are showing the tissue expression profile for the Microtubule-associated protein

tau (MAPT) known to be related to Alzheimer’s disease (57). The ortholog–paralog table provides information about homologous proteins and their

tissue–expression correlation with the query protein.
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Integration with Cytoscape and STRING

Tissue expression is not just relevant for understanding the

roles of individual proteins; it is also important for analysis

of protein–protein interaction networks (52). Recently,

there has been a growing interest in developing resources

that combine data on tissue expression and protein inter-

action networks (53, 54). The TISSUES database itself

does not include interaction data; however, the synchron-

ization of protein identifiers with the STRING database

enables easy integration of the two (23, 55).

Integrative analysis of protein networks and tissue ex-

pression data from STRING and TISSUES, respectively,

has recently been greatly simplified with a new STRING

app for the Cytoscape software platform (56) (http://apps.

cytoscape.org/apps/stringapp). When using the app to re-

trieve a STRING network for one of the organisms covered

by TISSUES, the combined evidence score for each of the

major tissues is automatically included as node attributes.

This allows them to be directly used for subsequent

filtering of the network or to be mapped onto the network,

as exemplified in Figure 6. Full details and a guide on how

to use the STRING app will be described in a separate

publication.

The code used to obtain fold enrichment scores and to

generate the figures in the manuscript can be downloaded

at https://github.com/opalasca/TISSUES_Update.

Conclusions

We presented TISSUES 2.0, an updated database on gene–

tissue associations that has now been substantially ex-

tended by including information from multiple mammalian

model organism, namely mouse, rat and pig. This database

is an integrative effort that provides tissue associations

protein-coding genes, collected from multiple sources

and data types. The associations have been benchmarked

and assigned confidence scores to make them compar-

able across data sources, data types, and organisms.

Figure 6. STRING app in Cytoscape with tissue information. (A) The newly developed stringApp for Cytoscape allows users to get all the STRING

functionality within Cytoscape and allows expression evidence from TISSUES to be visualized onto the network (in this example for liver). (B) The

stringApp also shows the evidence score for each of the major tissues in the node attributes table.
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The database further facilitates comparisons across organ-

isms by showing gene–tissue correlations between ortholo-

gous and paralogous genes.

TISSUES 2.0 integrates both transcriptomics and prote-

omics data as well as manually curated and automatically

text-mined associations from the biomedical literature. It

therefore provides information of where proteins are pre-

sent in the body, rather than only where they are ex-

pressed. This distinction is particularly important for

signaling proteins, such as insulin, that are produced in one

tissue but transported elsewhere through the blood. Thus,

TISSUES 2.0 is complementary to resources purely based

on transcriptomics data. The resource is already integrated

into both GeneCards and BioGPS (via a plugin).

The database is available through a web interface that

allows the data to be queried, visualized and compared in a

gene-centric manner across data sources and organisms. The

web resource also makes all gene-tissue associations freely

available for downloaded. Furthermore, TISSUES 2.0 is now

accessible through the Cytoscape STRING app, thereby pro-

viding biological context to the STRING protein–protein

interaction networks by adding tissue information.

Supplementary data

Supplementary data are available at Database Online.
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