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Abstract

Gastrointestinal (GI) cancer is common, characterized by high mortality, and includes

oesophagus, gastric, liver, bile duct, pancreas, rectal and colon cancers. The insufficient

specificity and sensitivity of biomarkers is still a key clinical hindrance for GI cancer

diagnosis and successful treatment. The emergence of ‘precision medicine’, ‘basket

trial’ and ‘field cancerization’ concepts calls for an urgent need and importance for the

understanding of how organ system cancers occur at the molecular levels. Knowledge

from both the literature and data available in public databases is informative in

elucidating the molecular alterations underlying GI cancer. Currently, most available

cancer databases have not offered a comprehensive discovery of gene-disease

associations, molecular alterations and clinical information by integrated text mining

and data mining in GI cancer. We develop GIDB, a panoptic knowledge database that

attempts to automate the curation of molecular signatures using natural language

processing approaches and multidimensional analyses. GIDB covers information

on 8730 genes with both literature and data supporting evidence, 248 miRNAs, 58

lncRNAs, 320 copy number variations, 49 fusion genes and 2381 semantic networks.

It presents a comprehensive database, not only in parallelizing supporting evidence

and data integration for signatures associated with GI cancer but also in providing the

timeline feature of major molecular discoveries. It highlights the most comprehensive

overview, research hotspots and the development of historical knowledge of genes in GI

cancer. Furthermore, GIDB characterizes genomic abnormalities in multilevel analysis,

including simple somatic mutations, gene expression, DNA methylation and prognosis.

GIDB offers a user-friendly interface and two customizable online tools (Heatmap and
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Network) for experimental researchers and clinicians to explore data and help them

shorten the learning curve and broaden the scope of knowledge. More importantly,

GIDB is an ongoing research project that will continue to be updated and improve the

automated method for reducing manual work.

Database URL: http://bmtongji.cn/GIDB/index.html

Introduction

Gastrointestinal (GI) cancers, including oesophageal, gas-
tric, liver, bile duct, pancreatic and colorectal cancers, are
one of the major causes leading to death and have the
second highest incidence rates of malignancies worldwide
(1–6). Among all organ system cancers, GI cancers are
responsible for more deaths from cancer than any other
cancers. The burden of GI cancers has been rising, and an
obviously increasing incidence trend in young adults has
been observed (7, 8). However, early stage diagnosis of
GI cancers remains difficult and challenging. For instance,
carcinoembryonic antigen and carbohydrate antigen 19-9
(CA19-9) are the most commonly used traditional tumour
biomarkers, but their levels are not recommended in screen-
ing for early detection of GI cancers as the sensitivity and
specificity are both very low (9–13). The prognoses of
GI cancers remain dismal. Although potential therapeutic
agents have been approved for colorectal, gastric, liver
and pancreatic cancers, the treatment effectiveness is often
limited due to tumour and patient heterogeneity. Therefore,
there is an urgent need to require a deep understanding
of GI cancers for identifying predictive and prognostic
and potential molecular biomarkers (14). Considering the
field cancerization and the fundamental peculiarity and
similarity of GI cancers in biological function, pathogenesis
and potential therapeutic strategies, a knowledge of how a
specific organ digestive system cancer occurs at the cellular
and molecular levels is significant and meaningful (15–17).

At present, a tremendous increase in the resources
available in public sources has been accumulated, not
only in data but also in the literature. Figure 1A shows
the number of articles in PubMed related to GI cancer.
The volume of data and the literature is expected to
continue to grow annually, so that manual work is unable
to keep up with the speed of information accumulation.
Moreover, the underlying knowledge of these resources is
not fully developed due to basic researchers and clinicians
having limited background knowledge. Moreover, data
isolation and heterogeneity cause difficulty for scientists
in performing effective data mining, extraction and
integration from public sources for their own research
(18). There are several types of specialized databases,
including CoReCG (19), DBGC (20), Liverome (21) and

PED (22), which provide single-phenotype information
for colorectal, gastric, liver and pancreatic cancers. Few
studies have conducted text mining in data integration. A
gastrointestinal cancer database (23) has been developed to
provide a comprehensive molecular oncogenomic profiling
of GI cancers. However, the accumulated data volume is
small (463 genes and 713 miRNAs), and the data content
is simple. In addition, there are also several databases
and platforms for exploring pan-cancers, such as OMIM
(24), COSMIC (25), HGMD (26), OncomineTM (27) and
cBioPortal (28). With respect to data content, OMIM,
COSMIC and HGMD have a limited number of data types.
Oncomine and cBioPortal are specialized in providing
information to show links between datasets and articles.
Meanwhile, for the interface, experimental researchers and
clinicians may have a long learning curve.

In accordance with the above point of view, all the
databases currently available have not offered a compre-
hensive discovery of gene-tumour associations by integrated
text mining of the literature, data mining of multidimen-
sional data and clinical information on GI cancers. Thus, a
comprehensive and accessible public knowledge database in
GI cancers is required to maximize the benefits of literature–
data integration, which is crucial for a better understanding
of the molecular events underlying GI cancers and the
identification of candidate molecular markers for diagnosis
and treatment.

Overall, this study involves the creation of a highly
curated database, GIDB, which holds a comprehensive view
of about 8700 molecular signatures mined from over 130
000 texts and 1800 samples. GIDB provides a wide range
of resources for GI cancers, such as genes, miRNAs, lncR-
NAs, fusion genes, copy number variations (CNVs), gene-
tumour semantic networks, historical ‘Timelines’ of GI
cancer-related genes and information on cancer drugs, as
well as alterations at the molecular level (somatic mutation,
expression and methylation) and their impact on prognosis.
Furthermore, an important aspect of the GIDB is that it is a
well-designed database and has its own web analytics tools
(HeatMap and Interactive Network). The GIDB will be of
great benefit and convenience to experimental researchers,
clinicians and bioinformatics scientists in three common
situations: (i) a brief historical review of GI cancer-related
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Figure 1. The GI cancer-related studies found in the PubMed database and the schema of the GIDB. (A) PubMed queries for GI cancer-related studies

and GI cancer-related studies at the molecular level. (B) It describes the information retrieval steps used in GIDB extracted from the literature and

datasets. It also shows the approaches for literature mining and data mining integrated into GIDB.

genes; (ii) evidence supporting predictions; and (iii) exten-
sive identification and in-depth experimental validation.

Construction and content

To date, the GIDB has been populated with information
from vast amounts of biomedical literature and multidi-

mensional omics data. Both aspects are of crucial impor-
tance to show a more comprehensive view of GI cancer
researches to determine the association of these findings
and clinical translational applications (e.g. biomarkers).
One key feature of the GIDB is that it allows the users to
trace the ‘Cancer-Timeline’ of gene searches and the ‘Gene-
Timeline’ of identified genes in each type of GI cancer.
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More importantly, the GIDB demonstrates genomic alter-
ations and prognoses of genes and gene-disease associa-
tion networks. The schema of the GIDB is represented in
Figure 1B.

Data curation

Semantic association for entity recognition In the GIDB, we per-
form a natural language processing (NLP) approach to
automate the extraction of disease–gene association from
biomedical literature in PubMed. To extract information
from the semi-structured MEDLINE format, we construct
relevant vocabularies for GI cancers, including cholan-
giocarcinoma, gallbladder carcinoma, vater ampulla carci-
noma, hepatocellular carcinoma, gastric cancer, pancreatic
cancer, oesophageal cancer, colon cancer and rectal cancer.
The metathesaurus concepts and semantic types mentioned
in the text are recognized by MetaMap (Figure 2A). Over-
all, it corresponds to 20 630 Unified Medical Language
System (UMLS) concepts, including 20 595 gene concepts
and 35 tumour concepts.

Semantic network inference The semantic associations of enti-
ties in text are identified by SemRep in the form of a seman-
tic knowledge network. The GIDB currently accommodates
semantic relations on AFFECTS, ASSOCIATED WITH,
AUGMENTS, CAUSES, DISRUPTS, PREVENTS and
TREATS (Figure 2B). One can view how genes (nodes)
interact (edges) in each GI cancer type (nodes) in a
3D network mode. There are presently 2381 unique
interactions in the GIDB (176 for bile duct cancer, 977
for colorectal cancer, 197 for oesophageal cancer, 530 for
liver cancer, 120 for pancreatic cancer and 381 for gastric
cancer). More importantly, prediction of semantic network
subgroups, including intrahepatic cholangiocarcinoma,
Klatskin’s tumour, gallbladder carcinoma, extrahepatic
cholangiocarcinoma and carcinoma of ampulla of vater
in biliary tract cancer (BTC) is shown in Figure 2C.

Evaluating

With respect to the database content in the GIDB, an
important aspect to consider is the automatic extraction
of signatures from biomedical literature, which needs to
be addressed comprehensively and unambiguously. To esti-
mate our text-mining method, we randomly selected 790
manually curated studies from the citation collections. We
observe that the true positive (TP) studies limited to positive
evidence can result in a recall of 74.75% and a precision of
60.72%. Secondly, we consider the gold standard of gene–
disease association for both positive and negative evidence,
which improves the recall and precision by up to 75.59%

and 63.53%, respectively. Thirdly, when considering the
comprehensiveness of information, uncertain evidence is
also classified as positive sample sets and achieves a recall
of 75.9% and a precision of 68.67%. It is important to
note that the automated text-mining method may lead to
both false-positive and false-negative annotations due to
improper term unification. Furthermore, we observed that
using gene aliases as a complement to official gene symbols
dramatically elevates the rate of recall (91.11%), and the
integration of text mining and data mining further increases
the precision to a great extent (83.35%).

Data content

The GIDB is an ongoing research project that will continue
to be updated with a semi-automated programme running
on the background server to further improve the quality of
data periodically and release them to the website.

The GIDB gives an instant overview of lists of curated
information associated with GI cancers and provides links
to detailed information on individual tumours. The GIDB
consists of curated molecular signatures on protein coding
genes, miRNAs-target, lncRNAs, fusion genes and CNVs.
Overall, The GIDB has currently mined over 130 000
citations for biomedical literature from PubMed and 1874
samples from six GI cancer TCGA projects in which a
total of 8730 genes relevant to GI cancers were found.
Among them, 1023 (11.7%), 7173 (82.2%), 1503 (17.2%),
2805 (32.1%), 1353 (15.5%) and 4257 (48.8%) genes
were identified in bile duct, colorectal, oesophageal, liver,
pancreatic and gastric cancers, respectively. The six types of
GI cancer shared 122 genes in common. Additionally, the
database holds information on 248 miRNAs, 58 lncRNA,
49 fusion genes, 320 CNVs and a total of 2381 semantic
networks. Figure 3A and B summarizes the distribution of
signatures associated with GI cancers. Through the web
pages, these signatures can be queried and displayed in
tables.

Timeline

The Timeline is an interactive and data-rich resource that
provides a historical overview of major molecular discover-
ies in each type of GI cancer. A span of ∼50 years from
the 1970s to the last update time in this version of the
GIDB in 2018 is chronicled in the Timeline (Figure 3C,
an example of the genes in BTC). There are two kinds
of ‘Timeline’ features, Cancer-Timeline and Gene-Timeline,
highlighting the most comprehensive overview, research
hotspots in each type of GI cancer and the improvement of
historical knowledge of each gene across all GI cancer types.
Moreover, ‘Timeline’ features exhibit key genes, when they
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Figure 2. Cases of semantic association for entity recognition and semantic network inference. (A) A case of the MetaMap entity recognition result:

the blue label represents the target sentence in the citation. The red label gives the Concept Unique Identifies in UMLS Metathesaurus. The purple

label shows the variant string in each sentence, including its acronyms, abbreviations and synonyms. The orange label describes the preferred name

of the concept. The green label is the semantic type of the recognized concept. (B) A case of the SemRep relationship extraction result: the blue label

shows the target sentence in the citation. The orange label gives the entity recognition result mapping by MetaMap. The purple label and red label

show the Subject and Object of the extracted relationship, respectively. The green label represents the semantic relation between subject and object

entities. In this case, it means the subject ‘TP53 gene’ is associated with the object ‘Liver carcinoma’. (C) The semantic network in BTC: the green

node represents curated genes. The orange node means the different tumour subtypes of BTC. The colour of the edge shows the SemRep extracted

relation types.

were discovered and who made the discovery. We believe
that many researchers in the field could benefit from it.

Cancer heatmap and heatMap analytics tool

GIDB provides cancer heatmaps using hierarchical clus-
tering and Euclidean distance and shows the results of
curated genes in each cancer type. It displays two data
types (Expression, Methylation) and several characteristics
for classification (Gender, Sex, Race, AJCC Metastasis,
Family History, Age, etc). Moreover, the GIDB developed
a HeatMap analytics tool to identify distinct molecular fea-
tures among subgroups with different clinicopathological
characteristics. In this database, we used TCGA clinical
data to distinguish the differences between normal and
tumour tissues. K-means cluster analysis is conducted on

gene expression data or DNA methylation data. In each
primary site’s heatmap module, all curated genes’ methy-
lation/expression datasets can be downloaded for in-depth
analysis (Figure 3D, an example in BTC). Also, researchers
can upload their own data and set the cut-off values using
heatmap tool.

Simple queries

A series of web pages provide an easy way to interrogate the
GIDB and present information in figures and tables. Firstly,
hyperlinks that lead to other web resources, such as Entrez
Gene, HGNC, Ensembl, Vega, UniprotKB, Gene Cards,
Gene Ontology, KEGG, ProteinAltas, STRING, PubMed,
Pharmgkb and DrugBank databases, make the GIDB well-
equipped for advanced searching. Secondly, the GIDB
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Figure 3. The statistics of curated signatures in the current version of the GIDB database. (A) A pie chart showing the number of curated signatures

in GIDB, including gene, fusion gene, CNV, miRNA, lncRNA and interaction. (B) A histogram chart showing the number of curated signatures in each

type of GI cancer. (C) A case of ‘BTC Gene-Timeline’ feature and ‘ABCB1 Gene-Timeline’ feature in BTC. (D) A case using the heatmap analysis tool:

GIDB supports two types of datasets (Expression and Methylation) and two characteristics for classification (Gender and Age). The number of gene

clusters or sample clusters can be adjusted manually. In the right panel, a list of selected curated genes is displayed.

provides information on three different types of simple
searches, including gene, sequence and advanced options
that lets users to do sophisticated searches by combining
the various concepts (genes, cancers, keywords) they have
already identified for their search.

Dictionary of cancer drugs and genes

The GIDB integrates information about curated gene sets
and anticancer drugs approved by the US Food and Drug
Administration using ReactomeFIViz. There are two types
of links that can be used in the Gene-Cancer Drugs Dictio-
nary page. Firstly, a gene is linked to the Gene Search Result
page where users can find the detail of its relationship to
GI cancer. Secondly, the information in PharmGKB and
Drugs columns is related to two other online databases,
the Pharmacogenetics Knowledge Base (PharmGKB) and
DrugBank, to find more details for genes, drugs and inter-
actions. Moreover, the GIDB shows a small drug–target
interaction network that contains information on which
genes are targeted by cancer drugs that are annotated via

ReactomeFIViz. There is a total of 137 gene–drug pairs in
the current database. Researchers can utilize these refer-
ences and observe gene interactions with cancer drugs in
networkD3 visualizations.

Molecular alterations

A gene signature table for each GI cancer type consists
of multidimensional analysis relevant to high mutation
frequencies, differential expression, altered DNA methyla-
tion and survival, which describes the molecular alterations
reported in GI cancers and the strength of the correla-
tion between the genes and prognosis. Among the molec-
ular alteration records in the GIDB, there are currently
7681 for somatic mutations, 4876 for differential expressed
genes, 2102 for altered DNA methylation levels, 1797 for
the impact of prognosis at the expression level (P < 0.05)
and 1229 for the impact of prognosis at the methyla-
tion level (P < 0.05). Additionally, the references that are
highly related to gene–disease associations display the title,
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journal, author lists and links to PubMed and a research
overview.

Use case

We illustrate the use of the GIDB with the example of the
topoisomerase (DNA) II alpha (TOP2A) gene in BTC. Gen-
erally, we know that the DNA topoisomerase can regulate
the topologic states of DNA during transcription. TOP2A is
a target for anticancer agents due to its function in encoding
DNA topoisomerase, and a variety of different mutations
in TOP2A are correlated with the development of drug
resistance (29–31).

In GIDB, we indicate that TOP2A is associated with all
types of GI cancer. The evidence concerning the TOP2A
gene relevant to BTC is reviewed in three references. As
shown in Gene-Timeline, Washiro M et al. (29) first discov-
ered this gene in 2008, and they demonstrated that highly
expressed TOPO Ilalpha in gallbladder cancer might be an
effective target for chemotherapy. More interestingly, the
GIDB correctly identified the TOP2A protein, even though
TOPO II alpha is not its official name.

Moreover, two missense variants and a stop-gain variant
that have a high putative impact on the encoded pro-
tein have been annotated. Significantly high expression
of TOP2A was found not only in CHOL tumour sam-
ples compared with the non-tumour samples but also in
COCA, ESCA, LIHC and STAD (all P < 0.0001). Among
them, DNA methylation levels within the TOP2A promoter
region were only significantly lower in LIHC [false discov-
ery rate (FDR) < 0.0001]. The semantic network presents
a global view of how the TOP2A gene is involved in BTC.
Two semantic relations (ASSOCIATED WITH and ARGU-
MENTS) were predicted by SemRep, implying that the
TOP2A gene might expand or stimulate the BTC process.
Furthermore, a TOP2A targeted drug, Etoposide, has been
annotated in the dictionary of cancer drugs and genes.
However, this agent has not been reported as a form of
chemotherapy for BTC (Figure 4).

Methods

Gene–GI cancer associations: GIDB text mining

Retrieval of citations using the Entrez Programming Utilities We
investigated the relation between the molecular signatures
and GI cancers through an automated NLP approach. The
PubMed database (http://www.ncbi.nlm.nih.gov/PubMed)
is used as a source of biomedical literature resources for
text mining. A set of query terms were constructed based
on the Medical Subject Headings (MeSH) database and
the National Center for Biotechnology Information Entrez
Gene database. Entrez Programming Utilities (32) is applied
to extract citations in the MEDLINE format. Through

November 2018, we have collected over 370 000 citations
from PubMed via preliminary screening.

Vocabulary construction Gene symbols, as well as GI cancer
names are mapped to the Concept Unique Identifiers based
on the UMLS Metathesaurus. UMLS is a large thesaurus
that brings together many biomedical vocabularies (e.g.
MeSH). With this thesaurus, a list of UMLS concepts in
MEDLINE abstracts was identified by a UMLS NLP tool,
MetaMap (2016 version) (33). To concentrate on the rela-
tionship between molecular signatures and GI cancers, we
limited the UMLS concepts to three semantic types: ‘Gene
or Genome’, ‘Amino Acid, Peptide, or Protein, Enzyme’ and
‘Neoplastic Process’. In this version of GIDB, we generated
a vocabulary of all Entrez gene entries and six main types
of GI cancer.

Term frequency-inverse document frequency scores and PubTator anno-

tations It is important to note that a UMLS-based knowledge
acquisition methodology is imperfect within the context
of text mining. Another popular text-weighting scheme,
the term frequency-inverse document frequency (TF-IDF)
score (34, 35) and a web-based text-mining tool, PubTator
(36), are further integrated in our association recognition.
TF-IDF consists of two components (TF and IDF) whose
score can be considered to identify citations that are more
relevant or important for a gene. The formula is as follows:

1) The term i TF in citation j = term i count in citation j
(ni,j/all term count in citation j (

∑
knk,j):

tf i,j = ni,j
∑

k nk,j

2) The term i IDF = count of all citations in corpus
(|D|)/count of citations which contain term i ([

{
j : ti ∈

dj

}
]):

idf i = log
| D |

[{
j : ti ∈ dj

} ]

3) The term i TF-IDF in citation j = the term i TF in
citation j × the term i IDF:

tfidf i,j = tf i,j × idfi

Before calculating the TF-IDF score, four preprocess-
ing steps including stop words removal, strip whitespace,
toLower and stemDocument were performed by the ‘tm’ R
package.

Co-occurrence strategies To recognize the genes involved in GI
cancers, GIDB applies two co-occurrence strategies. One is
based on a co-occurrence pattern of gene symbols and GI
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Figure 4. The use of the GIDB with the example of the TOP2A gene in BTC. It shows the query results of each function module related to BTC by

searching ‘TOP2A’ in the GIDB.

cancer names in one citation. The other is based on a co-
occurrence UMLS concept pattern. These two strategies can
find a direct and a hidden indirect supported evidence for
one gene associated with GI cancers, respectively. Finally, at
least two of three methods (MetaMap, TF-IDF, PubTator)
must provide a consistent result to determine that the
association between gene and tumours is identified.

Semantic network predictions Given that the UMLS concept
vocabularies correspond to both genes and GI cancers,
a UMLS-based biomedical text processing tool, SemRep
(37, 38), is applied to construct a semantic network for pre-
dicting the interaction of two entities (genes and GI cancers)
via integrating concepts of the knowledge-based (MetaMap
entity recognition) and their semantic associations (SPE-
CIALIST Lexicon and Xerox POS tagging). To concentrate
on the relationship between molecular signatures and GI
cancers, we limited the relations to seven semantic types:
AFFECTS, ASSOCIATED WITH, AUGMENTS, CAUSES,
DISRUPTS, PREVENTS and TREATS. A semantic network
is defined as G (V, E), where V = [v1, v2, v3, ...., vn] is a
set of nodes (concepts) and E = [e1, e2, e3, ...., em] is a set

of edges (associations). The weight of edges is assigned to
the number of supporting evidence. GIDB also built a net-
work analytics tool based on the ‘visNetwork’ R package.
Researchers can upload their own data and produce the
interaction network in networkD3 visualizations.

Gene–GI cancer associations: GIDB data mining The repository in
GIDB integrated both literature mining and data mining
results to eliminate some errors. TCGA resources have been
integrated in the current version of GIDB, which include
1874 samples covering 185 oesophageal cancers (ESCA),
633 colorectal cancers (COADREAD), 377 liver cancers
(LIHC), 185 pancreatic cancers (PAAD), 443 stomach can-
cers (STAD) and 51 bile duct cancers (CHOL). Data on
transcriptomic profiling, simple nucleotide variations and
DNA methylation as well as patient clinical information
were retrieved. Molecular alterations in each type of GI
cancer were filtered out via multidimensional analyses at
multiple levels.

For processing mutation data, the somatic (open access)
MAF files generated by the TCGA MuTect pipeline from all
available cases were downloaded. We selected 10 mutation
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classifications defined in TCGA for further analysis, includ-
ing missense mutation, silent, frame shift del, nonsense
mutation, frame shift ins, splice site, in frame del, in frame
ins, translation start site and nonstop mutation. The muta-
tion rate is defined as the total number of mutated samples
of a gene over all samples in each cancer is considered to be
a high mutation frequency above 1%.

For processing transcriptome profiling data, the LIMMA
R package was utilized to calculate the differentially
expressed genes between tumour and normal samples. The
genes were regarded as differentially expressed when their
absolute value of mean log2-fold change ratios were larger
than 1, and the FDR adjusted P value was less than 0.05.

For processing DNA methylation data, based on Illu-
mina Human Methylation 450 microarray data, the average
beta value of probes in the promoter region was used to
represent the methylation status of each gene. The promot-
ers were defined as being 1 kb upstream or downstream
of the transcriptional start sites. We performed methylation
analysis on normal and cancer pairs of tissues based on the
method developed by TCGA (39). The genes were regarded
as differentially methylated when the absolute value of
DNA methylation levels (β value) exceeded 0.1 in tumours
compared with that in normal tissue, and the FDR adjusted
P value was less than 0.05.

Finally, the intersection of genes identified by both text
mining and data mining are considered to be ‘Gene sig-
natures’ for GI cancer. Upon integrating multi-level omics
data and literature knowledge, we mined over 130 000
manuscripts, and a total of 8730 genes were related to GI
cancer with literature and data supporting evidence.

Evaluation of automatically extracted associations For a more
detailed assessment of our text-mining method, the
performance of this approach was evaluated in terms of
manually curating 790 randomly selected abstracts from
the corpus. The recall, precision and F-score are used to
determine the accuracy of our method and are calculated
as follows: Precision =

Correctly Predicted Gene-GI Cancer
Associations (True Positive(TP))

Totally Predicted Gene-GI Cancer
Associations

(
TP + False Positive(FP)

)

Recall =

Correctly Predicted Gene-GICancer
Associations (TP)

Manually Curated Gene-GI Cancer
Associations

(
TP + False Negative(FN)

)

F-Score = 2×

Recall × Precision
Recall + Precision

In addition, a manual curation effort by dedicated
experts will provide regular updates and release the
information to our database.

Discussion

The value of various databases and platforms like PED
(22), OMIM (24), COSMIC (25), HGMD (26), Oncomine
(27) and cBioPortal (28) should not be underestimated.
However, there are neither tools nor databases that provide
the same information for GI cancer research as GIDB. GIDB
is the first study to retrieve detailed supporting evidence on
lists of molecular signatures accumulated from the massive
amounts of literature and GI cancer genomic datasets. Using
GIDB, researchers in the field of GI cancer can have conve-
nient access to obtain an informative, detailed and itemized
summary of characteristics of the molecular signatures most
related to GI cancers.

GIDB covers different types of information from varied
sources. Thanks to this integration, it offers several advan-
tages. First, GIDB provides a number of annotations of
molecular signatures and GI cancers and their relationships
by means of a semantic network. Second, GIDB clearly
describes the ‘Timeline’ feature, taking into account the his-
torical knowledge of genes across all GI cancer types. Third,
GIDB develops online analysis tools that enable researchers
to get a quick glimpse of interaction networks or cluster-
ing maps. More importantly, GIDB allows researchers to
view the abnormal behaviours of curated signatures at the
molecular level, based on three intuitive interfaces: (i) the
‘Timeline’ feature gives an overview of the historical gene
research in GI cancer and explores gene characteristics; (ii)
the ‘Primary Site’ interface provides an additional compre-
hensive insight into the word cloud of genes most relevant
to GI cancers and well-curated signatures (gene, miRNA,
lncRNA, CNV, fusion gene, network); and (iii) the ‘Gene’
interface in each type of GI cancer helps researchers to
understand the molecular changes of genes to further decide
whether or not to perform wet laboratory experiments for
in-depth analysis.

Nevertheless, GIDB is still limited in the following ways.
First, both co-occurrence strategies can cover a majority
of the signatures methodologically. Still, they lead to some
recognition errors, which means that a manual check effort
is needed. We analysed the evidence citations automatically
retrieved and classified them into three categories:

1) Curation: the evidence statement is clear in the citation.
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2) Exclusion: the citation is not correctly recognized,
which is often the case with multivocal abbreviations
and ambiguous aliases.

e.g. HBD gene, hilar bile duct (HBD) or hepatobiliary
diseases (HBD).

e.g. C1419208: GOV (RAB3D gene) (Gene or Genome)
and the sentence ‘The statement was made available on the
World Wide Web at http://consensus.nih.gov immediately
after the conference’.

3) Ambiguous: The evidence statement is uncertain, which
is often the case with indirect evidence and review
articles.

3) e.g. ‘FasR is a transmembrane glycoprotein, which
belongs to the nerve growth factor/tumor necrosis
factor (NGF/TNF) receptor superfamily.... Certainly,
the coexpression of FasR, FasL, and other PCD-
related proteins has also been reported in other human
malignancies: breast cancer, colorectal carcinomas, large
granular lymphocytic leukaemia of T or NK cell origin,
melanomas, lung, prostate, pancreas, and hepatocellular
carcinomas.’

In the current version of GIDB, we construct a general
string library and integrated data mining to increase the
precision for text-mining results. In future work, GIDB
will continue to be updated as follows. One way would
be through improving the identification of molecular sig-
natures. For instance, a wrong-word library with high-
quality concepts could be used to enhance this text-mining
approach and reduce the labour. Another way would be
to develop a machine learning algorithm. Moreover, new
tools will be further developed to increase the flexibil-
ity and utility of our database. The associations between
genes and tumour subtypes like carcinoma of gallbladder
and intrahepatic cholangiocarcinomas will be improved.
Additionally, we plan to add more samples by integrating
other public resources like GEO (40) and ICGC (41) for in-
depth analysis. In the future, we will continuously improve
the automated method for reducing our manual work and
expand GIDB’s signature collections once a year.

Conclusion

GIDB is a GI cancer panoptic integrated database contain-
ing straightforward interfaces for well-curated signatures
and molecular alterations. We believe that GIDB would sig-
nificantly save time and effort of researchers to collect infor-
mation about signatures involved in GI cancer, serve as a
reference database for genes showing molecular alterations,
help in understanding the molecular events underlying the
tumours and prioritize potential biomarkers for further in-
depth studies and for precision medicine.
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