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Abstract

Metadata—the machine-readable descriptions of the data—are increasingly seen as

crucial for describing the vast array of biomedical datasets that are currently being

deposited in public repositories. While most public repositories have firm requirements

that metadata must accompany submitted datasets, the quality of those metadata is

generally very poor. A key problem is that the typical metadata acquisition process is

onerous and time consuming, with little interactive guidance or assistance provided

to users. Secondary problems include the lack of validation and sparse use of stan-

dardized terms or ontologies when authoring metadata. There is a pressing need for

improvements to the metadata acquisition process that will help users to enter metadata

quickly and accurately. In this paper, we outline a recommendation system for metadata

that aims to address this challenge. Our approach uses association rule mining to

uncover hidden associations among metadata values and to represent them in the

form of association rules. These rules are then used to present users with real-time

recommendations when authoring metadata. The novelties of our method are that it

is able to combine analyses of metadata from multiple repositories when generating

recommendations and can enhance those recommendations by aligning them with

ontology terms. We implemented our approach as a service integrated into the CEDAR

Workbench metadata authoring platform, and evaluated it using metadata from two

public biomedical repositories: US-based National Center for Biotechnology Information

BioSample and European Bioinformatics Institute BioSamples. The results show that our
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approach is able to use analyses of previously entered metadata coupled with ontology-

based mappings to present users with accurate recommendations when authoring

metadata.

Introduction

In the past decade, there has been an explosion in
the number of biomedical datasets submitted to public
repositories, primarily driven by the requirement of journals
and funding agencies to make experimental data openly
available (1). Publicly funded organizations, such as the
US-based National Center for Biotechnology Information
(NCBI) and the European Bioinformatics Institute (EBI),
have met this need by developing an array of repositories
that allow the dissemination of datasets in the life sciences.
These repositories typically impose detailed restrictions on
the metadata that must accompany submitted datasets,
generally driven by metadata specifications called min-
imum information models (2). The availability of these
descriptive metadata is critical for facilitating online
search and informed secondary analysis of experimental
results.

Despite the strong focus on requiring rich metadata for
dataset submissions, the quality of the submitted metadata
tends to be extremely poor (3,4). A significant problem is
that creating well-specified metadata takes time and effort,
and scientists view metadata authoring as a burden that
does not benefit them (5). A typical submission requires
spreadsheet-based entry of metadata—with metadata fre-
quently spread over multiple spreadsheets—followed by
manual assembly of multiple spreadsheets and raw data
files into an overall submission package. Further prob-
lems occur because submission requirements are typically
written at a high level of abstraction. For example, while
a standard may require indicating the organism associ-
ated to a biological sample, it typically will not specify
how the value of the organism must be supplied. Little
use is made of the large number of ontologies available
in biomedicine. Submission processes reflect this lack of
precision ensuring that unconstrained, string-based values
become the norm. Weak validation further exacerbates
the problem, leading to metadata submissions that are
sparsely populated and that frequently contain erroneous
values (4).

In this paper, we describe the development of a method
and associated tools that aim to address this quality deficit
in metadata submissions. A central focus of this work is to
accelerate the metadata acquisition process by providing
recommendations to the user during metadata entry and—
when possible—to help increase metadata adherence to

the FAIR principles (6) by presenting recommendations
that correspond to the most suitable controlled terms.
Our method uses a well-established data mining technique
known as association rule mining to generate real-time
suggestions based on analyses of previously entered
metadata.

Related work

Web browsers have provided auto-fill and auto-complete
functionality since the early days of the Web. Typical
auto-fill functionality includes the automatic population
of address and payment fields when completing Web-
based forms. Auto-complete suggestions are primarily
provided during page URL entry, usually driven by a simple
frequency-based analysis of previously visited pages. More
advanced auto-fill functionality is provided by Web search
vendors, where suggestions are based both on in-depth
analyses of Web content and on previous user behavior (7).

More specialized recommendations systems have also
been developed to assist users when completing general-
purpose fields in custom forms. Instead of concentrating on
commonly predicted fields, such as ZIP code, the goal is
to provide auto-fill and auto-complete functionality for as
many fields as possible. These systems generally generate
recommendations based on analyses of previously com-
pleted forms. An example is Usher (8), which was devel-
oped to speed up form completion by analyzing previous
submissions of the same form to predict likely values for
fields during completion of a new form. A similar system
called iForm (9) provides suggestions by learning field
values from previously submitted forms. More advanced
approaches provide predictive capabilities by combining
analyses from multiple structurally different forms used in
the same application domain. A system called Carbon (10),
for example, uses a semantic mapping process to align fields
in different forms so that values from existing distinct forms
can be used to present auto-complete suggestions for fields
in a new form.

Further predictive enhancements are possible when
using ‘context-based’ methods, which generate successively
more refined field–value predictions as more fields are
filled in. Instead of predicting field values on a form in
isolation, these approaches refine their predictions by
considering the values of other form fields that have already
been populated. One of the earliest context-based systems
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was described by Ali and Meek (11). This system uses a
predictive model to generate recommendations for a field by
combining field-level analyses from previously completed
forms with the context provided by fields that have already
been populated.

Other systems have focused on presenting suggestions
for field values that represent terms from controlled termi-
nologies. Instead of allowing users to fill in free text for field
values, these systems present auto-fill and auto-complete
suggestions that correspond to terms in ontologies and con-
trolled terminologies. Systems that provide this capability
include RightField (12), ISA-tools (13) and Annotare (14).
These systems have been used to increase metadata quality
in the biomedical domain. None of these systems provide
recommendations based on analyzing previously entered
values, however.

In the context of the existing literature, our method
belongs to a category of supervised learning models known
as associative classifiers. This technique was first published
in 1998 (15), and it has been broadly investigated and
exploited by the data mining and machine learning com-
munities in a number of successful real-word applications
(16–19). Associative classifiers use association rule mining
to extract interesting rules from the training data, and the
extracted rules are used to build a classifier. In this work, the
resulting classifier is used to predict field values. Associative
classifiers usually scale well and have the advantage that the
generated rules are meaningful, easy to interpret and easy
to debug and validate by domain experts. Several works
have shown that associative classifiers often produce more
accurate results than traditional classification techniques
(20–23).

The work outlined in this paper is the first recom-
mendation approach that combines the ability to offer
predictions based on context-based methods with the
standardization capabilities of ontology-based suggestions.
Crucially, our approach extends our initial research (24)
by enabling recommendations based on values entered
for multiple metadata-acquisition forms, which may have
different structure and field names. In this paper, we outline
our method and present an implementation.

Methods

We have designed an approach that uses association rule
mining to discover hidden patterns in the values entered
for fields in electronic forms. These patterns are then used
to recommend the most appropriate choices when entering
new field values. The approach works for both plain text
values and ontology-based values. We first outline our
method and then explain how we implemented it in the
CEDAR Workbench.

Description of the approach

Our approach is centered on the notion of ‘templates’. A
template defines a set of data attributes, which we call
‘template fields’ or ‘fields’, that users fill in with values.
For example, an ‘Experiment’ template may have a ‘sex’
field to enter the physical sex of the sampled organism (e.g.
‘female’), a ‘tissue’ field to capture the type of tissue tested
in the experiment (e.g. ‘skin’) and a ‘disease’ field to enter
the disease of interest (e.g. ‘psoriasis’).

Every time a template is filled in with values, a
new ‘template instance’ (or ‘instance’) is created. Given
F =

{
f1, f2, . . . , fn

}
a set of non-empty fields and

V =
{
v1, v2, . . . , vn

}
the set of values assigned to the fields

in F, we define an instance Ii as follows:

Ii = {(
f1, v1

)
, . . . ,

(
fn, vn

)}

That is, an instance is a set of field–value pairs
(
fi, vi

)
,

such that the value entered for the field fi is vi. We will
also represent a field–value pair as fi = vi. An example of
instance of the ‘Experiment’ template is as follows:

{(
sex, male

)
,
(
tissue, liver

)
,
(

disease, liver cancer
)}

This instance can also be represented as the following:

(
sex = male

) ∧ (
tissue = liver

) ∧ (
disease = liver cancer

)

We define an ‘instance repository I’, which stores all the
template instances that have been created, as follows:

I = {I1, I2, . . . , In}
where Ii are template instances. Each instance is derived
from one and only one template. Typically, an instance
repository contains instances for a variety of different tem-
plates. Given T the set of all templates, we define a function
template : I → T that returns the template that the instance
instantiates. Table 1 shows the content of an example
repository that contains six instances for the ‘Experiment’
template.

Users add new instances to the repository by populating
templates, that is, by entering values for template fields.
A key focus of our method is considering the values of
previously populated fields in the current instance when
suggesting values for an active field. We refer to these
existing values as the ‘context’ and refer to the active field
as the ‘target field’.

The concept of ‘context’ is crucial, as we believe that the
contextual information given by previously entered values
can be used to suggest the most appropriate value for the
target field. Formally, we define the context C of a new
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Table 1. Content of an example repository with six instances

of an ‘Experiment’ template. For each instance, the table

shows its fields and the values assigned to them. Fields with

empty values are omitted

Instance Field–value pairs

I1

(
sex=male

)
∧

(
tissue=brain

)
∧

(
disease=meningitis

)

I2

(
sex= female

)
∧

(
tissue=brain

)
∧

(
disease=meningitis

)

I3

(
tissue= liver

)
∧

(
disease=cirrhosis

)

I4

(
sex=male

)
∧

(
tissue= liver

)
∧

(
disease= liver cancer

)

I5

(
tissue= liver

)
∧

(
disease= liver cancer

)

I6

(
sex=male

)
∧

(
tissue=brain

)
∧

(
disease=meningitis

)

instance In+1 as the set of values that the user already
entered for fields in that instance:

C = {(
f1, v1

)
, . . . ,

(
fm, vm

)} | C ⊂ In+1

Additionally, we define the target field f ′ as the field that
the user is about to fill in.

For example, suppose that the user is generating an
instance based on the ‘Experiment’ template and has
already entered the value ‘male’ for the field ‘sex’ and the
value ‘liver’ for the field ‘tissue’. Suppose also that the
user is about to enter a value for the ‘disease’ field. In this
example, the fields ‘sex’ and ‘tissue’ constitute the context,
while ‘disease’ is the target field:

C = {(
sex, male

)
,
(
tissue, liver

)}

f ′ = disease

Now that we have defined the notions of template,
template instance, fields, values, instance repository and
context, we can formally define our value-recommendation
approach as a function recommend which, given a context
C, a target field f ′, and an instance repository I, returns a
ranked list of recommended values V′:

V′ = recommend
(
C, f ′, I

)

with V′ =
{
vi ∈ V | 1 ≤ i ≤ n

}
, such that V is the set of

all unique values in the instance repository and i represents
the position of the value in the ranking of results (e.g. v1 is
the top recommended value). An example of recommended
values for a field named disease is:

V′ = (
liver cancer, cirrhosis, meningitis

)

In this example, there are three recommended values for
the ‘disease’ field, with ‘liver cancer’ as the highest ranked
recommendation.

The recommend function constitutes the core of our
approach and it assumes that existing template instances
contain hidden relationships between the values of popu-
lated fields that can be used to generate value recommen-
dations for yet-to-be-populated fields.

For example, suppose that when the field ‘disease’ has
the value ‘meningitis’, the ‘tissue’ field always has the
value ‘brain’. Suppose now that a user is creating a new
template instance and has already entered the value ‘menin-
gitis’ for the ‘disease’ field. Then, the recommend function
should be able to suggest the value ‘brain’ for the ‘tissue’
field.

Of course, the relationships between field–value pairs
can be far more complex than this simple example. In a real
scenario, the instance repository may contain thousands of
template instances with millions of different relationships
among the values of the fields, many of them of little or
no significance. It is therefore desirable to have a method
to efficiently extract and represent all the relationships,
together with some additional information indicating how
reliable the relationships are.

In this work, we address this problem by using a data
mining technique known as ‘Association Rule Mining’ (25).
This method can be used to discover interesting associations
among values and to represent them in the form of if–then
statements known as ‘association rules’ (or simply ‘rules’).
We use association rule mining to extract association rules
from a set of existing template instances. Then, these rules
are used to generate a ranked list of values for the target
field.

Our approach encompasses three steps. The first step,
‘rule extraction’, produces relevant association rules from
an instance repository. The second step, ‘rule matching’,
selects the best rules to generate value recommendations
based on a particular context and target field. Finally, the
third step, ‘value ranking’, generates and returns a ranked
list of recommended values for the target field. Figure 1
shows a schematic representation of the approach.

Rule extraction The goal of the ‘rule extraction’ process is to
discover relevant relationships between field–value pairs in
the instance repository and to represent those relationships
as ‘association rules’. These rules will be used later to
predict the value of a target field. In our approach, we define
‘rule extraction’ as a function rules which, given an instance
repository I, applies an association rule mining algorithm to
return a set of association rules R:

rules(I) = R, with R =
{
r1, r2, . . . , rn

}

where ri is an association rule.
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Figure 1. Schematic representation of the value-recommendation approach. Here, a user has entered values for a new template instance In+1. We

refer to the values that the user already entered (i.e. v1 and v2) as the context (C). The field that the user is about to fill out is known as the target field

(f ′). The instance repository stores all the template instances previously created. The value-recommendation process uses the new instance plus all

existing instances to generate recommendations for the target field using the following three steps: (i) rule extraction: extract relevant association

rules from the repository; (ii) rule matching: select the most appropriate rules to generate the recommended values; and (iii) value ranking: rank and

return the recommended values.

An association rule can be generally defined as an impli-
cation expression of the form X → Y, where X and Y are
disjoint sets of items (26). Informally, an association rule
can be read as meaning that if all items in X are true then
all items in Y must be true. In our approach, the items are
field–value pairs. X corresponds to the left-hand side or
‘antecedent’ of the rule, while Y corresponds to the right-
hand side or ‘consequent’ of the rule. Since the goal is to
generate value recommendations for just one target field
at a time, we restrict the rule-generation process to rules
that have only one attribute–value pair in the consequent.
Therefore, a rule ri can be represented as follows:

(
f1, v1

) ∧ (
f2, v2

) ∧ · · · ∧ (
fn, vn

) → (
fj, vj

)

An example rule extracted from the instances shown in
Table 1 appears as follows:

(
sex = male

) ∧ (
disease = meningitis

) → (
tissue = brain

)

The rule indicates that there is a relationship between the
fields ‘sex’, ‘disease’ and ‘tissue’, such that when the value
of ‘sex’ is ‘male’ and the value of ‘disease’ is ‘meningitis’, the
value of ‘tissue’ is ‘brain’. This rule could be used to predict
the value of the ‘tissue’ field when the user has already
entered values for ‘sex’ and ‘disease’.

In association rule mining, the strength of a rule is gen-
erally expressed in terms of its ‘support’ and ‘confidence’.

Support corresponds to the number of template instances
in the repository that include all field–value pairs in the
rule. For example, the support of the rule shown above is
2, because, as shown in Table 1, there are two instances
in the repository (I1 and I6) containing the field–value
pairs ‘sex = male’, ‘disease = meningitis’ and ‘tissue = brain’.
Confidence represents how frequently the rule consequent
appears in instances that contain the antecedent. It effec-
tively measures the reliability of the inference made by the
rule. The confidence of the previous rule is 1, because, when
‘tissue = brain’, the fields ‘sex’ and ‘disease’ always have the
values ‘male’ and ‘meningitis’, respectively.

In the following rule:

(
tissue = liver

) → (
disease = liver cancer

)

support is also 2, because there are two instances in
the repository depicted in Table 1 that support the rule (I4

and I5). However, confidence is 2/3 = 0.67. Confidence is
lower for this rule because there are three instances that
contain ‘tissue = liver’ (I3, I4 and I5), but only two of them
contain ‘disease = liver cancer’ (I4 and I5). Table 2 shows
all the rules extracted from the instances shown in Table 1.
In our approach, all values are assumed to be categorical.
Continuous attributes could potentially be managed by
converting them to categorical values before applying the
rule-generation algorithm.
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Table 2. Example of association rules extracted from the instances shown in Table 1 together with their support and confidence.

The rules are ordered first by confidence and then by support

Rule Rule content Support Confidence

r1

(
disease = meningitis

)
→

(
tissue = brain

)
3 1

r2

(
tissue = brain

)
→

(
disease = meningitis

)
3 1

r3

(
disease = liver cancer

)
→

(
tissue = liver

)
2 1

r4

(
sex = male

)
∧

(
disease = meningitis

)
→

(
tissue = brain

)
2 1

r5

(
sex = male

)
∧

(
tissue = brain

)
→

(
disease = meningitis

)
2 1

r6

(
sex = female

)
→

(
tissue = brain

)
1 1

r7

(
sex = female

)
→

(
disease = meningitis

)
1 1

r8

(
disease = cirrhosis

)
→

(
tissue = liver

)
1 1

r9

(
sex = male

)
∧

(
disease = liver cancer

)
→

(
tissue = liver

)
1 1

r10

(
sex = male

)
∧

(
tissue = liver

)
→

(
disease = liver cancer

)
1 1

r11

(
sex = female

)
∧

(
disease = meningitis

)
→

(
tissue = brain

)
1 1

r12

(
sex = female

)
∧

(
tissue = brain

)
→

(
disease = meningitis

)
1 1

r13

(
tissue = brain

)
→

(
sex = male

)
2 2 / 3 = 0.67

r14

(
sex = male

)
→

(
tissue = brain

)
2 2 / 3 = 0.67

r15

(
disease = meningitis

)
→

(
sex = male

)
2 2 / 3 = 0.67

r16

(
sex = male

)
→

(
disease = meningitis

)
2 2 / 3 = 0.67

r17

(
tissue = liver

)
→

(
disease = liver cancer

)
2 2 / 3 = 0.67

r18

(
tissue = brain

)
→

(
disease = meningitis

)
2 2 / 3 = 0.67

Rule matching The rule matching step selects the subset of
association rules that can be used to generate value rec-
ommendations. This step has two stages. The first stage
identifies the rules that can produce values for a target field;
we refer to these rules as the ‘selected rules’. The second
stage uses the context to rank the selected rules.

Given a set of rules R and a target field f ′, the selected
rules are defined as the subset of rules R′ ⊆ R whose
consequent matches the target field f ′. The consequent of
the selected rules contains values for the target field that
are effectively candidates to generate value recommenda-
tions.

As an example, suppose that we have the rules shown
previously (see Table 2) and that we are filling in a form
where the target field f ′ is tissue. In this case, the selected
rules R′ are those rules for which the consequent of the rule
matches the ‘tissue’ field, that is:

R′ = {r1, r3, r4, r6, r8, r9, r11, r14}
Suppose now that the context, that is, the field–value

pairs that the user has already filled out is as follows:

C = {(
disease, meningitis

)}

All the selected rules contain candidate values for the
target field. However, not all the selected rules match the

context to the same degree, and therefore not all the can-
didate values will be equally relevant. In order to quantify
the relevance of the selected rules, our method calculates a
score that measures the similarity between the antecedent
of the rule and the field–value pairs that the user already
filled out. That score is known as the ‘context-matching
score’.

We define context_matching_score : R′ × C →
[
0, 1

]
as

a function that measures the degree of similarity between
the antecedent of a selected rule r′ ∈ R′ and the context
C. Since both the antecedent of the rule and the context
are sets of field–value pairs, we can easily calculate the
similarity between them using the Jaccard Index (J), also
known as intersection over union, which is a statistic com-
monly used to quantify the similarity between two sets
of items:

context_matching_score
(
r′, C

) = J
(
antecedent

(
r′) , C

)

=
∣∣antecedent

(
r′) ∩ C

∣∣
∣∣antecedent (r′) ∪ C

∣∣ with r′ ∈ R′

The most highly rated rules will be those whose
antecedent best matches the values already entered by
the user. A context-matching score of 1 means that the
antecedent of the rule matches all the field–value pairs in
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Table 3. Selected rules and corresponding context-matching

scores for the rules in Table 2 when the target field is ‘tis-

sue’ and with the context that the ‘disease’ field’s value is

‘meningitis’

Rule Value Context-matching score

r1 brain 1 / 1 = 1
r3 liver 0 / 2 = 0
r4 brain 1 / 2 = 0.5
r6 brain 0 / 2 = 0
r8 liver 0 / 2 = 0
r9 liver 0 / 3 = 0
r11 brain 1 / 2 = 0.5
r14 brain 0 / 2 = 0

the context, while a score of 0 means that there is no match.
Table 3 shows an example set of context-matching scores
for the selected rules in the example above.

Value ranking The final step of the value-recommendation
process uses the selected rules and the associated context-
matching scores to generate a ranked list of recommended
values for the target field. The candidate values for the
target field are extracted from the consequent of the selected
rules. Then, these values are ranked according to a ‘recom-
mendation score’ that provides an absolute measurement of
the goodness of the recommendation.

The recommendation score is based on two factors:

1. The context-matching score, which represents the
degree of similarity between the antecedent of the rule
and the context entered by the user. The most relevant
rules will be those whose antecedent best matches the
values already entered by the user, since those rules
represent more closely the template instance that the
user is creating.

2. The rule confidence, which reflects the proportion of
consequents predicted by the rule that are correctly
predicted. It is a measure of the reliability of the infer-
ence made by the rule and therefore it represents how
trustworthy the recommended value is. Confidence is
the primary metric for ranking rules in associative clas-
sification problems. We have also considered using the
rule lift as an alternative to confidence and conducted
a small experiment to compare their performance. The
results show that confidence performs better than lift to
rank the suggested values. (The results of this experi-
ment are available in our Jupyter notebook. See ‘Addi-
tional experiment 1’ at https://goo.gl/GtK956.)

Suppose that v′ is a value for the target field extracted
from the consequent of a selected rule r′. Then, the
recommendation score of v′ is a score in the interval [0,1]

that is calculated as follows:

recommendation_score
(
v′)

= context_matching_score
(
r′, C

) ∗ conf
(
r′)

where context_matching_score: R′ × C →
[
0, 1

]
is the

function that computes the context-matching score and
conf : R →

[
0, 1

]
is the function that returns the confi-

dence of a particular rule.
When there is no context (i.e. the user has not yet entered

any values), the recommendation score is calculated as the
rule support, which serves as an indicator of the frequency
of a particular value, normalized to the interval [0,1]. Values
with the same recommendation score are sorted by support.
Values with a recommendation score of 0 are discarded.
In the case of duplicated values, we pick the value with
the highest recommendation score. The approach can be
optionally adapted to discard values below a specific cutoff
recommendation score.

Table 4 shows the recommendation scores for the previ-
ous example. In this case, our recommendation approach
would return only the value ‘brain’ for the ‘tissue’ field,
with a recommendation score of 1. This is a useful value
in this case, since ‘meningitis’ is a disease that affects the
membranes that enclose the brain and the spinal cord.

Support for ontology-based values

We have explained how our approach is able to take advan-
tage of plain text values to generate text-based value rec-
ommendations. Additionally, our value-recommendation
approach has been designed to support fields whose values
are represented using ontology terms and to use them to
generate ontology-based value recommendations.

For example, a template could constrain a field named
‘cell type’ to contain specific types of cells from a branch of
the Cell Ontology. For ontology-based values, each value
has two components—a display label (e.g. ‘erythrocyte’)
and a unique URI identifier (e.g. http://purl.obolibrary.org/
obo/CL_0000232). Since a particular value may be asso-
ciated to different display labels in different applications
or data sources, our rule extraction method focuses on
analyzing the relationships between the term identifiers
independently of the display value used. Consider a set of
template instances that refer to the disease ‘hepatitis B’ in
different ways, including ‘hepatitis B’, ‘chronic hepatitis B’,
‘serum hepatitis’ and ‘hepatitis B infection’. Suppose also
that those terms have been linked to the ontology term
‘hepatitis B’ from the Human Disease Ontology, which has
the form ‘obo:DOID 2043’, using ‘obo’ as the prefix for the
namespace ‘http://purl.obolibrary.org/obo/’. In this case,
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Table 4. Selected rules and corresponding values for the example in Rule matching subsection. The top recommended value

is ‘brain’. The column ‘Value’ contains the values of the target field, extracted from the consequent of the rule. The column

‘Rank’ contains the position of the value in the ranking of recommended values. N/A means that the value was discarded,

either because its recommendation score was 0, because it was a duplicate, or both

Rule Value Context-matching score Rule confidence Recommendation score Rank

r1 brain 1 1 1 ∗ 1 = 1 1
r3 liver 0 1 0 ∗ 1 = 0 N/A
r4 brain 0.5 1 0.5 ∗ 1 = 0.5 N/A
r6 brain 0 1 0 ∗ 1 = 0 N/A
r8 liver 0 1 0 ∗ 1 = 0 N/A
r9 liver 0 1 0 ∗ 1 = 0 N/A
r11 brain 0.5 1 0.5 ∗ 1 = 0.5 N/A
r14 brain 0 0.67 0 ∗ 0.67 = 0 N/A

our approach would use the term identifier (i) to analyze the
instances and extract the appropriate rules, (ii) to match a
new instance to the existing rules and (iii) to generate the list
of recommendations, effectively aggregating the frequencies
of all synonyms of ‘hepatitis B’.

For example, suppose we have the following instance:

(
tissue = liver

) ∧ (
disease = serum hepatitis

)

This instance can be represented using ontology terms as
follows:

(
obo : UBERON_0000479 = obo : UBERON_0002107

)

∧ (
obo : DOID_4 = obo : DOID_2043

)

Similarly, the rule:(
disease = serum hepatitis

) → (
tissue = liver

)

can be represented using ontology terms as follows:

(
obo : DOID_4 = obo : DOID_2043

) →
(
obo : UBERON_0000479 = obo : UBERON_0002107

)

Finally, given that the content of the rules is encoded
using ontology terms, the recommended values are repre-
sented using ontology terms as well, which can be visually
presented to the user using the preferred label for the
ontology term defined in the source ontology. For example,
‘hepatitis B’ is the preferred label for ‘obo:DOID 2043’ in
the Uber Anatomy Ontology (UBERON).

Support for cross-template recommendations

One of the most innovative aspects of our approach is
that it has been designed to take advantage of semantic

mappings between ontology terms to generate recommen-
dations based on metadata, not only from one template, but
also from multiple, structurally different templates.

We have described how our framework takes advantage
of the hidden relationships between fields and their values in
existing template instances to generate rules that offer value
recommendations for fields in new template instances. In
our previous explanations, we have assumed that the repos-
itory was pre-populated with multiple instances of a par-
ticular template and described the value-recommendation
process when entering new instances for that template.

However, in general, a repository may contain multiple
instances not only from one template but also from multiple
templates. Those templates can have different field names
and field values, but they may also store information about
the same concepts. For instance, suppose we have an ‘Assay’
template with a field ‘cell type’ that indicates the type of cell
under analysis. Suppose also that we have an ‘Experiment’
template with a field ‘source cell’ that captures the same
kind of information. Ideally, our method should be able to
determine that these fields are equivalent and to analyze
the values of the two fields as a single set to generate
recommendations.

Our method uses ontologies to determine the correspon-
dences between the same fields occurring in different tem-
plates with different names (e.g. ‘cell type’ and ‘source cell’)
and between the same values used with different names
(e.g. ‘erythrocyte’ and ‘red blood cell’). When working with
plain text instances, the field–value pairs of the instance that
the user is creating are matched to the association rules by
comparing the display labels for fields and values. However,
the full potential of our method is reached when working
with ontology-based instances. In that case, the matching is
done at a semantic level, by comparing the ontology term
URIs linked to the fields and values.

For example, suppose that the fields ‘cell type’ and
‘source cell’ are annotated with the term ‘cell type’ from the
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Experimental Factor Ontology (EFO) (‘efo:EFO 0000324’).
Given that both fields are linked to the same term, our
method will determine that they are equivalent, and it
will treat them as if they were the same type of field
when performing the rule extraction and rule matching
steps.

It is common to find ontology terms with different URIs
in different ontologies referring to the same underlying
real-world concept. For example, the term ‘tissue’ has
different URIs in the National Cancer Institute Thesaurus
(NCIT) (‘ncit:C12801’) and (‘obo:UBERON 0000479’).
As a consequence, equivalent ‘tissue’ fields from different
templates may be linked to ontology terms with the
same meaning, but with different URIs. To deal with
this scenario, our framework includes a component that
stores correspondences or mappings between equivalent
terms in different ontologies. This component is called the
ontology mapping repository M (see Figure 1). Given ti
an ontology term URI, we define equivalent_terms

(
ti, M

)

as the function that returns the set of all ontology term
identifiers in the mapping repository that are equivalent
to ti:

equivalent_terms (ti, M) = {t1, t2, . . . , tn}

Figure 2 shows how our framework uses ontology terms
and a repository of ontology mappings to generate value
recommendations. In this example, the user is filling out
an ‘Assay’ template with two fields: ‘cell type’, annotated
with ‘efo:EFO 0000324’, and ‘tissue’, annotated with
‘ncit:C12801’. The user already has entered the value
‘pancreatic alpha cell’ (‘obo:0000990’) for the field ‘cell
type’ and is about to enter a value for the ‘tissue’ field.
Our recommendation framework will generate a list of
recommended values for the ‘tissue’ field.

The instance repository contains some instances of an
‘Experiment’ template, which has two fields:
‘source cell’ (‘obo:CL 0000000’) and ‘source tissue’
(‘obo:UBERON 0000479’). Although these two fields have
the same meaning as the fields in the ‘Assay’ template, the
field names in the ‘Experiment’ template are different, and
the ontology terms linked to them are different as well.

Our approach uses the ontology mapping repository to
determine that the ‘cell type’ and the ‘source cell’ fields are
equivalent, and that the ‘tissue’ and ‘source tissue’ fields are
also equivalent. These correspondences make it possible to
match the fields and values from the new instance of the
‘Assay’ template to the rule extracted from the instances of
the ‘Experiment’ template and, finally, to recommend the
value ‘pancreas’ (‘obo:UBERON 0001264’) for the ‘tissue’
field in the new instance.

Implementation

We integrated our value-recommendation approach into
a metadata collection and management platform called
the CEDAR Workbench (27), which was developed by
the Center for Expanded Data Annotation and Retrieval
(CEDAR) (5). The CEDAR Workbench is a Web-based
system comprising a set of highly interactive tools to help
create, manage and submit biomedical metadata for use in
online data repositories. The ultimate goal is to improve the
metadata acquisition process by helping users enter their
metadata rapidly and accurately.

CEDAR provides technology to allow scientists to create
and edit metadata templates for characterizing the metadata
for different types of experiments. Investigators then fill out
those templates to create rich, high-quality instances that
annotate the corresponding datasets. Two key tools called
the Template Designer and the Metadata Editor (27,28)
provide this functionality. The Template Designer allows
users to build metadata templates interactively in much the
same way that they would create online survey forms. Using
live lookup to the NCBO BioPortal ontology repository
(29), the Template Designer allows template authors to
find terms in ontologies to annotate their templates, and to
constrain the values of template fields to specific ontology
terms (Figure 3) (30).

The Metadata Editor (Figure 4) uses these templates to
automatically generate a forms-based acquisition interface
for entering metadata. It also uses live lookup to BioPortal
to provide selection lists for metadata authors filling out
fields. The values in these lists are generated using the
constraints specified for fields by the associated template.

The CEDAR Workbench aims to ensure that users can
quickly create high-quality, semantically rich metadata and
submit these metadata to external repositories. CEDAR
commits to the FAIR principles (6) in terms of standards,
protocols and best practices. Metadata created using the
CEDAR Workbench are represented using standard formats
and stored in a searchable, centralized repository. Users
can search for metadata through either a Web-based tool
or a REST API, link their metadata to terms from formal
ontologies and controlled terminologies and enrich them
with a variety of additional attributes, including prove-
nance information. Regarding FAIRness of the experimen-
tal datasets, the CEDAR Workbench can help to improve
adherence of the experimental datasets to the FAIR princi-
ples by enhancing datasets findability, interoperability and
reusability. However, ensuring data accessibility is entirely
at the discretion of the data owner, or the owner of the
repository where the data are stored.

We implemented our value-recommendation approach
as a CEDAR microservice that is used by the Metadata
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Figure 2. Example of rule extraction and rule-matching process for ontology-based values. From top to bottom, the figure shows the instances of

the ‘Experiment’ template and an example of rule extracted from them. The user is creating a new instance of the ‘Assay’ template. This instance is

matched to the rule using the equivalences between ontology terms stored in the ontology mapping repository. Finally, the recommended value for

the ‘tissue’ field is ‘pancreas’.

Editor to help users create metadata. The service is known
as CEDAR’s Value Recommender service.

Figure 5 shows the architecture and workflow of
CEDAR’s Value Recommender service and the main
integration points with CEDAR’s Metadata Editor and
the BioPortal ontology repository. Metadata authors use
the Metadata Editor to generate metadata instances based
on templates. Entered metadata are stored in CEDAR’s
Metadata Repository as a JSON document using an
open, standards-based model (31). This model represents
templates and metadata using JSON-LD constructs (32),
making it possible to restrict the types and values of fields
to terms from ontologies. JSON-LD is an RDF serialization,
so CEDAR can use off-the-shelf tools to export metadata
in a variety of RDF serialization formats (e.g. Turtle,
RDF/XML). The Metadata Repository is implemented
using the MongoDB database, which is a NoSQL database
based on JSON that provides fast and scalable storage.

CEDAR’s Value Recommender has been implemented
in Java and uses the Dropwizard framework (https://
www.dropwizard.io). It provides a REST-based API that
is used by the Metadata Editor and can also be used
directly by third-party applications. The rule extraction

process is performed using the Java API of the WEKA data
mining software (https://www.cs.waikato.ac.nz/ml/weka).
All metadata for a particular template are transformed to
WEKA’s ARFF format (https://www.cs.waikato.ac.nz/ml/
weka/arff.html). The association rules are extracted using
the Apriori algorithm (33), which is commonly used in
association rule mining.

The extracted rules are stored using the Elasticsearch
engine (https://www.elastic.co/products/elasticsearch) in
JSON. We defined a custom JSON format designed to
represent rule antecedents and consequents as field–value
pairs, together with relevant rule metrics.

Figure 6 contains an example of how an association rule
is stored in Elasticsearch.

For plain text metadata, our rule model stores the field
name and the textual value (i.e. ‘fieldLabel’ and ‘field-
ValueLabel’). Additionally, for ontology-based metadata,
it stores the ontology terms linked to the field name
and to the field value, as well as an array of equivalent
ontology terms extracted from BioPortal’s ontology
mapping repository, which is accessed via the BioPortal
API (http://data.bioontology.org/documentation). The rule
support and confidence are also stored, as well as the

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baz059/5512427 by guest on 09 April 2024

https://www.dropwizard.io
https://www.dropwizard.io
https://www.cs.waikato.ac.nz/ml/weka
https://www.cs.waikato.ac.nz/ml/weka/arff.html
https://www.cs.waikato.ac.nz/ml/weka/arff.html
https://www.elastic.co/products/elasticsearch
http://data.bioontology.org/documentation


Database, Vol. 2019, Article ID baz059 Page 11 of 25

Figure 3. Screenshot of the Template Designer showing the creation of an ‘Experiment’ template with five fields: ‘sex’, ‘disease’, ‘source cell’ and

‘source tissue’. The user can interactively add fields of predefined types (text, date, e-mail, numeric, etc.) to the template and specify additional

configuration options for each field. When appropriate, template fields are linked to value sets, ontologies or branches of ontologies stored in the

BioPortal repository, standardizing potential values of those fields. Here, the user has specified that values for the field ‘source tissue’ should come

from the UBERON.

identifier of the template from which the metadata are
derived.

The rule matching step takes advantage of the search
flexibility offered by the Elasticsearch engine, particularly,
the MUST and SHOULD filters:

1. To perform a query that selects the rules whose conse-
quent matches the target field. This is done by means of
an Elasticsearch MUST filter.

2. To calculate a matching score for each rule that reflects
the degree of similarity between the rule antecedent and
the context. This action is done using a SHOULD filter.

Finally, the values are ranked according to their rec-
ommendation score and returned in JSON format via the
REST API to the Metadata Editor, which presents the rec-
ommended values to the user in a drop-down list, followed
by any other valid values for the target field (Figure 7). Each
recommended value is accompanied by its recommendation
score presented as a percentage for better readability (e.g.
0.28 is presented as 28%). When returning ontology-based

recommendations, the values are presented using a user-
friendly label for the ontology term defined in its source
ontology (e.g. ‘pancreas’ is the preferred label for the term
‘obo:UBERON 0000479’ in the UBERON).

Evaluation

We evaluated CEDAR’s Value Recommender by measuring
its accuracy when generating suggestions for (i) single-
template recommendations, where the recommendations
for the template that the user is filling out are based on
metadata created using the same template, and (ii) cross-
template recommendations, where the recommendations
are based on metadata created using a different template.
For each of these two scenarios, we analyzed the behavior
of our system for two different kinds of metadata: (i)
text-based, where the field values are free text, and (ii)
ontology-based, where the values are ontology terms. We
designed a total of eight experiments to cover all com-
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Figure 4. Screenshot of the Metadata Editor for the ‘Experiment’ template showing a list of valid values for the ‘source tissue’ field, which were

constrained to the UBERON (see Figure 3).

Figure 5. Architecture and workflow of CEDAR’s Value Recommender service. Metadata authors use the Metadata Editor to create metadata. Entered

metadata are stored in the MongoDB-based Metadata Repository. The association rules are extracted from existing metadata using WEKA’s software

and are stored in Elasticsearch. The rule-matching step uses BioPortal’s ontology mappings to determine the correspondences between the fields

and values in the template that the user is filling out and the extracted rules. Finally, the ranked list of recommended values is returned to the

Metadata Editor and presented to the user.
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Figure 6. Example of a generated association rule stored in Elasticsearch. The rule is represented as a JSON document that contains the field–
value pairs in the left-hand side of the rule (‘antecedent’), the field–value pair in the right-hand side of the rule (‘consequent’), the rule support and

confidence and the identifier of the source template (‘templateId’). For the field–value pairs in the antecedent and consequent, we store the field

name (‘fieldLabel’), the URI of the ontology term linked to the field (‘fieldType’), a list of equivalent ontology terms (‘fieldTypeMappings’), the field

value in textual format (‘fieldValueLabel’), the ontology term linked to the field value (‘fieldValueType’) and a list of equivalent ontology terms for it

(‘fieldValueMappings’).

Figure 7. Screenshot of the CEDAR Metadata Editor showing recommended values for a particular target field. In this case, the editor shows three

suggested values for the ‘source tissue’ field ranked in order of likelihood: ‘pancreas’, ‘pancreas mesenchyme’ and ‘epithelium of pancreatic duct’,

followed by other valid values for the target field. Ontology-based terms are indicated with an ontology icon. The recommendation score for each

suggested value is presented as a percentage.
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binations of recommendation scenario (single-template or
cross-template) and metadata type (text-based or ontology-
based).

We used a subset of metadata from two public biomed-
ical databases: NCBI BioSample (34) and EBI BioSam-
ples (35). We applied a ‘train and test’ approach that is
commonly used to evaluate data mining models. We split
each dataset into a training set and a test set. First, the
training set was used to discover the hidden relationships
between metadata fields and to represent them as associa-
tion rules. The association rules were then used to generate
recommendations for the values of the fields in the test set.
Because the test set already contains values for the target
field, it is straightforward to determine whether the system’s
suggestions are correct.

The NCBI BioSample and EBI BioSamples databases
contain descriptive metadata for diverse types of biolog-
ical samples from multiple species. These metadata are
encoded as field–value pairs. Typical examples of metadata
for a biological sample include the source organism (e.g.
an ‘organism’ field with a value of ‘Homo sapiens’), the
cell type (e.g. a ‘cell type’ field with a value of ‘mono-
cyte’) and the source tissue (e.g. a ‘tissue’ field with a
value of ‘skin’). These two databases are appropriate for
our evaluation because they contain metadata about the
same domain, they are publicly available, they are widely
known and used in the biomedical community and they
contain a large amount of rich metadata about biomedical
samples.

We constructed an evaluation pipeline to drive the anal-
ysis workflow (Figure 8). This pipeline consists of seven
sequential steps: (i) content download from NCBI BioSam-
ple and EBI BioSamples databases, (ii) template design for
each of those databases and generation of the correspond-
ing template instances, (iii) linkage of template instance field
names and values to ontology terms, (iv) dataset splitting
into training and test sets, (v) generation of rules to drive
the recommendations from the training set, (vi) accuracy
measurement using the test set and (vii) results analysis.
These steps are now described in more detail.

Step 1: datasets download

We downloaded the full content of the NCBI BioSam-
ple repository in XML format using NCBI’s FTP service
(https://ftp.ncbi.nih.gov/biosample). The resulting XML file
contained metadata on 7.8M samples from multiple organ-
isms. In the case of the EBI BioSamples repository, we
downloaded a total of 4.1M samples in JSON format using
EBI’s REST API (https://www.ebi.ac.uk/biosamples/docs/
references/api/overview). Both datasets were downloaded
on 9 March 2018.

Step 2: generation of template instances

Both repositories contain a very large number of samples
from multiple species. ‘Homo sapiens’ is one of the
most common organisms, with 4.6M samples in NCBI
BioSamples (59%) and 1.4M samples in EBI BioSamples
(34%). We decided to focus our evaluation on human
samples because the number of samples available is large
enough to design a robust evaluation. There is also a
strong overlap between the metadata attributes of these
samples in both repositories, which is key to produce
meaningful cross-database recommendations. For each
repository, we used the CEDAR Workbench to design
a metadata template targeted to human samples. The
NCBI BioSample repository defines several packages,
which specify the list of metadata fields that should be
used to describe a particular sample type. We created a
metadata template that corresponds to the specification of
the BioSample Human package v1.0 (https://submit.ncbi.
nlm.nih.gov/biosample/template/?package=Human.1.0&
action=definition), which is designed to capture metadata
from studies involving human subjects. It includes a
total of 26 fields. The EBI BioSamples repository does
not have an equivalent formal specification. Instead, we
defined a metadata template containing 14 fields with
general metadata about biological samples and some
additional fields that capture specific characteristics of
human samples. Table 5 lists the fields of these two CEDAR
templates. (The two templates are publicly available on the
CEDAR Workbench. NCBI BioSample template: https://
tinyurl.com/ybqcatsf. EBI BioSamples template: https://
tinyurl.com/y96z975d.) Some fields capture the same kind
of information using different field names (e.g. ‘cell line’
and ‘cellLine’). They also contain fields that store different
types of values. Examples include numeric fields (e.g. ‘age’),
free text fields (e.g. ‘sample title’), identifier fields (e.g.
‘biosample accession’) and fields with values limited to a
finite set of choices (e.g. ‘ethnicity’).

Even though these two CEDAR templates constitute
a realistic representation of the metadata about human
samples usually submitted to public databases, not all their
fields are equally relevant to our analysis. For example,
fields that contain identifiers (e.g. ‘biosample accession’)
cannot be used as a source of recommendations. Similarly,
fields that are present in only one of the templates (e.g.
‘isolate’, ‘karyotype’) cannot be used to generate cross-
template recommendations We focused our analysis on
the subset of fields that meet two key requirements: (i)
they are present in both templates and, therefore, can
be used to evaluate cross-template recommendations; and
(ii) they contain categorical values, that is, they represent
information about discrete characteristics. We selected six
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Figure 8. Steps in the evaluation pipeline. (i) NCBI BioSample and EBI BioSamples dataset download; (ii) template design for NCBI BioSample

and EBI BioSamples, and instance population with metadata from the downloaded datasets; (iii) semantic annotation of text-based instances using

terms from biomedical ontologies to generate ontology-based instances; (iv) partitioning into training and test datasets; (v) rule extraction from the

training dataset; (vi) generation of recommendations for the test instances, for the fields ‘sex’, ‘organism part’, ‘cell line’, ‘cell type’, ‘disease’ and

‘ethnicity’; (vii) comparison of the recommendations obtained using CEDAR’s Value Recommender with the recommendations obtained using the

baseline method.

Table 5. Names of the two templates used to evaluate CEDAR’s Value Recommender and names of the fields in each template

Template name Field names

NCBI BioSample—Human Package 1.0 ‘biosample accession’, ‘sample name’, ‘sample title’, ‘bioproject accession’,
‘organism’, ‘isolate’, ‘age’, ‘biomaterial provider’, ‘sex’, ‘tissue’, ‘cell line’,
‘cell subtype’, ‘cell type’, ‘culture collection’, ‘dev stage’, ‘disease’,
‘disease stage’, ‘ethnicity’, ‘health state’, ‘karyotype’, ‘phenotype’, ‘population’,
‘race’, ‘sample type’, ‘treatment’, ‘description’

EBI BioSamples ‘accession’, ‘name’, ‘releaseDate’, ‘updateDate’, ‘organization’, ‘contact’,
‘organism’, ‘age’, ‘sex’, ‘organismPart’, ‘cellLine’, ‘cellType’, ‘diseaseState’,
‘ethnicity’

fields that met these criteria. These fields are ‘sex’, ‘organ-
ism part’, ‘cell line’, ‘cell type’, ‘disease’ and ‘ethnicity’
(Table 6).

Metadata in the NCBI BioSample and EBI BioSamples
databases are sparse and many samples contain only one or

two non-empty values. To limit the size of the evaluation
while still being able to generate meaningful context-based
recommendations, we only used the samples with non-
empty values for at least three of the six selected fields. As a
result, we obtained 157 653 samples from NCBI BioSample
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Table 6. Fields from the NCBI BioSample and EBI BioSamples templates selected for our evaluation. The table provides a

short description for each field, as well as the field names used to refer to in both in CEDAR’s NCBI BioSample template and

CEDAR’s EBI BioSamples template

Field name Description Field name in
NCBI BioSample
template

Field name in EBI
BioSamples
template

‘sex’ Physical sex of sampled organism ‘sex’ ‘sex’
‘organism part’ Part of the organism’s anatomy or substance arising from an

organism from which the biomaterial was derived
‘tissue’ ‘organismPart’

‘cell line’ Name of the cell line from which the sample was extracted ‘cell line’ ‘cellLine’
‘cell type’ Type of cell from which the sample was extracted ‘cell type’ ‘cellType’
‘disease’ Disease for which the sample was obtained ‘disease’ ‘diseaseState’
‘ethnicity’ Ethnicity of the subject ‘ethnicity’ ‘ethnicity’

and 135 187 samples from EBI BioSamples. We randomly
discarded 22 466 NCBI BioSample samples and obtained
two datasets with exactly the same number of samples. We
transformed these samples into CEDAR template instances
conforming to CEDAR’s JSON-based model and finally
obtained 135 187 instances of CEDAR’s NCBI BioSample
template and 135 187 instances of CEDAR’s EBI BioSam-
ples template.

Step 3: semantic annotation

Our evaluation studied the recommendations provided by
CEDAR’s Value Recommender for two different kinds of
metadata fields: text-based and ontology-based. We wanted
to determine to what extent our system was able to take
advantage of the standardization capabilities of ontolo-
gies to generate more useful recommendations. As illus-
trated in Figure 8, we started the semantic annotation step
with two datasets: text-based NCBI BioSample instances
and text-based EBI BioSamples instances. Our goal was
to produce two additional datasets: ontology-based NCBI
BioSample instances and ontology-based EBI-BioSamples
instances.

We created a copy of the template instances generated
in the previous step and linked both their field names and
values to ontology terms. This process is typically referred
to as ‘semantic annotation’ (or simply ‘annotation’) and
can be defined more generally as the process of finding
a correspondence or relationship between a term in plain
text and an ontology term that specifies the semantics of
that term. For example, a possible result of annotating
the plain text value ‘liver’ could be the ontology term
‘liver’ from the UBERON, which is identified by the URI
‘obo:UBERON 0002107’.

We used the NCBO Annotator (36) via the BioPortal
API (http://data.bioontology.org/documentation) to auto-
matically annotate a total of 270 374 template instances

(135 187 instances for each template). Table 7 summarizes
the semantic annotation results. For each of the relevant
fields, the table shows the number of unique text-based
values and the number of ontology terms resulting from
annotating them. As expected, the total number of ontology
terms obtained for each set of template instances (12 177
and 4233) is less than the number of text-based values
(23 086 and 9730), because a single ontology term can be
represented using different text strings. For example, we
observed that the concept ‘male’ was represented in plain
text using values such as ‘male’, ‘Male’, ‘M’ and ‘XY’. The
annotation ratio represents the relation between the num-
ber of plain text values and the number of ontology terms
obtained after annotating them. For higher field annotation
ratios, fewer ontology terms were needed to cover all its
values.

We also found multiple values that could not be mapped
to ontology terms, either because they were invalid values
or because the NCBO Annotator was not able to find
a suitable ontology term for them. Examples of some
invalid values found for the ‘ethnicity’ field are ‘C?’,
‘U’, ‘not sure if she is hispanic or latino’, ‘Father is half
iranian’ and ‘usa’. In total, 13% of plain text values from
NCBI BioSample and 14% from EBI BioSamples were
not annotated with ontology terms and were therefore
ignored.

In some cases, the NCBO Annotator returned different
URIs for a plain text value (e.g. ‘obo:EHDA 9373’
and ‘ncit:C46112’ for the value ‘male’). These multiple
matches are to be expected, since some biomedical
terms are defined in multiple ontologies. As explained
in Support for cross-template recommendations subsection,
our recommendation approach is designed to deal with
this case, since it is able to find the correspondences
between metadata from different templates even when
different ontology terms are used to represent the same
concepts.
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Table 7. Summary of annotation results for the NCBI BioSample and EBI BioSamples template instances. For each field, the

table shows the number of different textual values and the number of different ontology terms obtained after annotating those

values. The annotation ratio represents the relation between the number of plain text values and the number ontology terms

Field name NCBI BioSample instances EBI BioSamples instances
No. unique values Annotation ratio No. unique values Annotation ratio
Text Ont. terms Text Ont. terms

‘sex’ 41 18 2.28 29 12 2.42
‘organism part’ 2098 646 3.25 1759 610 2.88
‘cell line’ 16697 9933 1.68 3451 1936 1.78
‘cell type’ 1464 521 2.81 1456 526 2.77
‘disease’ 2144 887 2.42 2399 984 2.44
‘ethnicity’ 642 172 3.73 636 165 3.85
Total 23 086 12 177 1.89 9730 4233 2.30

Table 8. Details of the eight experiments conducted to evaluate CEDAR’s Value Recommender. The table includes the

recommendation scenario addressed by the experiment (single-template or cross-template), the type of metadata used (text-

based or ontology-based), the source databases of the training and test sets used (NCBI BioSample or EBI BioSamples) and

the number of instances (size) of the training and test sets

Experiment Recommendation scenario Type of metadata Training set DB
(size each = 114 909)

Test set DB
(size each = 20 278)

1 Single-template Text-based NCBI NCBI
2 Single-template Ontology-based NCBI NCBI
3 Single-template Text-based EBI EBI
4 Single-template Ontology-based EBI EBI
5 Cross-template Text-based NCBI EBI
6 Cross-template Ontology-based NCBI EBI
7 Cross-template Text-based EBI NCBI
8 Cross-template Ontology-based EBI NCBI

Step 4: generation of experimental data sets

We partitioned each of the four datasets from the previous
step into two datasets, with 85% of the data for training
and the remaining 15% for testing. We ensured that
the training and test sets were disjoint. We designed
a total of eight experiments to cover all combinations
of recommendation scenario (single-template or cross-
template) and metadata type (text-based or ontology-
based) (see Table 8). For each experiment, the table
shows the recommendation scenario and the type of
metadata used, as well as the source databases of the
training and test sets used, and the number of instances
in the training and test sets. Note that for single-template
recommendations (experiments 1–4), we used datasets
from the same source database for training and testing.
However, for cross-template recommendations (exper-
iments 5–8), we used one dataset from one source
to train and a different source to test. All the exper-
iments were conducted on a MacBook Pro with a
3-GHz Intel Core i7 processor and 16 GB DDR3
RAM.

Step 5: training

The training step consisted in executing the rule extraction
process for the training sets to discover the hidden rela-
tionships between metadata fields and to represent them as
association rules. The rules were extracted using the Apriori
algorithm via the WEKA Java library with a minimum
support of five instances and a confidence of 0.3. A given
association rule can have one or more items in the conse-
quent. Since our framework generates recommendations for
one field at a time, we filtered the resulting rules to keep
only the rules with one item in the consequent. The final
set of rules were indexed using Elasticsearch, following the
format described earlier (see Implementation subsection).

Table 9 summarizes the number of rules extracted
and the execution times for each training set. The table
shows, for example, that the number of rules generated
for ontology-based instances is considerably lower than
it is for text-based instances. For example, the number of
rules generated for the NCBI BioSample database using
ontology-based instances was 18 223, which constitutes
35% of the number of rules generated from text-based

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baz059/5512427 by guest on 09 April 2024



Page 18 of 25 Database, Vol. 2019, Article ID baz059

Table 9. Number of rules generated by the training process and execution time (in wall-clock time) for each training set. The

number of rules obtained after filtering are the rules with only one item in the consequent part of the rule

Training set DB Type of metadata No. rules generated No. rules after filtering Execution time (sec)

NCBI Text-based 52 192 30 295 5 682
EBI Text-based 36 915 24 983 4079
NCBI Ontology-based 18 223 12 400 1293
EBI Ontology-based 16 838 11 932 1 087

instances. This improvement in precision is caused by the
reduction in the number of ontology-based values with
respect to text-based values during the semantic annotation
process. It can be also observed that the amount of time
needed to generate rules from ontology-based instances
was substantially lower than that for text-based instances.

Step 6: testing

In the previous step, we trained CEDAR’s Value Recom-
mender by extracting association rules from the training set
and incorporating them into the system. In this step, we
measured how well the system uses those rules to predict
the values that are actually found in our test set.

As a baseline, we used the majority class classifier, which
suggests the most frequent value for each target field in
the training dataset. For example, for text-based values,
‘male’ is the value with the most occurrences for ‘sex’ in
the training data. Therefore, the baseline method always
suggests ‘male’ for that field. This baseline is widely used in
the evaluation of recommendation systems because it is an
intuitive and easy-to-implement way of obtaining reference
results that set the minimal expected performance.

We assessed the performance of both our rule-based
approach and the baseline method using the reciprocal
rank (RR) statistic, which is commonly used for evaluating
processes that return a ranked list of results. The RR is
calculated as the inverse of the rank of the correct answer.
For example, suppose that the correct value for the ‘disease’
field is ‘prostate cancer’. The RR would be 1/1 = 1 if the
system returns ‘prostate cancer’ as the first recommended
value, 1/2 = 0.5 if it is in the second place, 1/3 = 0.33 in
the third place and so on. Finally, the mean reciprocal
rank (MRR) can be calculated as the mean of all the RRs
obtained.

One of the main features of our value-recommendation
framework is that it takes into account the contextual
information provided by the user (that is, the values already
entered for the template that the user is filling out). We
wanted to analyze how different amounts of contextual
information (no context, one populated field, two popu-
lated fields, etc.) affect the accuracy of the recommenda-

tions. Therefore, for each blank field, we generated recom-
mendations using a different number of populated fields,
and we compared the results obtained.

For example, suppose a template instance has the
following values for the six fields used in our evaluation:
‘sex = male’, ‘organism part = prostate’, ‘cell line = PC-
3’, ‘cell type = prostate cell’, ‘disease = prostate cancer’,
‘ethnicity = Caucasian’ and that the target field is ‘disease’.
We first generated value recommendations without any
contextual information. Then, we generated suggestions
based on the value of just one populated field (e.g. ‘cell
line = PC-3’), trying all five remaining fields. Then we
generated suggestions based on two populated fields for all
possible pairs of fields (e.g. ‘cell line = PC-3’, ‘sex = male’),
and so on, until we used five populated fields as context.

The number of executions for a particular number of
populated fields is given by the binomial coefficient C

(
n, r

)
,

which represents the number of combinations of n items
taking r at a time. In our example, the total number of
executions would be calculated as the following:

C (5, 0) + C (5, 1) + C (5, 2) + C (5, 3) + C (5, 4) + C (5, 5)

= 1 + 5 + 10 + 10 + 5 + 1 = 32

where C
(
5, 0

)
corresponds to the case when there is no

contextual information, C
(
5, 1

)
corresponds to the num-

ber of executions with one populated field, C
(
5, 2

)
with

two populated fields and so on. Table 10 summarizes the
contextual information used in the executions that were
run for the previous example. We executed the recommen-
dation system for all fields in each instance of the test
sets. In the previous example, the expected value for the
disease field is ‘prostate cancer’, so we would compare the
results of each of the 32 executions in Table 10 with that
value.

Step 7: analysis of results

The results of our evaluation for the eight experiments that
we performed (see Table 8) are shown in Figure 9. The two
plots on the top row show the results of single-template
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Table 10. Contextual information used in each test run for a template instance with the following field–value pairs: ‘sex = male’,

‘organism part = prostate’, ‘cell line = PC-3’, ‘cell type = prostate cell’, ‘disease = prostate cancer’, ‘ethnicity = Caucasian’. The

target field is ‘disease’. For each execution, the table shows the number of fields that constitute the context, as well as their

names and values

Execution Contextual information
No. fields Field names and values

1 0 (No context)
2 1 ‘sex = male’
3 1 ‘organism part = prostate’
4 1 cell line = PC-3’
5 1 ‘cell type = prostate cell’
6 1 ‘ethnicity = Caucasian’
7 2 ‘sex = male’, ‘organism part = prostate’
8 2 ‘sex = male’, ‘cell line = PC-3’
9 2 ‘sex = male’, ‘cell type = prostate cell’
... ... ...
32 5 ‘sex = male’, ‘organism part = prostate’, ‘cell line = PC-3’, ‘cell type = prostate cell’, ‘ethnicity = Caucasian’

Table 11. MRR provided by the baseline and by CEDAR’s Value Recommender for the eight experiments in Table 8, specified

by number of populated fields. Experiments 1–4 correspond to single-template recommendations, while experiments 5–8

correspond to cross-template recommendations. Experiments 1, 3, 5 and 7 were performed using text-based metadata, while

experiments 2, 4, 6 and 8 were done using ontology-based metadata. NCBI: NCBI BioSample dataset. EBI: EBI BioSamples

dataset

Experiment Train/test
DB

Type of
metadata

No. populated fields
(baseline)

No. populated fields
(Value Recommender)

0 1 2 3 4 0 1 2 3 4

1 NCBI/NCBI Text-based 0.30 0.30 0.28 0.23 0.18 0.26 0.49 0.66 0.72 0.69
2 NCBI/NCBI Ontology-based 0.39 0.38 0.36 0.30 0.27 0.32 0.54 0.70 0.79 0.81
3 EBI/EBI Text-based 0.29 0.28 0.27 0.25 0.25 0.26 0.49 0.67 0.75 0.74
4 EBI/EBI Ontology-based 0.35 0.33 0.31 0.28 0.30 0.31 0.52 0.70 0.80 0.81
5 NCBI/EBI Text-based 0.27 0.27 0.26 0.22 0.20 0.23 0.42 0.56 0.67 0.66
6 NCBI/EBI Ontology-based 0.34 0.32 0.30 0.26 0.25 0.29 0.47 0.60 0.69 0.74
7 EBI/NCBI Text-based 0.25 0.25 0.24 0.23 0.20 0.22 0.36 0.49 0.54 0.49
8 EBI/NCBI Ontology-based 0.36 0.35 0.33 0.28 0.26 0.31 0.45 0.58 0.66 0.69

Mean (Text-based) 0.28 0.28 0.26 0.23 0.21 0.24 0.44 0.60 0.67 0.65
Mean (Ontology-based) 0.36 0.35 0.33 0.28 0.27 0.31 0.50 0.65 0.74 0.76

recommendations (experiments 1–4). The plots on the
bottom row show the results of cross-template recom-
mendations (experiments 5–8). All plots compare the
performance of CEDAR’s Value Recommender with the
baseline, both for plain text values and for ontology terms,
using different levels of contextual information. The x-axes
of the plots in Figure 9 show the number of populated
fields used as context to generate the recommendations.
The y-axes show the MRR obtained for each experiment.
Table 11 shows the evaluation results by experiment and by
number of populated fields in the context. Table 12 sum-
marizes the evaluation results by type of recommendation
algorithm (i.e. baseline, CEDAR’s Value Recommender),

recommendation scenario (i.e. single-template, cross-
template) and type of metadata (i.e. text-based or ontology-
based).

By examining the results, we can clearly see that the
MRR of the method improves as the amount of number
of populated fields increases. This increase illustrates the
strong influence of the context on the accuracy of the
recommendations and demonstrates that our method is able
to take advantage of contextual information to enhance the
suggestions. The best results are obtained when using four
populated fields as context, with an average MRR of 0.65
for textual metadata and 0.76 for ontology-based metadata.
These results represent an improvement factor of 2.7 and
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Figure 9. MRR for CEDAR’s Value Recommender (‘solid lines’) and for the baseline (‘dotted lines’) using text-based metadata (‘orange lines’) and

ontology-based metadata (‘purple lines’). The two plots on the top show the results of single-template recommendations (experiments 1–4). The

two plots on the bottom row show the results of cross-template recommendations (experiments 5–8). The x-axis shows the number of populated

fields used as context to generate the recommendations. The y-axis shows the MRR obtained for each experiment.

Table 12. MRR provided by the baseline and by CEDAR’s Value Recommender for the eight experiments in Table 8, aggregated

by recommendation scenario (i.e. single-template, cross-template) and by type of metadata (i.e. text-based or ontology-based)

Method Scenario Type of metadata Mean
Single-template Cross-template Text-based Ontology-based

Baseline 0.29 0.27 0.25 0.32 0.28
Value Recommender 0.60 0.51 0.52 0.59 0.56
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2.45 with respect to the results obtained without any con-
textual information (MRRs of 0.24 and 0.31, respectively).

The results obtained are consistently good for both
single-template and for cross-template recommendations,
demonstrating the ability of our approach to reuse meta-
data created from a template different than the template
that the user is filling out. This is a key and novel feature
of our framework that makes it possible to take advantage
of existing metadata to generate recommendations for new
templates without having to first populate the templates
multiple times. Even though the results are good in both
scenarios, the MRR is slightly better for single-database
recommendations (0.60) than for cross-database recom-
mendations (0.51). This is an expected behavior when gen-
erating cross-template recommendations, since the template
instances in the training and testing datasets are generated
using metadata from two different databases. Thus, the
rules extracted from the training dataset may not cover
all the cases in the test dataset. Our approach performs
better for ontology-based metadata than for textual meta-
data for all the experiments, with an average MRR of
0.59 for ontology-based metadata and 0.53 for text-based
metadata. When using ontology-based metadata, it is pos-
sible to unify different terms that have the same meaning
and therefore to overcome the limitations caused by term
heterogeneity.

Finally, we analyzed the results for each field indepen-
dently to determine whether the accuracy of the recom-
mendations was affected by the specific target field used.
Figure 10 shows the results for each field, for both our
method and for the baseline, and for text-based metadata
and ontology-based metadata. The x-axis shows the field
name, and the y-axis the average MRR obtained for each
field. The results are consistent with our previous findings
and, interestingly, they also show that the highest improve-
ment with respect to the baseline is obtained for those fields
that have a large number of unique values in the training
sets, such as ‘disease’ and ‘cell line’. For those fields, the
baseline statistic always returns the most frequent value
and, since there are multiple possible values, the chances
of failing are high. Since our approach uses the context to
determine the most appropriate results, it is able to generate
significantly better results than the baseline for fields with
many possible values.

Our evaluation was focused on a subset of six fields
commonly used to describe human samples. However, some
users may need to use our system with a larger set of
fields. We conducted an additional experiment to quantify
the impact of including a larger number of fields on both
the performance of the rule extraction process and on the
accuracy of the suggestions provided. We used metadata
from the NCBI BioSamples database to analyze the per-

formance of the system for the six selected fields versus
all the fields in the template (26 fields). (The results of
this experiment are available in our Jupyter notebook (see
‘Additional experiment #2’ at https://goo.gl/GtK956).) The
results show that adding more fields to the evaluation
considerably increased the number of rules generated and
the time needed to generate the rules. The difference in
the accuracy of the suggestions and in the time needed
to generate them was minimal. The performance of our
implementation for large datasets and with a large number
of fields could be improved by replacing Apriori by a more
efficient algorithm, such as FP-Growth (37).

Discussion

We have demonstrated that our framework successfully
exploits associations between field–value pairs in existing
templates to suggest field values in new templates. A key
feature of the method is its use of populated fields during
template completion to refine suggestions for unpopulated
fields. The analysis of the results demonstrates that using
this contextual information provides significant improve-
ments in terms of the accuracy of the recommendations.
Ontology-based mapping techniques also proved crucial for
aligning fields and field values so that semantic associations
could be detected and exploited by the recommendation
method.

Our framework is an evolution of an earlier method
that provided ontology-based, context-sensitive suggestions
for metadata templates in the CEDAR Workbench (24).
The previous method worked with values created using a
single template only and could not learn from instances of
templates that were structurally different. A key advantage
of the new approach with respect to our previous work is
that it does not require having any values previously entered
for a given template. The new approach is effectively able
to reuse metadata from other templates to generate sugges-
tions.

A limitation of our approach is that appropriate domain
ontologies must be available to provide standardized sug-
gestions for values. As demonstrated in this paper, while
a pure text-based approach can sometimes provide useful
suggestions, performing associations at this level misses
many lexically different but semantically identical values.
The method also requires manual annotation of fields in
templates with ontology terms to support cross-template
alignment. A related shortcoming is that the framework
supports only categorical field values; fields with contin-
uous values (e.g. age) are currently ignored both by the
learning and recommendation phases in the method.

The evaluation was restricted to metadata about human
samples from two public repositories. We plan to carry out
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Figure 10. MRR provided by the baseline and by CEDAR’s Value Recommender for the fields used in our evaluation (‘cell line’, ‘cell type’, ‘disease’,

‘ethnicity’, ‘sex’ and ‘tissue’), using text-based metadata (‘orange bars’) and ontology-based metadata (‘purple bars’). The two plots on the top

show the results of single-template recommendations (experiments 1–4). The two plots on the bottom row show the results of cross-template

recommendations (experiments 5–8). The x-axes show the field name. The y-axes show the average MRR obtained for each field.

deeper analyses of biological samples from other species
to determine how our method generalizes to other sam-
ple types. The effect of mixing metadata about different
organisms is expected to generate rules for a particular
organism mixed with rules for other organisms. Some of
those rules might be limited to organism-specific attributes,
such as ‘cultivar’ and ‘ecotype’ for plants, but other rules
can contain attributes that are valid for several organisms
(e.g. disease). A potential problem is that the system may use
a rule that was generated from metadata about an organ-

ism to generate suggestions for a different organism. The
context-matching score allows the system to generate rec-
ommendations even when there is no perfect match between
the antecedent of a rule and the context entered by the user,
and our evaluation has shown that, overall, this scoring
approach provides good results. However, when mixing
metadata from different organisms, the system might gen-
erate some suggestions that are biologically invalid. This
negative effect can be controlled by either setting a higher
threshold for the final recommendation score (e.g. 0.8) or
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by cancelling the influence of the context-matching score
factor in the final recommendation score, so that the system
will only take into account the rules whose field–value
pairs in the antecedent match perfectly the field–value pairs
entered by the user.

Future efforts will also concentrate on evaluating the
framework with a larger number of repositories to see
how more complex relationships can be discovered and
integrated to enhance the suggestions generated by the
system. We plan to conduct a user-based evaluation in col-
laboration with the Adaptive Immune Receptor Repertoire
(AIRR) Community (https://www.antibodysociety.org/the-
airr-community) to assess if the introduction of our method
is actually bringing an advantage to biomedical scientists in
terms of facilitating and speeding up metadata entry. AIRR
researchers identified the lack of standards to describe their
datasets as a bottleneck to their progress and produced a
metadata standard, known as MiAIRR (38), for capturing
the principal characteristics of experiment types, collec-
tively referred to as repertoire sequencing. In collaboration
with members of the AIRR community, we operationalized
an end-to-end submission pipeline (39) based on a CEDAR
template known as MiAIRR, which scientists can use to
enter metadata associated to AIRR studies and to upload
metadata and associated sequencing data to the three target
NCBI repositories: BioProject, BioSample and SRA. Our
plan is to enable metadata suggestions for the BioSample
section of the MiAIRR template using metadata from the
NCBI BioSample and EBI BioSamples databases and per-
form a user-based evaluation to assess the usefulness of our
recommendation approach.

In addition to facilitating the process of entering new val-
ues for metadata templates, our work also has implications
for retrospective augmentation of existing metadata. For
example, the framework could be used to identify potential
mistakes in previously entered values by applying it not
only to empty fields, but also to populated fields. Strong
differences between the existing value for a field and the
values recommended by the system could be highlighted to
human curators for review. The framework could also be
used to generate suggestions for multiple fields at a time and
use suggestions with a recommendation score higher than a
predefined threshold to automatically populate those fields.

Conclusion

Despite the importance of metadata to facilitate data
discovery, interpretation and reuse, metadata for online
datasets are generally of poor quality. A key problem is that
the typical metadata acquisition process is tedious and time
consuming, with little or no support provided to users. In
this paper, we described a method that uses association rule

mining coupled with ontology-based semantic mappings to
provide suggestions to users creating metadata. We have
implemented this method as a Web service and integrated
it into the CEDAR Workbench, an end-to-end platform for
metadata authoring and submission. The resulting service
is known as CEDAR’s Value Recommender.

Our approach takes advantage of associations among
values in existing metadata to generate context-sensitive
recommendations when creating new metadata. A key focus
is on interoperation with ontologies. This interoperation
has the dual aim of (i) aligning text-based values with ontol-
ogy terms to support high-level analysis, and (ii) providing
ontology-based value suggestions to users to increase stan-
dardization of the entered values. A novelty of the method
is that it can discover associations in existing instances
of structurally different templates and use those associ-
ations to provide context-sensitive recommendations for
new templates. While the driving impetus of CEDAR’s
Value Recommender is to help biomedical investigators to
quickly annotate their experimental data with metadata, the
approach can be applied to any domain for which a suitable
set of domain ontologies is available.

We evaluated our approach using metadata from the
NCBI BioSample and EBI BioSamples databases. The
evaluation focused on determining the effectiveness of
the method for generating metadata suggestions for both
repositories. The results suggest that our method has
the potential to help investigators easily and quickly
create comprehensive and standardized metadata for their
experimental datasets, thus increasing adherence of the
datasets to the FAIR principles in support of open science.

Availability of software and data

We have created a Jupyter notebook describing in detail
the steps to reproduce our evaluation using Python and
R scripts. The notebook contains links to the datasets
and software used, as well as to the rules and results
generated. The notebook is available at https://github.com/
metadatacenter/cedar-experiments-valuerecommender2019/
blob/master/ValueRecommenderEvaluation.ipynb. CEDAR’s
Value Recommender source code is available at https://
github.com/metadatacenter/cedar-valuerecommender-server.
Documentation on how to use the CEDAR Workbench
to enable recommendations for CEDAR templates is
available at https://github.com/metadatacenter/cedar-docs/
wiki/CEDAR-Value-Recommender.
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