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Abstract

Knowledge of the molecular interactions of biological and chemical entities and their

involvement in biological processes or clinical phenotypes is important for data inter-

pretation. Unfortunately, this knowledge is mostly embedded in the literature in such a

way that it is unavailable for automated data analysis procedures. Biological expression

language (BEL) is a syntax representation allowing for the structured representation of

a broad range of biological relationships. It is used in various situations to extract such

knowledge and transform it into BEL networks. To support the tedious and time-intensive

extraction work of curators with automated methods, we developed the BEL track within

the framework of BioCreative Challenges. Within the BEL track, we provide training data

and an evaluation environment to encourage the text mining community to tackle the

automatic extraction of complex BEL relationships. In 2017 BioCreative VI, the 2015 BEL

track was repeated with new test data. Although only minor improvements in text snippet

retrieval for given statements were achieved during this second BEL task iteration, a

significant increase of BEL statement extraction performance from provided sentences

could be seen. The best performing system reached a 32% F-score for the extraction of
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complete BEL statements and with the given named entities this increased to 49%. This

time, besides rule-based systems, new methods involving hierarchical sequence labeling

and neural networks were applied for BEL statement extraction.

Availability : The BEL track resources are available at https://wiki.openbel.org/display/

BIOC/BioCreative+BEL+Task+Challenges. The participating systems are not publicly

accessible.

Database URL: https://wiki.openbel.org/display/BIOC/BioCreative+BEL+Task+Challenges

Introduction

Identifying the molecular mechanisms influencing disease
development and therapeutic responses is currently one of
the most promising ways of identifying better treatments
for non-responders to traditional treatments. There is an
increasing amount of research with large-scale biological
data sets produced to identify those mechanisms, and the
results are mainly published in the scientific literature.
To use this data for further analysis, it needs to be in
a computer-readable format. To achieve this, availability
of a syntax and the conversion of the biological data
and knowledge to this syntax are required. For dynamic
models, systems biology markup language (SBML) is the
main format (1) used, and for traditional pathway infor-
mation, the exchange format BioPAX (2) is useful. Both
formats contain representations of biological mechanisms
or models rather than findings from literature. Also, most
relationships described in the literature are difficult to
convert directly to these representations. Furthermore, they
are not easily accessible to humans without a user interface.
As an alternative, biological expression language (BEL)
has been developed to allow the representation of the
huge variety of causal relationships expressed in the liter-
ature (3). BEL is better suited for biocuration to encode
findings or observations from the literature compared to
other representation formats. Additionally, BEL follows the
principles of FAIR (findable, accessible, interoperable and
reusable) data, providing the necessary metadata to make
it findable and enabling interoperability using standardized
terminologies and external data sources for all biological
entities. Using further metadata, BEL also allows for the fine
granular annotation of data. Additionally, it is well suited
to integration into knowledge graphs or graphical network
analyses (4).

However, it is labor-intensive to extract the relevant
information from the primary literature and convert
the free text data into structured relationships using
controlled vocabularies (5). In recent years, research has
been conducted to enable the automatic extraction of
biological relationships and their translation into BEL.
First, a syntax for BEL conversion was developed from
the text mining-focused representation of relationships

provided by Biomedical Natural Language Processing
shared tasks (6). These tasks provide fined grained
and linguistically motivated annotations for biologically
relevant extractions (http://2016.bionlp-st.org/). Second,
to enable a broader text mining community to extract
relationships in BEL format, BEL was introduced within
BioCreative 2015 as a new track (7, 8). For this track, a
subset of relationships containing genes, proteins, chemical
compounds, biological processes and diseases was used
(9). In the first BioCreative BEL track, the best performing
system reached an F-score of 22% for the extraction of
complete BEL statements (8). Despite the low F-score
for complete relationships, core relationships containing
relationship partners were extracted with an F-score of
up to 49% (8). These results support the possibility of
the semi-automatic extraction of relationships, supporting
curation experts with the facility of automated extraction.
BEL information extraction workflow (BELIEF) supports
such semi-automatic curation (10). BELIEF (http://belief.
scai.fraunhofer.de/BeliefDashboard ) is a public web service
with underlying text mining workflows and a curation
interface that enables the semi-automatic extraction of
complex relationships, and their coding, in BEL.

In 2017, the BEL track was conducted a second time in
the context of BioCreative VI. Experiences in other areas
have demonstrated that repetitions of tasks tend to result in
increased performance. For the 2017 BEL track, novel, and
yet unpublished, test data from the disease ulcerative colitis
(11, 12) was created. The BioCreative 2015 test set and
2015 annotated result set are available for the participating
groups (https://wiki.openbel.org/display/BIOC/Datasets ).
Here, the track details, relevant resources and newly created
test set are described. Furthermore, the participating sys-
tems present their solutions and performance results from
the new BEL track.

BEL track overview

BEL and used namespaces

BEL statements encode semantic triples with subject,
relationship and object. An example BEL statement and its
corresponding sentence are shown in Figure 1. For the BEL
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Figure 1. Example of a BEL statement extracted from the sentence ‘IL-1β caused a time-dependent increase in Caco-2 ATF-2 phosphorylation,

starting at 10 min of treatment (Fig. 3A).’ (46) (PMID: 23656735) (BEL:201720027; identifier in BEL corpus). The BEL statement consists of two

protein abundances [p (HGNC:IL1B) and p (HGNC:ATF2)], one protein modification function representing a phosphorylation event [pmod(P)] and a

relationship type (increases).

track, we focused on two causal relationship types: increase
and decrease. Using normalized entities from so-called
namespaces for subject and objects, the resulting statements
can be integrated and merged into networks as well as
aligned to other data. These namespaces are generated
from database entries {e.g. human genes from HGNC
[HGNC stands for HUGO Gene Nomenclature Committee
(http://www.genenames.org)], mouse genes from MGI
[MGI stands for Mouse Genome Informatics (http://www.
informatics.jax.org/)] and chemical entities from the ChEBI
[ChEBI stands for Chemical Entities of Biological Interest
(https://www.ebi.ac.uk/chebi/)] database}. In our example
in Figure 1, textual references such as IL1-ß and ATF-2 are
normalized to the HGNC database entries IL1B and ATF2,
respectively. The reference to the chosen namespace is given
using a prefix with the database short name separated by a
colon, ‘HGNC’ in our example. Other namespaces originate
either from ontologies, such as the biological processes
subtree (GO:0008150) of the Gene Ontology for GOBP
(GOBP stands for Gene Ontology Biological Process)
or from terminologies, such as the diseases namespace
MESHD (MESH disease subtree is available at https://
meshb.nlm.nih.gov/treeView.) from the Medical Subject
Headings diseases subtree.

For the different entities, different class abundances are
assigned: the abundance function a() is assigned to chem-
icals, bp() for biological processes and path() (pathology)
for diseases. For genes, different abundances g() (gene),
r() (mRNA) or p() (protein) are possible, but to reduce
complexity only p() is used in the BEL track. In our example
in Figure 1, we used the protein abundance function for
both entities. In addition to class abundances, different
functions can also be assigned to the biological entities. For
the BEL track, we focused on the protein phosphorylation
function pmod(P), the protein activity function act(), the
translocation function tloc(), the protein degradation func-
tion deg() and finally the complex() function, to describe
protein complexes. For a more detailed description of this,

see Rinaldi et al. (8). In Figure 1, the syntax for describing
a phosphorylated protein is: p (HGNC:ATF2, pmod(P)).

Task description and evaluation

The BEL track challenge was organized into two tasks
evaluating the complementary aspects of the problem:

(i) Task 1: given textual evidence for a BEL statement,
generate the corresponding BEL statement.

(ii) Task 2: given a BEL statement, provide a maximum of
10 additional evidence sentences.

The extraction of relationships and their coding in BEL is
a complex task as a multitude of entity, relationship and
function types can be involved in a single relationship.
Therefore, we made a number of simplifications for
the evaluation. Briefly, for genes and proteins, HGNC,
EntrezGene or mouse orthologous (MGI) identifiers
were accepted. For the abundance functions of these
namespaces, all correct abundances were accepted. Fur-
thermore, for the modification function pmod() and the
translocation function tloc(), the number of arguments
was reduced. The details of all simplifications are pro-
vided online (http://wiki.openbel.org/display/BIOC/All+
Functions+Evaluation+Overview).

A cascade evaluation model with different levels of suc-
cess rates was performed for syntactically valid statements,
whereas invalid statements were ignored. A submitted full
BEL statement was automatically cut into its fragments to
enable evaluations on lower levels. On the term level, only
the correctness of BEL terms was assessed. Furthermore, the
correctness of the discovered entities, the associated names-
paces and the associated abundance and process functions
were measured.

The correctness of the discovered function was evaluated
on the function level. Functions were only accepted together
with their argument, the BEL term. As a simplification,
a complex function was only valid if at least one of its
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arguments was correct. On the secondary function level, the
correctness of a function alone was measured, regardless of
the correctness of its term-arguments.

In the relationship level evaluation, only the terms and
relationships were considered. Functions that were part of a
BEL statement were not taken into account on this level. Yet
again, two levels of evaluation were considered. To obtain
a full score relationship, subject, object and the relationship
type had to be correct. For the secondary relationship level,
partial relationships containing two out of three correct
units (subject, object and relationship type) were considered
fulfilled. This level was introduced in order to give weight-
ing to the results, which although were partially correct,
could still be useful as suggestions to a human curator
in the context of a semi-automated approach. Finally, we
evaluated how many BEL statements were entirely correct.
The cascade evaluation model is depicted in Figure 2 and
described in detail by Rinaldi et al. (8).

For task 2, up to 10 evidence sentences for each BEL
statement were accepted from the participating systems.
Those statements were evaluated on two levels: on the ‘fully
supportive level’, the sentence had to contain all necessary
information for a biologist to create the BEL statement; and
on the ‘partially supportive level’, the sentence was correct
when relevant context information from surrounding sen-
tences contained the additional information required. For
more detailed information on the evaluation criteria, see
Rinaldi et al. (8).

Materials and methods

Training data and preparation of new test set

The training data and test data from BioCreative V (2015)
are available online (https://wiki.openbel.org/display/
BIOC/Datasets). The description of the training set selection
and curation are described in detail by Fluck et al. (9).
For the generation of the 2017 BEL track task 1 test set,
we used a real-world case and extracted new data in the
disease context of ulcerative colitis. For the test set, we
restricted the named entity classes to those that could be
normalized to the gene and protein namespaces HGNC
and MGI, including ChEBI for chemical names, MESHD
for disease names and GOBP for biological processes. We
also used a restricted set of relationship types and functions
as defined above. For the extraction, we used automatic
support in the form of BELIEF (10). This workflow pre-
annotated and normalized the named entities and suggested
BEL statements in a user-friendly curation environment. At
the front-end, the curator could browse through the text,
search for unrecognized named entities and edit or add
statements. Only user-selected statements were exported by
the system.

In the first step, two curators independently extracted
the information from the same full texts. In the comparison
of results, it became clear that it is very tedious to extract all
possible statements from a document. Especially, since we
would extract repetitively very similar statements only with

Figure 2. An example of a candidate evaluation. The example shows the candidate sentence, the gold standard and predicted statements. The scores

are provided for all primary and secondary levels (8). Abbreviations: PMID (PubMed identifier), true positive (TP), false positive (FP), false negative

(FN), recall (R), precision (P). Adapted and reprinted with permission from Fluck et al. (7).
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Table 1. Distribution of term, function and relationship types

in the training and test corpora

Type Training Test 2015 Test 2017

Terms
p() 19.918 346 328
a() 1.927 37 52
bp() 877 31 23
path() 244 15 2
Functions
act() 6.332 36 79
pmod() 1.411 9 36
complex() 750 15 5
tloc() 406 13 10
deg() 205 6 4
sub() 23 0 0
trunc() 6 0 0
Relationships
increases 8.112 155 130
decreases 2.956 53 68

different experimental settings, which was irrelevant for
task 1. It was also not feasible for independent curators to
select the same sentences for curation in the full text. There-
fore, we decided to take a more straightforward approach.
One person selected the relevant sentences and extracted all
of the BEL statements from this sentence. Then, the second
curator analyzed and edited this set. Finally, differences
were discussed in an annotation jamboree.

An overview of the number of different entities, func-
tions and relationship types of the task 1 test set is given
in Table 1. For task 2, BEL statements were curated from
PubMed abstracts to make sure that at least one sentence
could be found for every BEL statement.

For task 1 stage 1, we also provided the normalized
names of all biological processes occurring in the test set, as
extracting such concepts remains a non-trivial task. Finally,
for task 1 stage 2, we provided a file with entity information
and offsets and the associated normalized concept with the
namespace.

Supporting material

The participants were provided with a range of supporting
resources and comprehensive documentation (https://
wiki.openbel.org/display/BIOC/BioCreative+BEL+Task+
Challenges), containing a description of the formats and
a detailed explanation of the evaluation process. The eval-
uation of the different levels of a single BEL statement was
illustrated using a set of concrete example submissions as
reference. Additionally, validation and evaluation interfaces
(http://bio-eval.scai.fraunhofer.de/cgi-bin/General_server.
rc ) were provided for the participants to validate and test

their generated statements during the development phase.
The BEL statement validator checks the user-provided BEL
statements with respect to formal correctness and provides
specific error messages for invalid BEL statements. For
the sample, training and 2015 test sets, the evaluation
interface evaluated the input BEL statements based on
evaluation criteria such as term, function, relationship and
full statement level. For a more detailed description of the
candidate evaluation, see Rinaldi et al. (8).

Resources for further support included BEL statements
from the training, sample and 2015 test sets in BioC format.
A tab-separated format that contained all fragments of the
BEL statements (terms, functions and relations) was auto-
matically generated from the sample, training and 2015 test
sets. These were provided to the participants as supporting
material [c.f. (8)] (https://wiki.openbel.org/display/BIOC/
Datasets).

Participating systems

All participating systems can be compartmentalized in at
least two main parts—a first part that is composed of a
number of named entity recognition (NER) components
for the recognition and normalization of the entities and a
second part for relationship extraction and BEL translation.
In NER, the systems use different tools that utilize various
algorithmic approaches such as dictionary, rule-based and
machine learning. The second part is dedicated to relation-
ship extraction. Here, three approaches use a dependency
parser as a preprocess step. BELMiner 2.0 uses graph
traversal and BelSmile extracts relationships using predicate
argument structures. After the extraction, all systems have
a final component to transform extracted relationships to
BEL statements.

Two systems, the graph-based traversal system BELMiner
2.0 and the semantic role labeling approach BelSmile,
participated in the BEL track for the second time. The
newly participating systems used either hierarchical
sequence labeling or deep neural networks for relationship
extraction. Finally, one system, BelTracker, participated
in task 2 of the BEL track, using a pre-annotated corpus
for the different named entities and integrating a ranking
component to order the resulting sentences by relevance.
All systems are described in the following sections.

BELMiner 2.0—information extraction system to extract BEL rela-

tionships from biomedical literature BELMiner 2.0 (13) is a
generic graph-based traversal on the dependency graphs
constructed from entity-normalized sentences. The fol-
lowing components are executed in sequence to process
the evidence statement, with each component incremen-
tally contributing towards BEL statement extraction:
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Figure 3. BELMiner 2.0 architecture.

(i) extraction of normalized entities, (ii) identification of
dependency structure, (iii) graph-based traversal to extract
causal relationships, (iv) formalization of causal relations
into BEL statements and (v) filtering out of irrelevant BEL
statements.

Figure 3 outlines the overall architecture of BELMiner
2.0. It consists of an ensemble of state-of-the-art entity
normalization tools to extract normalized entities from the
evidence sentences provided for each NER task. TaggerOne
(14), a machine-learning toolkit, was adapted for BEL entity
recognition and supplemented with annotations from other
external tools such as beCAS (15) and Reach (16).

Within BelMiner2.0, the Stanford Parser 3.8 (17) is
applied to identify extended dependencies such as anaphora
and co-references, and appositives and dependencies that
occur beyond clausal boundaries. The identification of
appropriate arguments for functions and relations involves
a graph-based traversal (18). The system first identifies the
event or activity and phrase or term in the sentence and,
using that as an anchor, traverses bi-directionally along the
dependency graph to identify the arguments. During graph
traversal, the system considers certain properties of the
node, such as the semantic type of the node and properties
such as negations. It also identifies the successive double
negation of events along the traversal path to correctly
identify the type of main event.

BelSmile—a semantic role labeling approach for extracting BEL state-

ments BelSmile (19) contains two main natural language
processing (NLP) stages: NER and semantic role labeling
(SRL). Figure 4 shows the workflow of the system. In the
NER stage, BelSmile consists of an ensemble system com-

posed of three approaches: statistical principle, conditional
random fields (CRF) and dictionary-based. The statisti-
cal principle-based approach is used to identify protein
mentions and achieved the highest score in terms of the
second evaluation metric of the BioCreative V.5 Gene and
protein related object recognition (GPRO) task (20). The
CRF-based NERChem (21) is used to identify chemical
mentions. Finally, the dictionary-based approach is used
to recognize disease and biological process mentions by
using external dictionaries including Entrez, ChEBI and
BEL official dictionaries, which are also used to normalize
each recognized NE mention to its database identifier.

In the SRL stage, two systems, RCBiosmile (22) and Enju
(23), are employed. Enju covers some predicates (verbs) not
recognized by RCBiosmile, which is trained on the BioProp
corpus (24). In the configuration achieving the highest
score, predicate argument structures (PASs) extracted from
both systems are used.

After the two NLP stages, BelSmile’s nominal patterns
(25) and newly-compiled verbal patterns are used to gen-
erate the BEL function markup for each named entity
mention. These verbal patterns refer to elements in a PAS.
Finally, BelSmile generates BEL-level statement(s) by feed-
ing the PASs and named entities with functions into the
BelSmile’s statement generation module.

A hierarchical sequence labeling system for the BioCreative VI BEL

task The hierarchical sequence labeling system (26) pipeline
consists of five components: preprocessing, NER and map-
ping, parallel corpus construction, training corpus genera-
tion and model training and testing. Figure 5 illustrates the
framework of the system.
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Figure 4. BelSmile workflow.

Figure 5. Hierarchical sequence labeling system pipeline.
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Preprocessing: Preprocessing the training corpus includes
two steps: rule-based sentence tokenization and BEL
statement serialization. The latter step also reduces BEL
statement redundancy and inconsistencies and elevates
the hierarchical level of some protein modification
functions.

NER and mapping: Three NER tools are used to identify
biomedical entities, including GNormplus (27), tmChem
(28) and DNorm (29). Additionally, a dictionary-based
search method is employed to promote the recall rate of
entities. For the training corpus, the identified entities are
mapped to those in BEL statements.

Parallel corpus construction: In order to obtain the align-
ments between entities, functions and relationships in the
BEL statement and the words in the sentence, we recast this
problem as the word alignment problem between the source
language (text sentence) and the target language (serial
representation of the BEL statement). The target language
is generated through three stages: (i) BEL tree generation,
(ii) BEL tree unification and (iii) BEL tree serialization.
To obtain the source language, the sentences are tokenized
and then simplified by extracting the minimal subtree con-
taining all the entities in the BEL statement. In a further
step, words are serialized in the subtree according to their
original order.

Training corpus generation: Generating a training corpus
from the aforementioned parallel corpus follows two steps:
initially, a word alignment tool GIZA++ (30) is utilized

to obtain alignments between words and BEL nodes. A
hierarchically tagged corpus is then generated based on the
alignment results between the nodes in the BEL statement
and the words in the sentence. The corpus is annotated
using the ‘BIESO’ (B-beginning, I-intermediate, E-end, S-
single entity, O-outside) labeling scheme.

Training and testing: The open source CRF package
CRF++ (31) is used to train hierarchical sequence labeling
models from the hierarchically tagged corpus. The first level
sequence labeling model is trained on words and entities.
When training the k-th level model, the lower k-1 layers
are treated as features and the top-level model is reached
recursively.

In the testing stage, the trained L models are employed to
label the test examples. In contrast to during training, when
labeling the k-th layer the labels automatically recognized in
the lower k-1 layers are treated as features. After labeling
all the layers, the labeling results are converted into BEL
statements. This process is basically the reverse of training
example generation and can be divided into three steps,
that is, BEL tree generation, unified tree splitting and BEL
statement generation.

A neural network-based system to extract BEL statements BEL state-
ment extraction through the neural network-based system
(32) is divided into four subtasks (c.f. Figure 6): (i) NER, (ii)
association detection, (iii) subject and object detection and
(iv) relationship type detection. In the following, we discuss

Figure 6. Architecture of the neural network-based system.
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how we solved each subtask and present the network
architecture that we used.

NER: For NER, the rule- and dictionary-based software
ProMiner (33) was used. It contains several terminologies
to detect named entities. For the training set, we used
ProMiner to find the offsets of the annotated entities. For
the test set, we considered all detected entities for further
predictions.

Association detection model: The second subtask was to
decide whether a sentence describes an association between
two entities or not (independently from any information
about subject and object and the relationship type). In order
to create artificial negative examples, a pair of entities was
annotated as a negative example when no relationship was
annotated in the training set. This strategy can produce
false positives as shown in (9) but can be realized with very
low effort. The model was trained based on 6389 instances
comprising 4633 positive and 1756 negative examples.

Subject and object detection model: The third subtask
was to assign the subject and object within an entity pair.
If the subject appears before the object, the instance is
assigned to the class ‘Subject First’, otherwise it is assigned
to the class ‘Object First’. This training set consists of 4633
examples from which 3156 instances belong to the class
‘Subject First’ and 1477 instances to the class ‘Object First’.

Relationship type detection model: The last subtask was
to determine the type of relationship of an entity pair
participating in an association. After mapping the relation-
ship types ‘directly increases’ to ‘increases’ and ‘directly
decreases’ to ‘decreases’, a neural network for this task
was trained based on 4325 instances consisting of 3103
‘increases’ and 1222 ‘decreases’ examples.

Architecture of the multichannel convolutional neural
networks (CNN): For all three models described, B-D mul-
tichannel CNNs were trained (32). The system development
is based on the work of Quan et al. (34) and Hua et al.
(35). The embedding layer contains the representations of
the input sentence. The multichannel CNN uses different
input channels for different representations of the sentence.
Four Word2Vec models trained by Pyysalo et al. (36), which
are based on PubMed, PubMed Central and Wikipedia, are
used to transform each word of the sentence into a vector
representation. Based on these word vectors, a sentence-
matrix is generated and passed to the network as input. In
the sentence-matrix, each column represents a word, and
the number of rows indicates the dimension of each word
vector.

In the convolutional layer, local features are computed
by applying a convolutional operation on each sentence
representation (32). For each sentence representation, we
retrieved a scalar value every time the sliding window of
the convolution operation shifted. The scalar values of each

shift were summed and passed to the activation function.
The rows of a new matrix represent the results of the
convolutions created by different kernels/filters (in this case
four filters). At the end of the convolutional layer, a max-
pooling operation created a feature vector by extracting the
most significant features, taking the biggest value for each
row. The feature vector was passed to a fully connected
layer and the result given as input to a softmax classifier
producing the predictions. In the convolutional layer and
in the fully connected layer, the exponential linear unit was
used as the non-linear activation function.

BELTracker—a system for semantic sentence retrieval The BEL-
Tracker (37) is focused on the second task of the BEL
track, in which evidence sentences for given BEL statements
are requested. The system has three main components:
indexing, retrieval and ranking. In the first component,
we retrieved ‘informative sentences’ from MEDLINE
abstracts and indexed them in a text search engine,
called Elasticsearch (https://www.elastic.co/de/products/
elasticsearch ). To identify such sentences, the system relied
on the Semantic Medline Database (SemMedDB) (38),
which is a relational database that stores all sentences from
MEDLINE abstracts containing at least two biomedical
entities and a relationship between them.

The retrieval component in this system was the same
as in our previous system (39). All elements (e.g. entities,
functions and relationships) in the given BEL statement
were identified, synonyms were added and a query for the
index was generated. Elasticsearch retrieves these sentences
based on co-occurrence returns and, at most, 1000 evidence
sentences for a given BEL statement.

In order to rank the retrieved sentences, the ranking com-
ponent applies three classifiers: entity–entity (EE) classifier,
function–entity (FE) classifier and relationship classifier.
The EE classifier examines the relationship between the
entities and classifies sentences into ‘positive’ (existence
of a relationship) and ‘negative’ (no relation; only co-
occurrence). To obtain negative instances, sentences from
SemMedDB that contain two biomedical entities with a
‘co-exist’ relationship type (meaning there is not any spe-
cific type of relationship between the entities and they
only co-occur in corresponding sentences) were retrieved.
Unigrams, bigrams and word embedding of terms between
entities were used as features for the EE classifier.

The ‘function–entity classifier’ calculated the probability
of a relationship between functions and entities in the
retrieved sentences. For example, the BEL statement ‘cat-
alyticActivity (HGNC:XIAP) decreases catalyticActivity
(HGNC:CASP9)’ contains two FE relationships: ‘cat-
XIAP’ and ‘cat-CASP9’. We trained a set of FE classifiers,
where each classifier targeted one BEL function. To train
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FE classifiers, both positive and negative instances were
available in the training data provided by the organizers.
Unigrams and bigrams of the words surrounding an
entity (a window of three–five words) were utilized as
features for FE classifiers. Beside lexical features, we used
word embedding, dependency-based word embedding and
abstract meaning representation embedding (40) as other
features for FE classifiers.

The last classifier categorized the retrieved sentences
based on two BEL relationship types: ‘increase’ and
‘decrease’. More details about this classifier, such as list
of the features, are explained in our previous publication
(39).

The final score was calculated using the following
equation:

Scoresentence = WEE ∗ PEE + WFE ∗ PFE + WR ∗ PR.
P represents the probability produced by the classifiers

and W indicates the weight assigned to each classifier. We
assigned weight to each classifier based on its importance
and the accuracy of the training data set. The weights were:
WEE = 0.4, WFE = 0.5 and WRelation = 0.1. The FE classifier
had the highest weight because the data used to train this
classifier had less noise compared with the EE classifier. The
relation classifier had a lower weight compared with the
others, because we observed that rarely did two sentences
contain all elements of a BEL statement, but they did
often convey two different relationship types. That is, if
entities and functions of a given BEL statement appear in

a sentence, it is likely that the sentence has the relationship
type mentioned in the BEL statement.

Results

Here, we describe the achieved performance scores of the
participating systems for each BEL track task.

Task 1: given textual evidence for a BEL

statement, generate the corresponding BEL

statement

Thirteen teams registered for the first task of the BEL
track; however, four teams contributed results of their BEL
extraction systems. The task was performed in two stages.
In the first stage, teams had to provide their own NER and
normalization to the defined namespaces, whereas in the
second stage, the entities of the relationships were given.
In each stage, a maximum number of three submissions
were permitted. As described in the methods section, the
evaluation of the submitted BEL statements was performed
in a number of subsiding steps. This allowed for the iden-
tification of the challenges on each different structural
level.

A summary of the best F-scores for all participants of
stage 1 is shown in Figure 7, along with the best scores
of the BioCreative V (2015) evaluation. Although different
test sets were used in the BioCreative V (2015) and VI

Figure 7. Best results of each system of BioCreative VI (2017) and BioCreative V (2015) in each structured level of task 1.
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(2017) BEL tracks, their characteristics, such as the size of
the datasets, the included entity types, BEL functions and
the relationships, were similar. It is therefore reasonable to
compare the results of both assessments. Overall, Figure 7
illustrates several trends: firstly, prediction scores of the
secondary level are significantly higher than their specific
primary level scores; secondly, the complexity of the extrac-
tion process increases from term, relation and function to
BEL statement extraction level. Compared with BioCreative
V, a clear performance gain was achieved at the functional
and full statement levels.

The detailed results of each individual run of stage 1 are
provided in Table 2. The results are color-coded according
to F-score values (F), the main evaluation criterion, and
supplemented by the values for precision (P) and recall (R).
The best results for each evaluation metric are marked in
bold. In general, all teams took part on all structural levels
except the neural network-based system, which excluded
the function level.

Overall, the two systems participating the second time
performed best in almost all categories: the BELMiner sys-
tem, in particular, outperformed all other systems. Analysis
of the different steps revealed that NER performance in
stage 1 reached F-scores between 63% and 76.39% for
the best performing runs. The function extraction seemed
to be more difficult than relationship extraction and pro-
duced the greatest differences. BELMiner could extract
function information in stage 1 with an F-score of 40.54%
and BelSmile with a best performance of 33.99%. The
hierarchical sequence labeling system could recognize cor-
rect functions with an F-score of only 20%, and the neu-
ral network-based system did not predict any functions
at all.

At the relationship level, BELMiner and BelSmile
achieved similar F-score performances of 43.77% and
40.22%, respectively. This is a large difference with the
other systems with F-scores of 29.8% and 24.6% for the
neural network-based system and the hierarchical sequence
labeling system, respectively. At the secondary relationship
level, where only two thirds of the relationship (subject,
object and relation type) needed to be correct, BELMiner
achieved an impressive F-score of 87%. All other systems
reached F-scores only between 62% and 65%.

Finally, the best full BEL statement extraction score
for BELMiner was 32.45% at stage 1. This illustrates the
difficulty of this highly structured prediction task. Despite
similar values for relationship extraction, BelSmile lost
performance in comparison with BELMiner and achieved
an F-score of only 22.99%. Surprisingly, despite no function
recognition and low relationship extraction performance,
the neural network-based system obtained an F-score for
full statement extraction of 18%. The hierarchical sequence Ta
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labeling system reached only 10.6% and shows the diffi-
culty of sentence to BEL statement alignment.

The detailed results for task 1 stage 2 are shown in
Table 3, and a summary is illustrated in Figure 7. In this
stage, the gold standard concepts, together with their spe-
cific text spans, were made available to the teams. All teams
could significantly benefit and improve on the level of the
full statements. These results show the importance of high-
quality term recognition for further higher-level recognition
tasks. NER was enhanced to 83–91% in the second stage.
Because NER was not evaluated independently, but only
when full statements were provided by the systems, no
system could reach an F-score of 100%.

Performance increases can be seen on all evaluation
levels for all teams. Again, BELMiner improved the most
on all levels. For full statement level, it reached the highest
F-score of 49.6% with the provided terms. In comparison to
stage 1, the score was increased up to 17% on the same test
set. Similar performance increases were seen on the function
and relationship levels too. In summary, the comparison
of all teams shows that most teams, except for the neural
network-based system, built systems that focused more on
precision rather than recall. Furthermore, high scores on
the relationship level do not necessarily correlate with high
scores on the full statement level. This is because the full
statement level combines all structural levels.

To evaluate whether some information is more diffi-
cult to extract than others, we identified the information
for which not a single correct prediction was produced.
Figure 8 shows the number of sentences for which no run
of any participant system provided any valid prediction for
each structured level. On the term level, only two sentences
with no true term predictions were found. In stage 1, on
the relationship-secondary and relationship level, no correct
predictions were made for 6 and 15 sentences, respectively.
In stage 2, where the terms were provided, this was reduced
significantly. A high number of sentences with no valid pre-
dictions for function-secondary and function level in both
stages could be identified (36 and 39 in stage 1, 33 and 35 in
stage 2). Here, the given entity information in stage 2 only
slightly reduced the amount of non-prediction sentences.
The analysis of the different functions showed that around
23% (18/79) of the activity functions and 50% of the tloc()
(5/10) functions were not predicted from any system. For
the activity functions, tloc() is also the most ambiguous
in curator annotation and is also most difficult to rec-
ognize because biological interpretation is necessary. An
example is the statement ‘p (HGNC:TNF) increases tloc(p
(HGNC:KHDRBS1), GOCC:cytoplasm, GOCC:nucleus)’
that was extracted from the following sentence: ‘The results
showed Sam68 levels decreased in the cytoplasm following
TNF-a stimulation for 1 h, which was paralleled by a Ta
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Figure 8. Number of sentences for each structured level on each stage for which no correct prediction was produced by any run of any participant

system.

corresponding increase in its nuclear level showing that
Sam68 is a TNF-a responsive protein (Fig. 7d)’ (41).

Figure 8 also clearly shows that entity information also
improved performance on the statement level. In stage 1,
40 sentences lacked a correct prediction, whereas in stage
2, only 23 sentences had no valid prediction. A typical
relationship that the automatic systems could not extract
was the BEL statement ‘act(p (HGNC:EDNRA)) increases
a (CHEBI:“calcium(2+)”)’ from the sentence ‘This ET-1-
induced cell proliferation and [Ca2+] increase were com-
pletely abolished by BQ123, a selective ETAR antagonist,
but not by BQ788, a selective ETBR antagonist’ (42). For
the extraction of such statements, an understanding of bio-
logical experiments and reasoning, as well as interpretation
of their results, is necessary. For the example provided,
it can be reasoned that activity is necessary for the read-
out if the removal of a protein activity [in this case act(p
(HGNC:EDNRA)) through its antagonist BQ123] leads to
the abolishment of the read-out (in this case an increase of
[Ca2+]).

Task 2: given a BEL statement, provide a

maximum of 10 additional evidence sentences

Only one system, BELTracker, participated in this task. In
agreement with the organizers, two runs with two different
configurations and only five ranked sentences for each run
were submitted. The correctness of the provided evidence
sentences was evaluated manually and rated on two differ-
ent levels of strictness:

(i) Fully supportive: Relationship is fully expressed in the
sentence.

(ii) Partially supportive: Relationship can be extracted
from the sentence if context sentences or biological back-
ground knowledge are taken into account.

To evaluate the quality of the curation results, we calcu-
lated an inter-annotator agreement. For this task, part of the
manual curation was performed by two different curators.
For 150 entries, we observed a high agreement of 93%
(kappa statistic: 0.75) and 91% (kappa statistic: 0.79) for
the categories fully and partially supportive, respectively.

As shown in Table 4 the system provided 382 evidence
sentences for 98 BEL statements in each run (mean 3.9
sentences per statement). In run 1, for 55 BEL statements,
there was at least one entirely correct evidence sentence;
for 71 statements, there was at least one sentence meeting
the partially supportive evaluation condition; and in run 2,
58 and 70 BEL statements satisfied the fully and partially
supportive evaluation conditions, respectively.

Table 4 also shows the detailed numbers for true pos-
itives (TP), false positives (FP) and the resulting precision
at the micro level. Around one-third of all sentences fully
expressed the desired relationship. To assess the ranking
quality of the system, we computed the mean average
precision (MAP). Although the first run had a slightly lower

Table 4. Evaluation results of task 2 including MAP

Runs Criterion TP FP Precision MAP

Run 1 Full 117 265 30.6% 59.6%
Partial 175 207 45.8% 77.5%

Run 2 Full 121 261 31.7% 50.2%
Partial 192 190 50.3% 76.7%
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precision compared with the second run, the MAP was
considerably higher, especially for full supportive sentences.
Overall, based on the results and the low number of partic-
ipants, task 2 appeared to be as difficult as task 1. For some
statements, only a few references could be extracted by
curators and no prediction was provided by the automatic
system. One example is the statement ‘p (MGI:Tmsb4x)
decreases path (MESHD:Colitis)’. Only the abstract with
the PMID, 28127198, could be found containing these
entities and also this relation. A second example is the
statement ‘p (HGNC:CXCL8) increases p (HGNC:BCL2)’,
where numerous abstracts could be found with those co-
occurring genes but not the relationship. For this example,
BELTracker made only false predictions.

Placeholder for Table 4.

Discussion

The results of biomedical analyses are complex and are
often associated with several experimental settings includ-
ing inhibitors, silencing or knock-out experiments. For
understanding and interpreting these results, and encoding
the findings as relationships, biological background
knowledge is often necessary. Biologists encoding such
relationships most likely select evidence sentences on the
basis of the detailed experimental information included. All
this leads to a high complexity for relationship extraction.
Furthermore, results are reported not only on a molecular
level but often on biological process or disease levels as well.
The BEL corpora created for the BioCreative VI track 4
added a new resource for use in the training and evaluation
of biological relationship extraction methods. In contrast
with other published corpora, BEL includes multimodal
relationships spanning from molecular protein–protein or
protein–chemical entity relationships to higher-level causal
relationships including biological processes or diseases,
which are common in real-world data, to tackle real-world
use cases. There are already a number of publicly available
corpora addressing different relationship types (43–45). In
contrast with the BEL corpora, they mostly address only
one or two types of entity.

Consequently, the BEL track remains the most com-
plex task within the BioCreative challenge, even after our
attempts to simplify the BEL statements and the evalua-
tion. In this track, four different entity types, gene and
protein names, small chemicals, disease names and bio-
logical processes have to be recognized and normalized
for the term-level evaluation. The performance of term
detection ranges between F-scores of 50.88% and 76.39%.
This scale of NER performance dramatically influences
the results of subsequent higher levels. By providing the
term information in the second stage of task 1, the NER

performance within submitted BEL statements increased to
F-score values between 83.93% and 91.33%. Hence, all
other extraction steps for function, relationship type and
full statement extraction improved drastically because of
the provided name entities. For example, the best system,
BELMiner 2.0, improved the BEL statement extraction
performance from an F-score of 32.45% to an F-score
of 49.6%. Primary researchers could support information
extraction tremendously in using standardized terminology
in their publications.

The second most influential factor was the past experi-
ence of the team that utilized the systems created for the past
2015 BEL track. BelSmile and BELMiner 2.0 participated
again this second time. Furthermore, both systems rely on
dependency parsed text as well as rules applied on depen-
dencies. Rules can be more easily learned on smaller train-
ing sets and do not need in depth annotation of the training
data. In direct comparison, BELMiner 2.0, using graph-
based traversal, outperformed BelSmile, which is based on
SRL for relation extraction. Performance differences for
these systems can be seen on all levels: term recognition,
function recognition and, to a lesser extent, relationship
extraction. The other newly introduced methods are more
dependent on positional information and the size of the
training set. The system based on hierarchical sequence
labeling aligned the BEL statements and the sentence to
generate the corpus. Also, the neural network-based system
relies on positional information, as do most currently avail-
able machine learning algorithms. Both approaches would
most likely gain performance with exhaustive positional
annotations and larger training sets.

The biological research community needs highly precise
data for their analyses to further understand biological
mechanisms. Therefore, most of the biological databases
that provide research and experimental data focus mainly
on manual curation for relationship extraction to meet the
quality needs of the research community. The comparison
of the secondary and primary levels of task 1 shows that
the precision and recall values of secondary levels are high
enough to use as recommendations for manual curation.
Therefore, we believe that migrating from manual to semi-
automatic curation workflows, by using the BEL extraction
systems mentioned here, is worth consideration to still
produce high quality curation data while at the same time
raising curation efficiency and reducing time effort.

Another important aspect of scientific research is the
reproducibility of findings. In general, reproducibility
increases the confidence in findings, and is reused by
other researchers for their own studies. Finding reproduced
evidence from the scientific literature is a challenging text
mining problem. Task 2 tried to tackle this challenge by
providing a platform for building systems that can find
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further evidence for a given BEL-encoded relationship. The
evaluation of task 2 was split into two levels: fully and
partially supportive. The only system participating in this
task performed with around 30% precision for finding up
to five instances of evidence for a single relationship. As
the size of databases is rising enormously, we think this will
become more important to the research community in the
future.

Most current and popular methods used by NLP system
developers and applicants are based on machine learning.
For those methods, larger training sets and positional anno-
tation information needs to be available. Therefore, for
future track development for BEL extraction, we plan to
focus on three different areas. Firstly, we would like to
further reduce the complexity of the task and focus on
certain subtypes of entities and relationships. Secondly, we
will attempt to increase the size of training data and, in
particular, provide further positional annotations. Also, the
data produced by previous BioCreative challenges might
represent a useful resource that can be utilized in the future
as training data for the BEL track. Finally, we need to
provide tools that reduce the time needed for participants
to build complex BEL-related workflows so that they can
focus more on the mining tasks.

A mixture of automatic and manual post-processing
steps is still necessary for the generation of high-quality
data. Better alignment of curators with unambiguous anno-
tation guidelines and more interdisciplinary work of both
text miners and curators are necessary to overcome some
of this additional work. This will hopefully lead to better
training corpora, as well as methods supporting efficient
curation in the future.

Conclusion

The extraction of molecular mechanism information with
a fully automatic relationship extraction is a complex task.
Through the second round of the BEL track and the pro-
vision of training data, the performance of participating
systems increased drastically. When entity annotation was
given, an F-score of up to 49% could be reached. Neverthe-
less, NER is the most relevant information extraction task
to accomplish such an F-score. An increase in further train-
ing data and terminology resources is necessary to improve
performance. Additionally, to enhance participation in such
a complex track, we have to consider subdividing the task
further, find automatic ways to increase the amount of
training data and provide more supportive tools for each
individual subtask. Nevertheless, we are positive that the
investment (task definitions, data sets, documentation, eval-
uation framework and participating systems) made so far in

the BEL track shows the need for BEL-related text mining
in the scientific community.
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