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Abstract

RNA-binding proteins (RBPs) play important roles in regulating the expression of genes

involved in human physiological and pathological processes, especially in cancers.

Many RBPs have been found to be dysregulated in cancers; however, there was no

tool to incorporate high-throughput data from different dimensions to systematically

identify cancer-related RBPs and to explore their causes of abnormality and their poten-

tial functions. Therefore, we developed a database named RBPTD to identify cancer-

related RBPs in humans and systematically explore their functions and abnormalities

by integrating different types of data, including gene expression profiles, prognosis

data and DNA copy number variation (CNV), among 28 cancers. We found a total of

454 significantly differentially expressed RBPs, 1970 RBPs with significant prognostic

value, and 53 dysregulated RBPs correlated with CNV abnormality. Functions of 26

cancer-related RBPs were explored by analysing high-throughput RNA sequencing

data obtained by crosslinking immunoprecipitation, and the remaining RBP functions

were predicted by calculating their correlation coefficient with other genes. Finally, we

developed the RBPTD for users to explore functions and abnormalities of cancer-related

RBPs to improve our understanding of their roles in tumorigenesis.

Database URL: http: //www.rbptd.com

Key words: cancer; CNV; differential expression; RNA binding protein; survival

analysis

Introduction

RNA-binding proteins (RBPs) are proteins that combine
with RNA to form protein complexes to regulate RNA

expression and exert its functions in physiological and
pathological processes (1, 2). RBPs can regulate gene
expression by different ways. For instance, it can regulate

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baz156/5734253 by guest on 23 April 2024

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
www.rbptd.com


Page 2 of 7 Database, Vol. 2020, Article ID baz156

Figure 1. Workflow of RBPTD development. Expression profiles, prognostic information and copy number variation (CNV) data were downloaded

from The Cancer Genome Atlas (TCGA). To find the cancer-related RBPs, we used the DESeq2 package in the R software environment to analyse

differentially expressed genes (DEGs), and the survival package of R software was used for survival analysis. To reveal the causes of abnormality

of dysregulated RBPs, the genomic identification of significant targets in cancer (GISTIC) was used for CNV analysis. We also predicted the function

of RBPs by CLIP-Seq experimental data and co-expression analysis. Finally, we then developed a database using the obtained RNA binding protein

(RBP) results.

gene expression at the post-transcriptional level by affecting
RNA stability and transportation (3–8). In addition, it also
regulates gene expression by directing ribosomes to affect
the rate of protein synthesis at the translational level (9).
Therefore, the normal RBPs play important roles in human
cellular processes.

RBPs are closely associated with a variety of human
diseases, especially cancers (5, 6, 10–14). Substantial studies
have revealed that dysregulated RBPs have been proven to
play essential roles in tumorigenesis (15, 16). For example,
RBP U2AF1 affects pre-mRNA splicing of a large number
of known oncogenic drivers to promote tumorigenesis (17).
Therefore, it is essential to integrate the expression profiles
of RBPs to systematically investigate their functions in
cancers.

Previous studies have revealed that DNA copy number
variation (CNV) has a significant impact on gene expres-
sion regulation and is involved in tumorigenesis (18, 19).
Therefore, the identification of CNV-related dysregulation
of RBPs may reveal the causes of abnormality of some dys-
regulated RBPs. Since RBPs mainly exert their functions by
combining with transcripts, high-throughput experimental

methods, such crosslinking immunoprecipitation sequenc-
ing (CLIP-Seq), can be used to identify their target sites in
gene transcripts. Thus, it is important to integrate multiple
types of data to investigate their potential functions and the
causes of abnormality.

To systematically investigate the functions of RBPs in
cancers, we first identified cancer-related RBPs, includ-
ing significantly differentially expressed RBPs and those
with significant prognostic value, by analysing their gene
expression profiles and prognostic information. We then
explored their potential functions by analysing CLIP-Seq
data for 26 RBPs and calculating the correlation of expres-
sion among the remaining RBPs with other genes. Finally,
we investigated CNV-related dysregulated RBPs and devel-
oped a database to manage and present the results for
reference.

Methods

The analytical workflow of this study consists of four
sections: cancer-related RBPs identification, CNV-analysis,
function prediction and database construction (Figure 1).
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Figure 2. Distribution of RBPs among cancers. (A) Distribution of significantly differentially expressed RBPs among cancers. (B) Distribution of RBPs

with significant prognostic value among caners. (C) Count of DERBPs and RBPs with prognostic values in cancers. The number ahead of cancer

means the number of cancers with the same RBPs. DERBPs = differentially expressed RBPs.

Identification of cancer-related RBPs

RBPs were identified by experimental methods including
CLIP-Seq and computational prediction methods (20) fol-
lowing previously established methods (6, 21, 22). Gene
expression profiles of 28 types of cancers were down-
loaded from The Cancer Genome Atlas (TCGA). Signif-
icantly differentially expressed RBPs were identified by
comparing their expression levels in cancer tissues with
those in adjacent normal tissues using the DESeq2 (ver.
3.7) with the default settings (23, 24). The raw P values
were then adjusted to the false discovery rate (FDR) using
the Benjamini–Hochberg procedure. Significant differential
expression was assessed at a level of FDR ≤ 0.05. To identify
RBPs with significant prognostic value, patients of each
cancer type were divided into two groups according to
mean RBP expression levels. The Kaplan–Meier method
was then applied to determine differences in survival curves
using the survival (25) package (ver. 2.38) in the R software
environment. Significance was determined at a level of P
value ≤0.05.

CNV analysis

To identify CNV-related dysregulated RBPs among 28 types
of cancer, the copy number segment of each cancer patient
was downloaded from TCGA. These data were then anal-
ysed using the genomic identification of significant targets
in cancer (GISTIC) (ver. 2.0) (26) with the human hg38
reference genome. According to the G-score calculated by
GISTIC, significantly amplified or deleted regions were
identified for each patient. The false discovery rate (FDR)
was then calculated for aberrant regions, and regions with
FDR ≤ 0.05 were identified (26–28).

Function prediction

RBPs predominantly exert their functions by combining
with RNA to affect their stability or functions. The CLIP-
Seq data of RBPs were applied to identify RBP binding sites
in gene transcripts obtained from the StarBase (ver. 3.0) (29,
30) and the CLIP-Seq of 26 cancer-related RBPs were found.
In addition, Pearson correlation coefficients between RBPs
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Table 1. Statics of cancer-related RBPs

Primary site SUR DE CNV DE & SUR DE & CNV DE & CNV &
SUR

Adrenal gland 886 38 33 96 6 3
Bile duct 98 36 5 4 0 0
Bladder 300 25 87 18 2 2
Blood 843 0 0 0 0 0
Bone marrow 286 0 22 0 0 0
Brain 1455 84 90 128 5 4
Breast 206 14 173 7 0 0
Cervix 243 0 177 1 1 0
Colorectal 97 59 84 17 3 0
Eye 314 0 223 0 0 0
Head and neck 604 24 101 8 1 0
Kidney 697 0 124 0 0 0
Liver 1043 9 71 7 1 0
Lung 161 20 114 7 2 1
Lymph nodes 69 0 24 0 0 0
Nervous system 418 0 0 0 0 0
Oesophagus 90 55 50 0 2 0
Ovary 79 0 98 0 0 0
Pancreas 297 0 85 6 2 0
Pleura 353 0 68 0 0 0
Prostate 69 16 86 4 1 0
Skin 420 11 185 34 15 4
Soft tissue 445 0 117 6 2 0
Stomach 96 50 66 10 2 1
Testis 25 0 39 0 0 0
Thymus 240 1 13 3 1 0
Thyroid 113 13 0 0 0 0
Uterus 1635 47 172 46 7 6
Total 1970 454 975 272 45 21

Numbers of significant RNA binding proteins (RBPs), categorised by survival (SUR), differential expression (DE) and copy number variants (CNV). Boolean operator (&) indicates RBPs
common among multiple categories.

and other genes were calculated using the Hmisc package
in R to predict their potential targets. Putative regulatory
pairs with coefficients ≥0.4 and P ≤ 0.05 were retained.

Database construction

The RBPTD database was constructed based on the Apache
(ver. 2.0), PHP (ver. 7) and MySQL (ver. 5.3) software
packages. We used the Vue Cli and BootstrapVue tools as a
framework for building user interfaces. The gene expression
boxplot and Kaplan–Meier survival curves were provided
by the ECharts charting library.

Results

Identification of cancer-related RBPs

Our comparison of gene expression profiles between cancer
tissues and adjacent normal tissues across 28 cancer types
identified 454 significantly differentially expressed RBPs
(|log2 fold change| ≥1 and FDR ≤ 0.05). Among these, 236

RBPs were cancer type-specific, and 218 were differentially
expressed in more than one cancer type (Figure 2A). Among
the significantly differentially expressed RBPs found in
multiple cancer types, CPEB1 was differentially expressed
in nine types of cancer; previous studies have reported its
ability of promoting tumour migration in breast (31), liver
(32) and endometrial cancers (33).

Our analysis of the prognosis of RBPs in 26 types of
cancer identified 1970 RBPs with significant prognostic
value; of these, 218 (approximately 11%) were found in
more than one type of cancer (Figure 2B).

Causes and functions of dysregulated RBPs

To explore the potential functions of RBPs, we predicted
gene transcript target sites using CLIP-Seq. We found a total
of 97 105 binding sites among 26 RBPs in the experimental
data. Because the amount of available CLIP-Seq data was
limited, we predicted the regulated genes of remaining RBPs
by calculating their correlation coefficient with other genes.
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Figure 3. Distribution of CNVs among cancer types. Bar height indicates the number of genes with CNV in the primary site. Amplification = amplified

regions. Deletion = deleted regions.

In total, we found 26 030 969 regulated RBP–gene pairs,
involving 1924 RBPs and 19 564 putative target genes
(Table 1).

Apart from exploring RBP functions, we also identified
dysregulated RBPs caused by DNA amplification and dele-
tion. By analysis of CNV-related dysregulated RBPs using
GISTIC, we found that 2307 CNVs in 975 RBPs (P value
≤0.05 and FDR≤0.05; Table 1). These CNVs included 367
amplifications in 243 genes and 1938 deletions in 828
cancer-related RBPs (Figure 3).

Database interface

We constructed a website to search and display our inte-
grated data. The website mainly consists of four sections.
The search interface can be used to search for RBPs in one
or more cancer types with various filter options, such as
gene expression fold change, prognostic value and change
in CNV (Figure 4A). The web interface also allows users
to search the database by RBP name or ensemble identifier
(Figure 4B).

Discussion

RBPTD is a database for the systematic investigation of RBP
functions and abnormal causes of cancer-related RBPs. The

database recognises 1991 cancer-related RBPs including
454 significantly differentially expressed RBPs and 1970
RBPs with significant prognostic value among 28 types
of cancer. To explore their functions, target sites of 26
RBPs were identified in this study using CLIP-Seq data.
Besides, we found 26 039 691 significantly related RBP-
gene regulatory pairs for the remaining RBPs by calculating
their Pearson correlation coefficients. Finally, we found 45
CNV-related dysregulated RBPs.

This study is the first study to incorporate multiple
high-throughput data from different dimensions to system-
atically investigate cancer-related RBPs. Previous studies
mainly focused on specific aspect of RBPs, such as dysreg-
ulated RBPs identification and SNP-related RBPs (15, 16,
34). In our study, we predicted cancer-related RBPs by the
analysis of differential gene expression, prognosis and CNV.
In addition, we not only explored the functions of RBPs by
analysing CLIP-Seq data and calculating their correlation
with other genes, but also investigated the causes of abnor-
mality for the dysregulated RBPs.

There were several limitations to the current study. Some
types of cancer have been reported without control datasets;
therefore, significantly differentially expressed genes could
not be identified for these types of cancer. In addition, the
limited number of CLIP-Seq data limited the function pre-
diction of RBPs. The function prediction based on Pearson
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Figure 4. RBP result interface with two search modes. (A) Search the database according to tumour site, P value, p-adj and/or log2FC. (B) Search the

database according to the name of RBP and cancer type. To get more details, users can click the “+” button.

correlation may be false positive, and have no experimental
data for support.

In this study, we developed RBPTD to systematically
identify cancer-related RBPs, predict their potential func-
tions in cancers and explore causes of abnormalities among
significantly differentially expressed RBPs. We expect that
our database will promote further understanding of the
roles of RBPs in tumorigenesis.
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