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ABSTRACT Children born small for gestational age (SGA), defined as a birth weight and/or length below 22 SD score (SDS), comprise a

heterogeneous group. The causes of SGA are multifactorial and include maternal lifestyle and obstetric factors, placental dysfunction, and

numerous fetal (epi)genetic abnormalities. Short-term consequences of SGA include increased risks of hypothermia, polycythemia, and

hypoglycemia. Although most SGA infants show catch-up growth by 2 years of age, ~10% remain short. Short children born SGA are

amenable to GH treatment, which increases their adult height by on average 1.25 SD. Add-on treatment with a gonadotropin-releasing

hormone agonist may be considered in early pubertal children with an expected adult height below22.5 SDS. A small birth size increases the

risk of later neurodevelopmental problems and cardiometabolic diseases. GH treatment does not pose an additional risk. (Endocrine Reviews

39: 851 – 894, 2018)

I t has been recognized for many decades that low
birth weight poses a risk factor for stillbirth and

infant death (). The World Health Organization
defines low birth weight as a weight , g. This
definition includes preterm infants who generally have
an appropriate size for their gestational age as well as
infants born at term with a small birth size. Small for
gestational age (SGA) is the term used to describe
infants with a birth weight and/or length below the
normal range for gestational age.

In neonatology SGA is usually defined as a birth
weight below the th percentile for gestational age. A
panel of pediatric endocrinologists agreed in  to
define SGA as a birth weight and/or length of at least 
SDs below the mean for gestational age, based on data
derived from an appropriate reference population ().
The choice of definition was found to have a consid-
erable impact on the risk of a host of outcomes (); for
example, the relative risk of neonatal death for infants
with a birth weight below the rd percentile was much
higher than for those having a birth weight below the
th percentile (. vs ., respectively) ().

The terms intrauterine growth restriction (IUGR)
and SGA, although often used as synonyms, are not
interchangeable. SGA infants have not necessarily

experienced IUGR and, conversely, infants with docu-
mented IUGR are not inevitably born SGA. Unlike SGA,
IUGR always refers to a pathological process that results
in decelerating fetal growth velocity. Serial ultrasound
assessment (of fetal anthropometric traits, umbilical cord
flow, and amniotic fluid) is necessary to confirm IUGR
(). Recently, consensus was reached about the definition
of “growth restriction in the newborn” ().

Among the causes of SGA are maternal health and
obstetric factors, placental insufficiency, and fetal (epi)
genetic factors. Numerous genetic causes of SGA have
been identified during the past decades and, owing to
advances in genetics, the list with involved genes con-
tinues to expand. Smaller birth size poses a risk factor for
cardiovascular disease, hypertension, and type  diabetes
mellitus (DM) (–). Many of these risks may be am-
plified by rapid postnatal weight gain (, ).

Although most SGA infants show catch-up growth
by the age of  years, ~% do not (, ). Children
born SGA who remain short may be amenable to GH
treatment. The children who participated in the initial
GH studies have now reached adult height, so that
currently there are robust data on the long-term ef-
ficacy and safety of GH for short children born SGA
(–).
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This review presents our current understanding of
SGA, including its causes and consequences, the

mechanisms linking small birth size to future health,
and the effects of GH treatment.

Physiology of Intrauterine Growth

Fetal growth is regulated by a complex interplay of
maternal, placental, and fetal factors (Fig. ) [for
graphical representations of postnatal growth regula-
tion, see () and ()]. One of the key regulators of fetal
growth is insulin, acting mainly in the third trimester
when fetal weight velocity peaks. A striking example of
the growth-promoting actions of fetal insulin is the
macrosomia commonly observed in infants born to
mothers with pre-existent or gestational diabetes. Fe-
tuses of diabetic mothers gain excess weight as a result
of insulin hypersecretion in response to sensing of
maternal hyperglycemia rather than of increased nu-
trient transfer across the placenta per se. Even in normal
pregnancies, the maternal glucose concentration in the
third trimester correlated positively with the infant’s
birth weight (, ). Growth-restricted fetuses had
lower insulin levels both before and after a glucose load
(of . g/kg of estimated fetal weight) in the umbilical
vein, as compared with their non–growth-restricted
counterparts (). The importance of insulin signal-
ing in fetal growth is also illustrated by the severe SGA
in Donohue syndrome [Mendelian Inheritance in Man
(MIM) ], caused by a mutation in the insulin
receptor gene (INSR).

At midgestation, a GH variant (GHV) secreted by
the placenta appears in the maternal circulation. GHV,
encoded by GH on chromosome q., is
expressed in the syncytiotrophoblast and the extra-
villous cytotrophoblast layers of the placenta ().
Although GHV levels were found to increase in the
maternal circulation up to term, pituitary-derived GH
progressively fell to undetectable levels (). GHVmay
promote fetal growth by increasing the availability of
maternal IGF- (, ), and by stimulating tropho-
blast invasion (), in addition to stimulation of
gluconeogenesis, lipolysis, and anabolism in maternal
tissues. The expression of GHV in placentas from
pregnancies complicated by IUGR was decreased,

along with decreases in the expression of IGF- and
IGF binding protein (IGFBP)- ().

In the mouse there is overwhelming evidence
demonstrating that IGF- and IGF-, as well as their
binding proteins and receptors, are key regulators of
fetal growth (). Also in humans these proteins are
ubiquitously expressed starting from early embryonic
development. The main site of fetal IGF production is
the liver. IGFs circulate as a ternary complex with
IGFBP- or IGFBP- and an acid-labile subunit (ALS).
IGFBPs and ALS protect IGFs against early elimina-
tion from the circulation (). Before the third tri-
mester neither ternary complex formation (between
IGF-, IGFBP-, and ALS) nor ALS is detectable in the
fetal circulation (). IGF- and IGF- are also
expressed by the placenta, with a higher abundance of
IGF-mRNA than IGF-mRNA at all gestational ages
(). In addition to directly impacting fetal growth,
IGF- is probably involved in processes such as
cytotrophoblast proliferation and/or differentiation
and trophoblast invasion (). IGF- was found to also
interact with IGFBP- synthesized by the maternal
decidual cells, thereby influencing the bioavailability of
both IGFs (, ). CpG methylation of the P pro-
moter of the IGF gene appears to contribute to the
interindividual variation of fetal growth by regulating
IGF expression in fetal tissues ().

The gene encoding IGF- (IGF) located on
chromosome p is an imprinted gene, expressed
only from the paternal allele, whereas the adjacent H
gene is only expressed from the maternally inherited
chromosome.H encodes a long noncoding RNA and
contains a differentially methylated region that is also an
imprinting control region (ICR). Methylation of the
ICR, as is the case on the paternal chromosome, pre-
vents H gene expression, which allows gene en-
hancers becoming available to act upstream on the IGF
promoter, leading to IGF expression. The ICR on the
maternal chromosome is unmethylated, resulting in
H expression and inhibition of IGF expression.

ESSENTIAL POINTS

· SGA can be the result of maternal lifestyle and obstetric factors, placenta dysfunction, and fetal genetic factors

· Current genetic strategies will lead to an increase in the numbers of children born SGA with a molecular diagnosis, which
may guide GH treatment in the individual patient in terms of response prediction and contraindications

· GH treatment increases adult height by ~1.25 SD and normalizes body composition

· A small birth size increases the risk of later noncommunicable conditions such as neurodevelopmental problems and
cardiometabolic diseases, and GH treatment does not pose an additional risk

· After discontinuation of GH treatment, fat percentage increases and lean body mass decreases, for which prolonged
surveillance may be indicated, particularly in those at risk for cardiometabolic diseases
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Whereas IGF- binds primarily to the IGF- re-
ceptor (IGFR), the growth-promoting actions of IGF-
are mediated through interactions with IGF- and
insulin receptors. IGF- has a higher affinity for the
IGFR than for the insulin receptor. IGF- binding to
the IGFR targets IGF- for degradation. IGF- has an
essential role in the proper timing of chondrocyte
maturation and perichondrial cell differentiation, as
well as in the regulation of glucose metabolism in
chondrocytes ().

IGFBP- and its protease [pregnancy-associated
plasma protein-A (PAPP-A)] are expressed in extra-
villous trophoblast and decidual cells (, ). IGFBP-
has a high affinity for IGF- and, therefore, IGFBP-
proteolysis (by PAPP-A) is required for the delivery of

IGF- to the fetus (, ). PAPP-A is a metal-
loproteinase that plays a role in the proteolytic
cleavage of IGFBP- and IGFBP-, resulting in
increased IGF- bioavailability (). Homozygous
PAPPAmutations cause prenatal and postnatal growth
failure ().

The regulation of the maternal hypothalamic–
pituitary–adrenal axis changes dramatically during
pregnancy mainly due to the third trimester increase in
placental CRH. Placental CRH stimulates the release
of ACTH from the pituitary, and this, in turn, stim-
ulates the adrenal cortex to produce cortisol. In
contrast to the inhibitory effect of glucocorticoids on
the secretion of CRH by the hypothalamus, gluco-
corticoids stimulated the expression of the CRH gene

Figure 1. Regulation of fetal growth. (a) GHV expressed from the syncytiotrophoblast stimulates trophoblast invasion. It is also
released into the maternal circulation. By stimulation of lipolysis and gluconeogenesis, GHV increases the maternal glucose level, which
passes through the placenta. Fetal insulin secretion increases in response to sensing of maternal glucose. GHV also stimulates the synthesis
of maternal IGF-1, which is able to cross the placental barrier. The placenta produces both IGF-1 and IGF-2, which are secreted in the fetal
circulation. IGF-1 binds primarily to the IGF1R. The growth-promoting actions of IGF-2 are mediated through interactions with IGF-1 and
insulin receptors. IGF-2 binding to the IGF2R targets IGF-2 for degradation. IGF-2 can also promote fetal growth indirectly by stimulating
trophoblast invasion. (b) Maternal IGF-1 circulates as a ternary complex with IGFBP-3 and ALS, preventing IGF-1 from early elimination
from the circulation. PAPP-A2 releases IGF-1 from the ternary complex. The placenta harbors multiple IGFBPs, influencing the
bioavailability of IGFs in the fetus. IGFBP-1 binds to both IGFs, whereas IGFBP-4 binds solely to IGF-2. PAPP-Amediates the release of IGF-2
from IGFBP-4. During early embryonic development, the fetus harbors no ternary complexes, in contrast to later in gestation. [© 2018
Illustration ENDOCRINE SOCIETY].
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in cultures of human placenta (). Owing to this
physiological feed-forward response, maternal cortisol
increases steeply in the last part of gestation (). The
placental barrier enzyme b-hydroxysteroid de-
hydrogenase (b-HSD) type , by catalyzing the
conversion of cortisol to inert cortisone, acts as a
gatekeeper that protects the fetus against exposure to
excess maternal cortisol. The expression of b-HSD
type  was decreased in the placentas of pregnancies
complicated by IUGR or preeclampsia (, ). This
was accompanied by a higher ratio of cortisol to
cortisone in cord blood ().

Intrauterine Growth Charts

Intrauterine growth charts can be based on (population-
based or customized) neonatal anthropometric or fetal
sonographic measurements. More than  years ago,
Lubchenco et al. () presented the first neonatal an-
thropometric chart, based on a population living at an
altitude of m. Subsequent charts were constructed
from populations living at an altitude closer to sea level.
Neonatal anthropometric charts tend to underestimate
the degree of IUGR with increasing immaturity ().

Some have suggested that intrauterine growth
charts need to take into account physiological factors
known to affect fetal growth, to allow for a better
discrimination between growth-restricted infants and
constitutionally small infants. Whereas population-
based charts only account for gestational age and
sex, customized growth charts additionally account for
maternal height and weight, parity, and ethnicity.
However, in a Bayesian meta-analysis of data from.
million mother/infant pairs, both customized and
population-based charts were able to predict adverse
neonatal outcomes (). Similar conclusions were
drawn by a recent population-based linkage study of
nearly  million mother/infant pairs, demonstrating
that partial customization (for maternal height and
parity) did not improve prediction performance ().
There are still insufficient data of good quality to
support the routine use of customized growth charts
for the postnatal diagnosis and management of SGA
infants ().

Fetal growth charts are based on ultrasound mea-
surements of anthropometric traits, such as crown–heel
length, biparietal diameter, abdominal circumference,
and femur length during pregnancy. Currently, there is
controversy as to whether one global fetal growth curve
could be applied to all pregnancies (–). The
INTERGROWTH-st study found only small differ-
ences (between sexes and populations) in fetal growth
rate among  healthy women with uncomplicated
pregnancies from middle- and higher-income neigh-
borhoods in eight different countries (). For sim-
plicity, the data were pooled to produce a universal fetal
growth chart. In contrast, a World Health Organization

project group found larger differences in estimated fetal
weight between populations and sexes, with boys having
an estimated fetal weight at birth .% to .% higher
than that of girls (). Worldwide, the proportion of
SGA births is highest in South Asia () and, in Eu-
ropean countries, the birth weights of babies of South
Asian origin are lower than of those of babies from
other ethnic backgrounds ().

The interpretation of fetal growth is strongly de-
pendent on the accuracy of gestational age de-
termination. The most accurate method for the
determination of gestational age is ultrasound as-
sessment obtained in early pregnancy (), which has
therefore become an essential part at the first con-
sultation to an obstetric caregiver, at least in in-
dustrialized countries. Failure to adequately determine
gestational age could lead to flaws in the interpretation
of fetal growth.

Maternal Medical and Social Conditions
Associated With SGA

SGA births cluster in families, because the risk of SGA
was increased for women who previously gave birth to
an SGA infant as well as for men and women who were
born SGA themselves (–). These observations
argue for a role for genetic and/or shared environ-
mental factors in the etiology of SGA. Determinants of
fetal growth all relate to conditions or circumstances
affecting the delivery of nutrients and oxygen to the
maternal–fetal interface, as well as intrauterine space,
in addition to fetal genetic factors. Table  summarizes
the various geographic, environmental, maternal,
paternal, placental, and fetal factors that are associated
with birth size.

Maternal age, parity, and obstetric history
During the first pregnancy the fetus experiences more
resistance to distend the mother’s uterus and ab-
dominal wall than in later pregnancies. Consequently,
the first-born infant is on average  g smaller than
subsequent siblings (). As compared with - to
-year-old women who were parity  or , nullipa-
rous women, years of age had the highest odds of
SGA offspring: . vs . for nulliparous women
aged  to  years (). The risk of SGA was
also increased with short (, months) or long
(. months) intervals between births, and after
previous stillbirth, preterm birth, or SGA birth (, ).
The greater risk of SGA associated with use of assisted
reproductive technologies could not fully be explained
by twin pregnancies (, ).

Maternal ethnicity, education, and
income inequality
Globally, there are only minor differences in birth
weight between populations from different ethnic
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backgrounds, with few exceptions. Women of South
Asian ancestry, living in their home country or else-
where, give birth to babies with lower birth weight (,
). The ethnic difference in low-birth-weight rate in

the United States can probably be attributed to dif-
ferences in socioeconomic status (). Lower maternal
education was linked to an appreciable risk of preterm
and SGA births across  European countries. The

Table 1. Geographic, Maternal, Paternal, Placental, and Fetal Conditions Associated With Offspring Birth Size

Group Factor Direction of Association

Environmental factors Altitude 2

Pollution 2

Maternal factors Birth weight +

Parity +

Age +

Short or long intervals between births 2

Previous stillbirth, preterm birth, or SGA birth 2

Assisted reproductive technologies 2

South Asian ancestry 2

Socioeconomic status +

Maternal education +

Income inequality 2

Smoking 2

Drugs such as cannabis and cocaine 2

Alcohol 2

Height +

Weight and BMI prior to pregnancy +

Weight loss between pregnancies 2

Gestational weight gain +

Twin pregnancy 2

Infections and parasite infestations (Table 2) 2

Anemia 2

Antiphospholipid syndrome 2

Carriage of prothrombotic gene variants 2

Inflammatory bowel disease 2

Celiac disease 2

Epilepsy 2

Depression or intimate partner violence 2

Paternal factors Being born SGA 2

Height +

Placental factors Preeclampsia 2

Other placental abnormalities 2

Fetal factors Multiple genetic syndromes (Tables 4–7) 2/+
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excess risk of SGA birth in absolute terms (Slope Index
of Inequality) associated with low maternal education
was . for all cohorts combined (). Higher levels
of income inequality were associated with greater
numbers of low-birth-weight infants ().

Maternal lifestyle factors
Maternal smoking has been recognized for more than
half a century as one of the largest preventable risk factors
for IUGR (, ). Exposure to cigarette smoke has been
postulated to affect fetal growth by complex interactions
with the maternal immune system, hormones, and
metabolism (), possibly via differential methylation of
multiple genomic loci (). Despite a downward trend in
the proportion of mothers who smoke during pregnancy,
~% continue to do so (, ).

Fetuses of mothers who smoked during pregnancy
exhibited reductions in fetal anthropometric param-
eters such as head size and femur length after the first
trimester (). Active maternal smoking was associated
with a twofold increased risk of low birth weight ().
The risk of poor scholastic achievement among
children born SGA to mothers who smoked was
.%, which was higher than in any other strata of
maternal smoking and fetal growth (). Passive
smoking and smokeless tobacco use were associated
with small reductions in birth weight (–).

Pregnant women undergoing a smoking cessation
intervention were .-fold less likely to smoke at the end
of gestation (). The odds ratio for the effect of smoking
cessation interventions on low birth weight was . (%
CI, . to .) (). Apparently, smoking cessation early
in pregnancy is more effective than in the third trimester
for the prevention of IUGR (, ).

Use of cannabis, cocaine, or alcohol during preg-
nancy also increased the odds of SGA offspring
(–). These relationships may be either causal or
confounded by concurrent smoking or poor maternal
health status. Similarly, higher maternal caffeine intake
during pregnancy was associated with an increased risk
of delivering low-birth-weight infants (, ).

Maternal body mass index and gestational
weight gain
Maternal underweight [i.e., a body mass index
(BMI),. kg/m] prior to pregnancy was associated
with a .-fold increased odds of SGA (). Con-
versely, maternal overweight and obesity were found
to decrease the odds of SGA, most likely due to in-
creased glucose transport across the placenta (). In a
study on weight changes across three consecutive
parities in  women (), the risk of SGA at the
second and third pregnancy was increased by ~% in
mothers experiencing significant weight loss (i.e.,
~ kg) between pregnancies, even after correction for
the initial BMI.

Gestational weight gain seems to be equally im-
portant for the risk of SGA (). Gestational weight

gain below the Institute of Medicine recommendation
(of . to  kg for women with a normal pre-
pregnancy BMI) was associated with a .-fold in-
creased risk of SGA (). Mothers who gained less
weight than expected in the second and third tri-
mesters, but not the first trimester, more often gave
birth to SGA offspring ().

The risk of SGA was increased in women with
hyperemesis gravidarum, probably through lower
gestational weight gain (). Infants of mothers with
anorexia nervosa were on average  g lighter at birth
(), and appropriate weight gain could partially
compensate for the increased risk caused by a low
prepregnancy BMI ().

Parental height
Maternal and paternal height together accounted for
% to % of the variation in birth weight within each
study (). A systematic review showed that infants
born to shorter fathers were on average  to  g
lighter than the offspring of taller fathers (). Ma-
ternal height was found to have a greater impact on
birth weight (), most likely due to the contributions
of environmental factors such as intrauterine space
and maternal physiology in addition to genetic factors.
In a meta-analysis the odds of SGA (defined as a birth
weight ,rd percentile) was . for mothers with a
height of  to  cm, increasing to . for mothers
of , cm (). Maternal height showed a weak
positive correlation with crown–rump length in the
first trimester but stronger positive correlations with
most fetal anthropometric parameters in the second
and third trimester, in addition to birth size ().

Twin pregnancies
The intrauterine growth of twins is similar to that of
singletons up until the th week of gestation, espe-
cially in dichorionic twins (). From  weeks of
gestation twins exhibited a progressive decline in
abdominal circumference, whereas head circumfer-
ence and femur length remained unaffected, as
compared with singletons ().

Fifteen to % of twin pairs have a birth weight
discordance of $% (–). Birth weight dis-
cordance was more frequent with assisted re-
production, preterm delivery, premature rupture of
membranes, and pregnancy-induced hypertension
(, ). Among twin pairs discordant for birth
weight, IUGR of at least one fetus was more common
compared with pairs of similar birth weight (% vs
%, respectively) ().

Maternal diseases and stress

Infections
Several infectious diseases in pregnant women have
been associated with delivery of low-birth-weight
babies, including viral infections (cytomegaly,
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rubella, HIV, Zika virus, influenza A), parasite in-
festations (toxoplasmosis, malaria), and peridontitis
(Table ) (–). HIV or Zika virus infections may
disturb fetal growth through placental inflammation
(, ). The brain damage caused by congenital
Zika virus infection may be attributed to placental
dysfunction occurring in early gestation, with sub-
sequent elevation of proinflammatory proteins and/or
disruption of placental genes associated with micro-
cephaly ().

Multiple mechanisms have been implicated to
play a role in the birth-weight reduction associated
with malaria, including maternal anemia and placental
inflammation, with subsequent alterations in placen-
tal growth and angiogenic factors (–). Placental
involvement is presumed to play a role only in in-
fections with Plasmodium falciparum, which, unlike
Plasmodium vivax, cytoadheres to the placenta ().
Among pregnant women in sub-Saharan Africa in-
termittent preventive therapy with three or more doses
of sulfadoxine/pyrimethamine was associated with a
-g higher birth weight than the standard two-dose
regimens, probably due to a lower risk of moderate to
severe maternal anemia at the end of gestation (),
although these findings may not be applicable to areas
with a high degree of drug resistance ().

Hematological diseases
In low- and middle-income countries,.% of women
experience anemia during pregnancy (), which is
associated with increased risks of low birth weight,
preterm birth, perinatal mortality, and neonatal mor-
bidity (). Moderate to severe maternal anemia—that

is, a hemoglobin level , g/dL—was associated with a
. increased odds of SGA offspring ().

Antiphospholipid syndrome is characterized by
thrombotic events and/or obstetric morbidities in
patients persistently positive for antiphospholipid
antibodies. Recurrent pregnancy loss is one of the key
obstetric features of antiphospholipid syndrome, in
addition to increased risks of complications associated
with ischemic placental insufficiency, such as stillbirth,
intrauterine death, preeclampsia, preterm birth, and
IUGR (). Carriage of prothrombotic gene variants,
such as factor V Leiden and methylenetetrahydrofolate
reductase CT, may also increase the risk of SGA
(, ).

Other somatic diseases
Maternal inflammatory bowel disease was found to
increase the odds of SGA offspring, probably through a
combination of placental inflammation and sub-
optimal nutritional status (). Maternal celiac dis-
ease, both treated and untreated, was associated with
increased risks of IUGR (OR .) and SGA (OR .)
(), and this may be particularly evident for un-
diagnosed celiac disease (). Maternal epilepsy was
also associated with a higher likelihood of SGA (OR
.), irrespective of antiepileptic drugs ().

Psychosocial stress and depression
Infants exposed antenatally to untreated maternal
depression, antidepressants, or intimate partner vio-
lence were more often born preterm or with low birth
weight (–). Symptoms of anxiety and/or de-
pression were associated with reduced fetal head

Table 2. Infectious and Parasitic Causes of SGA

Agent

Signs and Symptoms

Mother Infant

Influenza A virus Fever, upper airway tract infection, headache, muscle pain Asymptomatic

HIV • Early stage (within 2-4 wk after HIV infection): flu-like symptoms,
lymphadenopathy, mouth ulcers

Asymptomatic, stunting, developmental delay, full-blown AIDS

• Clinical latency stage: no or mild atypical symptoms

• AIDS: progressive weight loss, opportunistic infections, Kaposi sarcoma

Zika virus Flu-like symptoms, rash Microcephaly, subcortical calcifications, chorioretinitis

Plasmodium sp. High (cyclical) fever, chills, profuse sweating, anemia, headache,
nausea, vomiting, (bloody) diarrhea, muscle pain, convulsions

Fever, anemia, jaundice, hepatosplenomegaly, irritability

Cytomegalovirus Asymptomatic or mononucleosis-like symptoms Microcephaly, periventricular calcifications, chorioretinitis,
hearing loss, petecchiae, hepatosplenomegaly, pneumonitis

Rubella virus Flu-like symptoms, lymphadenopathy, maculopapular rash Microcephaly, meningoencephalitis, cataracts, retinopathy,
hearing loss, hepatosplenomegaly

Toxoplasma gondii Asymptomatic, mild mononucleosis-like symptoms, lymphadenopathy Microcephaly, periventricular calcifications, hydrocephalus,
chorioretinitis, hepatosplenomegaly, pneumonitis, myocarditis
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growth, but their impact on other fetal growth pa-
rameters was less clear (). Maternal psychosocial
stress had negligible effects on fetal growth ().

Environmental conditions
In several populations associations between altitude
and infant birth weight were demonstrated. The re-
duction in birth weight was estimated at  to  g for
every  m of elevation in altitude (–), with
considerable variation between populations. Tibetans
are more resilient to the effects of high altitude than
any other population (). Adaptive mechanisms that
could protect against severe IUGR all relate to the
delivery of oxygen to the fetoplacental unit ().

Pollution is a global problem that has also been
associated with adverse birth outcomes, including
SGA, along with specific health risks. Among pol-
lutants that have been linked to decreased fetal growth
are ambient air pollutants such as sulfur dioxide, fine
particulate matter (i.e., a heterogeneous mixture of
substances that sometimes includes accumulated heavy
metals and toxic organic pollutants such as polycyclic
aromatic hydrocarbons), and solid fuels (including
biomass and coal) (–), and concurrent prenatal
exposures are additively associated with lower fetal
growth (). Exposure to environmental noise or
electromagnetic fields may also increase the odds of
SGA (, ).

Abnormalities of the Placenta

Pathogenesis
Placental insufficiency is the failure of the placenta to
deliver an adequate supply of nutrients and oxygen to

the fetus, resulting in IUGR. Conditions that interfere
with placental vascular development, such as pre-
eclampsia, account for most cases of placental in-
sufficiency, although placental abnormalities such as
circumvallate placenta and placenta accreta (which
occur in ~% of pregnancies) are also associated with
IUGR (, ). Preeclampsia affects % to % of
pregnancies ().

During early pregnancy, the extravillous cyto-
trophoblast invades the spiral arteries, transforming
them into large vessels of low resistance. In pre-
eclampsia only the superficial endometrial parts of
the spiral arteries are invaded. Owing to the lack of
distal dilation, the villous tree is easily damaged by
the higher speed at which the maternal blood enters
the intervillous space. Moreover, the spiral arteries
retain their capacity to vasoconstrict, leading to
ischemia/reperfusion damage. It is of no surprise
that these processes could impact fetal growth, ei-
ther directly, by impeding the delivery of nutrients
and oxygen to the fetus, or indirectly, through in-
teractions with local growth factors, hormones, and
cytokines (Table ) (, –). In the patho-
physiology of preeclampsia, hypermethylation of
IGF- promotor mediated by DNAmethyltransferase 
may also play a role (), as well as increased IGFBP-
phosphorylation in decidualized stromal mesenchy-
mal cells (). Free radicals and inflammatory pro-
teins released by hypoxia and ischemia/reperfusion
enter the maternal circulation, eventually leading
to life-threatening eclampsia with organ dysfunc-
tion, cerebral edema, and seizures. Mothers with
preeclampsia may be at risk for cardiovascular
diseases and the metabolic syndrome later in life
().

Table 3. Alterations in the Expression Patterns in Placentas of Pregnancies Complicated by SGA, IUGR, or Preeclampsia

Mechanism Involved Factors References

Placental growth and/or
angiogenic factors

WNT2, PlGF, VEGF, VEGF receptor 1 (Flt-1), EGF, PDGF, VCAM-1, matrix metalloproteinases, decorin,
endoglin, syncytin, angiogenin, glycodelin A, proteins encoded by placental homeobox genes
(HLX, ESX1L, DLX3, DLX4, NKX3.1, TGIF-1), PPARs, RXRa

(146–158)

Nutrient transporters SNAT2, GLUT3, glycolytic enzyme-related genes (lactate dehydrogenase C, dihydrolipoamide
S-acetyltransferase, 6 phosphofructo-2-kinase/fructose-2,6-biphosphatase 2, oxoglutarate
dehydrogenase, phosphorylase), receptor for advanced glycation end products, glutamate dehydrogenase,
lactate transport, lipoprotein lipase, low-density lipoprotein transport, transferrin transport

(159–166)

Hormonal systems GH-V, IGFs, H19/IGF-2 ICR methylation status, CDKN1C, PLAGL1, leptin, leptin receptor, insulin, insulin
receptor, GRB10, 11b-HSD type 2

(27, 148, 167–174)

Cytokines IL-1a, Il-1b, IL-4, IL-6, IL-8, IL-10, IL-12, TNFa, IFN-g, TGF-b, galectins (including placental protein 13),
macrophage counts

(175–178)

Apoptosis genes Bcl-2, caspase3 (179, 180)

Senescence Telomere length, telomerase (181)

Miscellaneous Confined placental mozaicism, microRNAs, mitochondrial DNA (182–184)

Abbreviation: IFN, interferon.
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Diagnosis
Preeclampsia is defined as hypertension occurring after
 weeks of gestation, combined with () proteinuria
(. mg/d), and/or () other maternal organ dys-
function, and/or () evidence of placental insufficiency
(, ). Risk factors for preeclampsia include older
age, obesity, hypertension, and previous or familial
preeclampsia. In women at risk for preeclampsia, early
initiation (i.e.,, weeks of gestation) of acetylsalicylic
acid treatment may be beneficial (, ).

Preeclampsia may be predicted from first-trimester
Doppler ultrasonography (). Maternal biomarkers
such as PAPP-A, placental protein , bHCG, pla-
cental growth factor, pentraxin, soluble endoglin, in-
hibin A, and sFlt- could aid in the early detection of
placental insufficiency, although their predictive ac-
curacy is limited (–). Prediction performance
might be improved by the use of algorithms that
combine maternal biomarker data with findings from
Doppler ultrasonography and the background risk (as
assessed from data such as maternal ethnicity, BMI,
and personal or family history of preeclampsia) ().

Genetic Disorders of the Fetus

The rapidly expanding use of next-generation se-
quencing, particularly whole-exome sequencing but
also chromosomal microarrays, RNA sequencing, and
methylation arrays, has led to the identification of
many novel genetic causes of short stature, and birth
weight and length can either be low (“SGA”) or normal
[apparent “idiopathic short stature” (ISS)]. In some
syndromes, SGA is present in nearly % of cases,
whereas in others it is unusual. In this review, we
discuss a selection of genetic causes of conditions in
which SGA is one of the documented clinical features.
After a discussion of imprinting disorders and
methylation disturbances (Table ) (–), we
follow a diagnostic classification based on the regu-
lation of the epiphyseal growth plate (, -),
with examples of disorders of the GH–IGF axis
(Table ) (, –), paracrine factors, cartilage
extracellular matrix and intracellular pathways (Table )
(–), and fundamental cellular processes (Table )
(–). Other examples can be found in previous
reviews (–). We foresee that in the coming
decades, the advancement and increasing use of ge-
netic diagnostic techniques will further expand the
knowledge about the genetic origin of prenatal and
postnatal growth.

Imprinting disorders and methylation
disturbances
Imprinting disorders are a group of congenital diseases
characterized by overlapping clinical features re-
garding growth, development and metabolism, and
commonmolecular disturbances affecting genomically

imprinted chromosomal regions and genes. The term
genomic imprinting describes the expression of spe-
cific genes in a parent-of-origin specific manner—that
is, they are expressed only from the maternal or from
the paternal gene copy but not biparentally ().
Imprinted genes in the placenta have been shown to be
important for the control of fetal growth (). One of
the best-known and most well-studied examples is
Silver–Russell syndrome (SRS), but there are several
other disorders associated with SGA (Table ). Ad-
ditionally, methylation disturbances can occur in
nonimprinted genes ().

SRS
Children with SRS (MIM ) are almost uni-
versally (.%) born SGA, remain short, and show
various dysmorphic features, such as relative macro-
cephaly, a triangular-shaped head with frontal bossing,
clinodactyly, and asymmetry of face and/or body ().
Severe feeding difficulties can be present, especially
during infancy and early childhood, as well as other
gastrointestinal manifestations (). Untreated, the
mean adult height is around2 SDS (, ). SRS is
primarily a clinical diagnosis, which can be established
by using the Netchine–Harbison clinical scoring system
().

In ~% of patients clinically diagnosed with SRS,
an underlying molecular cause can be identified ().
Approximately % of cases are caused by a loss of
methylation (LOM) of the telomeric domain in the
p. region (–), resulting in downregulation
of paternal IGF expression, in line with studies on the
role of IGF in fetal humans and mice (, ). The
p. region contains two ICRs, both of which
control imprinted genes that are important for the
regulation of prenatal and postnatal growth. Besides
the relatively frequent epigenetic causes, two rare
genetic causes have been discovered in the same p
region. First, increased expression of CDKNC (by a
gain-of-function mutation or maternal duplication)
can cause SRS (, ), but this is also associated
with the Intrauterine growth restriction, Metaphyseal
dysplasia, Adrenal hypoplasia congenita, and Genital
anomalies (IMAGe) syndrome (MIM ), char-
acterized by IUGR, metaphyseal dysplasia, congenital
adrenal hypoplasia, and genital anomalies (), as
well as a syndrome of prenatal and postnatal growth
failure with early-onset DM (, ). Second, a
paternally transmitted SRS can be due to an IGF
loss-of-function mutation (MIM ) (, )
(Table ). Also, disruptions in the HMGA–PLAG–
IGF pathway can cause an SRS phenotype (), as
well as copy number variants (CNVs) involving the
p. region, with the specific SRS phenotype
depending on CNV size, location, and parental origin
(, , , ).

An additional % to % of SRS cases are caused by a
maternal uniparental disomy (UPD) of chromosome 
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Table 4. Examples of Imprinting Disorders and Methylation Disturbances Associated With SGA

Syndrome (MIM)
Genetic or Epigenetic
Defect Incidence

Mean BW
SDS

Mean BL
SDS

Clinical Features
Besides SGA Treatment Reference

SRS (180860) 11p15 LOM (30%–60%),
upd(7)mat (5%–10%),
CDKN1C (act), IGF2
(pat), HMAG2,
PLAG1, CNVs, 14q32
abnormalities, upd
(20)mat, upd(16)mat

1/30,000–100,000 23.2a 24.5a Postnatal growth failure,
relative macrocephaly
at birth (difference
with length SDS of 3.9,
2.1, and 1.7 SDS,
respectivelya),
protruding forehead,
body asymmetry,
feeding problems,
and/or low BMI

GH effective (195, 196)

22.3a 22.5a

22.7a 21.8a

Temple syndrome
(616222)

14q32 abnormalities:
upd(14)mat, paternal
microdeletions,
hypomethylation
of DLK1/GTL2
intergenic
differentially
methylated region
(IG-DMR)

.50 cases 21.9 21.6 Postnatal growth failure,
hypotonia, delayed
development of
motor skills, feeding
problems in infancy,
early puberty, broad
forehead, short nose
with wide nasal tip,
small hands and feet

Insufficient data (197)

IMAGe syndrome
(614732)

Maternally inherited
activating mutations
in CDKN1C

.15 cases 22.0 to 24.0 — Relative macrocephaly at
birth, normal or mild
intellectual disability,
frontal bossing, low-
set ears, flat nasal
bridge, short nose,
congenital adrenal
hypoplasia,
metaphyseal and/or
epiphyseal dysplasia,
male genital
anomalies, early-onset
type 1 DM

Insufficient data (198, 199)

PWS (176270) Paternal 15q11.2q13
deletion (65%–75%),
upd(15)mat
(20%–30%), or
imprinting center
mutation (1%–3%).
Loss of SNRPN and
NDN expression

1/16,000–27,000 21.2 21.1 Diminished fetal activity,
obesity, muscular
hypotonia, intellectual
disability, short stature,
hypogonadotropic
hypogonadism, small
hands and feet

GH effective (200, 201)

Pseudohypopara-
thyroidism type 1a/c
(103580)b

Heterozygous GNAS1
mutation inherited
from the mother

1/150,000 for
all types
together

20.6 21.1 Resistance to PTH and
other hormones (TSH,
LH, FSH, and GHRH),
Albright hereditary
osteodystrophy (short
stature, obesity, round
face, subcutaneous
ossifications,
brachydactyly,
intellectual disability).
37% SGA

Insufficient data (202)

Pseudopseudo-
hypoparathyroidism
(612463)b

Heterozygous GNAS1
mutation inherited
from the father

See above 22.7 23.0 Albright hereditary
osteodystrophy
without multiple
hormone resistance.
95% SGA

Insufficient data (202)

(Continued )
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[upd()mat]. The primary candidate genes associated
with SRS are GRB (p.) andMEST (q) (). In
~%, the genetic cause remains unknown, which is
referred to as clinical SRS. Patients with p LOM
have a more classic SRS phenotype than do those with
upd()mat, but patients with upd()mat carry a higher
risk of behavioral problems (). More widespread use
of methylation studies will probably uncover many more
epigenetic disorders associated with short stature, as il-
lustrated by a study in patients with suspected SRS or
unexplained short stature/IUGR, in whom % showed a
methylation abnormality in  imprinted loci ().

There is little information regarding the natural
history of SRS (). In a study of  young adults with
SRS, including  patients with p LOM and nine
patients with no identified molecular anomaly, the
metabolic health profile was similar to that of non-SRS
subjects born SGA (). In contrast, three reports
suggest that patients may be at risk for later metabolic
disorders. Patients with an p anomaly (two having
received GH treatment for several years during child-
hood) developed obesity, hypertension, and type  DM
in their early s (), a young adult with p LOM
suffered from severe obesity, type  DM, and micro-
albuminuria, leading to the indication of bariatric
surgery (), and the oldest patient with SRS known so
far had type  DM, osteopenia, and hypercholesterol-
emia at the age of  years (). Long-term follow-up
studies on large cohorts of molecularly confirmed adult
patients will be necessary to chart the long-term natural
history of SRS and identify an adequate adult follow-up.

According to limited published information, early
bone-age delay is followed by rapid advancement,
typically at ~ to  years of age, whereas the onset of
puberty is usually at the younger end of the normal
spectrum. Adrenarche can be early and aggressive ().
Males with SRS have an increased risk of genital ab-
normalities such as cryptorchidism and hypospadias
(, , ), which could be associated with re-
productive problems later in life. In females, Mayer–
Rokitansky–Küster–Hauser syndrome, characterized by
hypoplasia or aplasia of the uterus and upper part of the
vagina, has been reported (, ).

Long-term GH treatment has proven to be safe and
effective in improving adult height in SRS (–),
to a similar degree as nonsyndromic children born
SGA (). However, the rapid bone maturation
observed during adrenarche and/or puberty can
compromise the long-term efficacy of GH treatment.
A -year course of GnRH agonist (GnRHa) treatment
is recommended for patients with SRS with a poor adult
height prognosis at the onset of puberty (, ).

Other imprinting disorders
Besides upd()mat (associated with SRS), there are
several other UPD syndromes associated with short
stature and various additional clinical features. Ma-
ternal upd()mat, as well as paternal deletions, distal
q duplications, and LOM at the intergenic differ-
entially methylated region cause the Temple syndrome
(MIM ) (, , ), characterized by SGA,
hypotonia, early puberty, and markedly short adult
stature. There is clinical overlap with Prader–Willi
syndrome (PWS) and SRS (, , , ). Also,
upd()mat has been associated with SGA ().

Most children with PWS (MIM ) carry a
paternal chromosome qq deletion or a ma-
ternal UPD of chromosome  (% to % of cases),
but in % to % there is an imprinting center mutation.
The lack of expression of the paternal copies of the
imprinted genes SNRPN, NDN, and possibly others
may be responsible for the phenotype (). Ap-
proximately % of children with PWS have a birth
weight below the th percentile ().

Loss-of-function mutations of GNAS, encoding the
a-subunit of the Gs protein, are associated with a
spectrum of growth disorders dependent of the pa-
rental origin of the mutation (, ). Genetic and
epigenetic defects at the GNAS locus on chromosome
q.. lead to distinct patterns of skeletal growth but
similar early-onset obesity. Whereas heterozygous
GNAS mutations on either parental allele are asso-
ciated with IUGR, IUGR is considerably more pro-
nounced when these mutations are located on the
paternal GNAS allele (pseudopseudohypoparathy-
roidism) than with mutations on the maternal allele

Table 4. Continued

Syndrome (MIM)
Genetic or Epigenetic
Defect Incidence

Mean BW
SDS

Mean BL
SDS

Clinical Features
Besides SGA Treatment Reference

Maternal UPD of
chromosome 20

Upd(20)mat 12 cases 22.4c 21.6c Short stature, prominent
feeding difficulties,
failure to thrive, fifth
finger clinodactyly

GH effective in 4
cases

(203)

Abbreviations: act, activating; BL, birth length; BW, birth weight.
aData are presented for three subgroups: (1) 11p15 ICR1 hypomethylation; (2) mUPD(7)mat; and (3) clinical SRS (204).
bThe third type of pseudohypoparathyroidism (type 1b, 603233) is associated with normal or increased BW and overgrowth in childhood (205). Genetic causes include paternal-
specific imprinting pattern on both alleles, a maternally derived 3-kb microdeletion involving STX16 or upd(20)pat. Characteristics are resistance to PTH without signs of Albright
hereditary osteodystrophy.
cCalculated from eight patients with isolated upd(20)mat.
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(pseudohypoparathyroidism type A) (). Patients
with pseudohypoparathyroidism type A with mu-
tations involving exon  had a slightly lower birth
weight than did patients with mutations in exons 
to , in contrast to patients with pseudopseudohypo-
parathyroidism with mutations in exon  who were less
severely affected than those with a mutation in exons 
to  ().

Maternal UPD of chromosome , upd()mat,
causes a syndrome characterized by SGA, short stature,
and prominent feeding difficulties with failure to
thrive. These patients differ from SRS because there is
no asymmetry, prominence of the forehead, and rel-
ative macrocephaly (). With the expanding use of
single nucleotide polymorphism (SNP) array tech-
nology, it is likely that the phenotypic and epigenetic

definitions of imprinting disorders will further broaden
in the coming years ().

Genes reported to be aberrantly methylated in SGA
or known to be involved in the regulation of
DNA methylation
Aberrant methylation associated with SGA and SRS
has been reported for a large number of genes, and, in
turn, DNA methylation is regulated by many genes
(, ). One could therefore hypothesize that a
targeted search for aberrant methylation would be a
rational diagnostic approach in short children born
SGA. In fact, quantitative DNAmethylation analysis at
differentially methylated regions of  imprinted loci
uncovered several DNA methylation changes at single
loci () and even more in a recent study ().

Table 5. Disorders of the GH–IGF Axis Associated With SGA

Syndrome (MIM)

Genetic
Defect
(Inheritance) Incidence Mean BW SDS Mean BL SDS Clinical Features Biochemical Profile Treatment References

GH deficiency Multiple

genes

1/5000 20.9 20.6 Variable height deficit ↓GH peak during GH

stimulation test, ↓IGF-1,
↓IGFBP-3, ↓ALS

GH effective (209)

Laron syndrome (262500) GHR (AR,

rarely AD)

.300 cases 20.6 21.6 Variable height deficit,

midfacial hypoplasia

↑GH, ↓IGF-1, ↓IGFBP-3,
↓ALS, variable GHBP

rhIGF-I treatment

moderately effective

(210)

GH insensitivity with

immunodeficiency

(245590)

STAT5B (AR,

AD)

10 cases 20.4 +0.5 Midfacial hypoplasia,

immunodeficiency

↑GH, ↑prolactin, ↓IGF-1,
↓IGFBP-3, ↓ALS

Insufficient data (211)

Multisystem infantile-

onset autoimmune

disease (615952)

STAT3 (act)

(AD)

19 cases 21.7 21.8 Early-onset multiorgan

autoimmune disease

↓IGF-1, ↑TSH, abnormal

immunoglobulins

Insufficient data (212–214)

Immunodeficiency 15

(615592)

IKBKB (AD) 2 cases 20.7 20.7 Ectodermal dysplasia,

immunodeficiency,

growth retardation

↑GH, ↓IGF-1, ↓IGFBP-3 Insufficient data (215)

X-linked severe

combined

immunodeficiency

(300400)

IL2RG (XLR) 1 case 21.7 21.5 Immunodeficiency Normal GH, ↓IGF-1
nonresponding to GH

injections

Insufficient data (216)

SHORT syndrome

(269880)

PIK3R1 (AD) 32 cases 23.3 (22/26 SGA) — Short stature,

hyperextensibility of

joints, inguinal hernia,

ocular depression,

Rieger abnormality,

teething delay,

lipoatrophy, insulin

resistance

↓IGF-1 nonresponding

to GH injections

Insufficient data (217, 218)

IGF-1 deficiency (608747) IGF1 (AR, AD) 4 homozygotes

and 7

heterozygotes

Hom 23.7; het 21.9 Hom 24.5; het 21.8 Microcephaly, deafness ↑GH, variable IGF-1,
↑IGFBP-3,

Insufficient data (219–223)

Severe growth restriction

with distinctive facies

(616489)

IGF2 (AD,

paternal)

8 cases 23.9 24.6 Variant of SRS ↓/↑/normal GH, normal

IGF-1, ↓/↑/normal

IGFBP-3

GH treatment probably as

effective as in other genetic

variants of SRS

(224, 225)

ALS deficiency (615961) IGFALS (AR) .65 cases 22.2 (1.1) Mild height deficit Unknown GH, ↓IGF-I,
↓IGFBP-3, ↓ALS

Probably no benefit of GH or

rhIGF-1 treatment

(226–229)

PAPP-A2 deficiency PAPPA2 (AR) 5 cases 21.6 21.3 Microcephaly, skeletal

abnormalities

↑GH, ↑IGF-I,1, ↑IGFBP-3,
↑IGFBP-5, ↑ALS

rhIGF-1 possibly effective (39)

Resistance to IGF-1

(1270450)

IGF1R (AD) 1%–2% of SGA 22.5 22.4 Microcephaly ↑/normal GH, ↑/normal

IGF-1, ↑/normal IGFBP-3

GH treatment moderately

effective

(230, 231)

Abbreviations: act, activating; AD, autosomal dominant; AR, autosomal recessive; BL, birth length; BW, birth weight; het, heterozygous; hom, homozygous; rh, recombinant human; XLR,
X-linked recessive.
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Table 6. Examples of Disorders Affecting Paracrine Factors, Cartilage Extracellular Matrix, or Intracellular Pathways Associated With SGA

Syndrome (MIM)
Genetic Defect
(Inheritance) Incidence

Mean
BW SDS

Mean
BL SDS Clinical Features Treatment References

Achondroplasia
(100800)

FGFR3 (act) (AD) 1/15,000-40,000 20.7 21.0 Rhizomelic limb shortening, frontal
bossing, midface hypoplasia,
exaggerated lumbar lordosis,
limitation of elbow extension,
genu varum, trident hand

Effect of GH treatment
generally considered
insufficient

(232)

Hypochondroplasia
(146000)

FGFR3 (act) (AD) 1/15,000-40,000 — — Rhizomelic limb shortening,
limitation of elbow extension,
brachydactyly, relative
macrocephaly, generalized laxity,
specific radiologic features

Effect of GH treatment
generally considered
insufficient

(233)

Short stature with
nonspecific skeletal
abnormalities
(616255)

NPR2 (AD) 1%–2% of short
stature

20.8 22.3 Disproportionate short stature,
phenotypic or radiographic
indicators of SHOX
haploinsufficiency (except for
Madelung deformity)

Insufficient data (234–236)

Brachydactyly type A
(1112500)

IHH (AD) 17 cases (1.6% of
short stature)

— 21.4 Increased sitting height/height ratio
(+2.4 SDS), shortening of the
middle phalanx of the second and
fifth fingers with cone-shaped
epiphyses

Positive preliminary data
on GH treatment

(237)

Short stature with or
without advanced
bone age, early-onset
osteoarthritis, or
osteochondritis
dissecans (165800)

ACAN (AD) 1%–2% of short
stature

20.7 21.5 Proportionate or disproportionate
short stature, brachydactyly, early-
onset osteoarthritis, and
degenerative disc disease

Insufficient data (238, 239)

SHOX-associated short
stature (300582)

SHOX (AD) 2%–17% of
short stature

20.4 21.1 Short forearm and lower leg, bowing
of forearm and tibia, dislocation of
ulna at elbow, Madelung
deformity, muscular hypertrophy,
radiologic signs at wrist and
forearm

Registered for GH
treatment

(240–242)

Noonan syndrome
(163950)

PTPN11 (AD) 1/1000–2500 — 21.0 Short stature, facial dysmorphism,
wide spectrum of congenital
heart defects, coagulation defect

Only registered for GH
in United States,
uncertain effect on
adult height

(243)

Neurofibromatosis type
I (162200)

NF1 (AD) 1/3000 21.1 20.8 $2 out of the following: (1)$6 café
au lait spots (.0.5 cm before
puberty, .1.5 cm after puberty);
(2) $2 (sub)cutaneous
neurofibromas or $1 plexiform
neurofibromas; (3) melanotic
freckling in axillae or groins; (4)
optic pathway glioma; (5) $2
Lisch nodules (iris hamartomas);
(6) specific bone lesions; (7) first-
degree relative with NF1

No consensus on
treatment

(244)

Precocious puberty, GH deficiency,
osteoporosis

Abbreviations: act, activating; AD, autosomal dominant.

863doi: 10.1210/er.2018-00083 https://academic.oup.com/edrv

REVIEW
D

ow
nloaded from

 https://academ
ic.oup.com

/edrv/article/39/6/851/5048351 by guest on 23 April 2024

http://dx.doi.org/10.1210/er.2018-00083
https://academic.oup.com/edrv


Table 7. Examples of Genetic Defects in Fundamental Cellular Processes Associated With SGA

Syndrome (MIM)
Genetic Defect
(Inheritance) Incidence

Mean
BW SDS

Mean
BL SDS Clinical Featuresa References

Associated with relative normocephaly or macrocephaly

Floating-Harbor
syndrome (136140)

SCRAP (AD) .52 cases 22.5 — Proportionate short stature, delayed bone age
and speech, triangular face, deep-set eyes, long
eyelashes, bulbous nose, wide columella, short
philtrum, thin lips

(245)

Mulibrey nanism
(253250)

TRIM37 (AR) .110 cases 22.8 — Progressive cardiomyopathy, characteristic facial
features, hypogonadotropic or
hypergonadotropic hypogonadism, type 2
DM, predisposition to Wilms tumor

(246)

3-M syndrome
(273750, 612921,
614205)

CUL7, OBSL1,
CCDC8 (AR)

'200 cases 23.1 — Facial features, normal mental development,
long, slender tubular bones, reduced
anteroposterior diameter of vertebral bodies,
delayed bone age

(247)

Microcephalic primordial dwarfism

Cornelia de Lange
syndrome 1–5

NIPBL, SMC1A, SMC3,
RAD21, HDAC8 (AD)

1/40,000 23.4 — Low anterior hairline, arched eyebrows,
synophrys, anteverted nares, maxillary
prognathism, long philtrum, thin lips, “carp”
mouth, upper limb anomalies

(248)

Meier-Gorlin
syndrome 1–5

ORC1, ORC4, ORC6,
CDT1, CDC6 (AR)

.67 cases 23.8 — Bilateral microtia, aplasia or hypoplasia of the
patellae, normal intelligence

(249)

MOPD I (210710) RNU4ATAC (AR) ,1/1,000,000 Extremely
low

— Neurologic abnormalities, including intellectual
disability, brain malformations, ocular or
auditory sensory deficits

(250)

MOPD II (210720) PCNT (AR) ? 23.9 — Radiologic abnormalities, absent or mild mental
impairment in comparison with Seckel
syndrome, truncal obesity, DM, moyamoya
disease, small loose teeth

(251)

Seckel syndrome 1–8 ATR, RBBP8, CENPJ, CEP152,
CEP63, NIN, DNA2,
ATRIP (AR)

,1/1,000,000 26 — Intellectual disability, characteristic “bird-headed”
facial appearance

(251)

DNA repair defects

Bloom syndrome
(210900)

RECQL3 (AR) 1/48,000
(Ashkenazi
Jews)

24.7 — Sun-sensitive, telangiectatic, hypopigmented and
hyperpigmented skin lesions, predisposition to
cancer, maturity-onset DM

(252)

Fanconi anemia
(multiple types)

FANCA and multiple genes 1/160,000 21.8 — Heterogeneous disorder causing genomic
instability, abnormalities in major organ
systems, bone marrow failure, predisposition
to cancer

(253)

Nijmegen breakage
syndrome (251260)

NBN (AR) 1/100,000 21.8 — Microcephaly, immunodeficiency, predisposition
to cancer

(254)

LIG 4 syndromeb LIG4 (AR) Rare 23.0 23.8 Radiosensitive, severe combined
immunodeficiency, microcephaly

(255)

XRCC4 syndromeb XRCC4 (AR) Rare 21.6 22.5 Microcephaly, progressive postnatal growth
failure, hypergonadotropic hypogonadism,
multinodular goiter, DM

(256)

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; LIG, ligase; MOPD, microcephalic osteodysplastic primordial dwarfism.
aScarce information on treatment. GH and recombinant human IGF-I treatment are strictly contraindicated in DNA repair defects.
bOther genes involved in nonhomologous end-joining (NHEJ) DNA damage repair include NHEJ1, ARTEMIS, DNA-PKCs, and PRKDC.
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Disorders associated with decreased signaling
of IGFs

GH signaling
In humans, the role of GH in prenatal growth is
considerably less than that of IGF- but is not neg-
ligible (Table ). In individuals with GH deficiency,
mean birth weight and length are decreased () and
the same applies to various forms of GH insensitivity,
caused by inactivating defects of GHR, STATB,
IKBKB, ILRG, and PIKR as well as activating
STAT mutations.

IGFs
The important role of IGF- for human intrauterine
growth and development has been shown by four
individuals (in three unrelated families) carrying
pathogenic IGF mutations (MIM ) (, ,
). All patients had an extremely low birth weight,
length, and head circumference, and carriers of
complete loss-of-function mutations also had senso-
rineural deafness. Two families with heterozygous
IGF defects presented a milder phenotype (, ).
For a description of the characteristics of IGF mu-
tations (causing SRS), see the “SRS” section above.

IGF1R
The IGFR has a similar structure as the insulin re-
ceptor (). Clinical characteristics of terminal q
deletions (resulting in allelic loss of IGFR) include
prenatal and postnatal growth retardation () and
various other clinical manifestations, for example,
cardiac symptoms (), intellectual disability (),
diaphragmatic hernia (), hearing problems (),
aortic root dilatation, neonatal lymphedema, and
aplasia cutis ().

Since the initial report on two patients (one het-
erozygous and another compound heterozygous for
IGFR mutations) (MIM ) (), . patho-
genic mutations have been reported. Birth weights
vary from2. to2. SDS, birth lengths from2.
to . SDS, and height at presentation from2. SDS
to2. (, ), and two patients with homozygous
mutations had an even more severe phenotype (,
). In  additional patients carrying pathogenic
mutations and seven patients with deletions detected
in our laboratory, birth weight ranged from 2.
to2. SDS and birth length from2. to2. SDS,
and % complied with the definition of SGA. Mean
head circumference at birth was 2. (range, 2. to
) SDS. Other phenotypic features described in these
patients include feeding problems (), delay in
motor and mental development (), impaired glu-
cose tolerance (), and mild dysmorphic features,
such as clinodactyly, pectus excavatum, triangular face,
brachycephaly, mild hypotelorism, and prominent
ears. GH treatment leads to a moderate growth re-
sponse but less pronounced compared with short

children born SGA without IGFR defects (). The
prevalence of IGFR mutations or deletions was esti-
mated at % to % of short children born SGA (, ).

ALS
In the absence of ALS due to homozygous IGFALS
mutations (MIM ), serum IGF- SDS is low
and IGFBP- SDS is even lower (). In three reports
on a total of  patients, birth weight ranged
from 2. to 2. SDS (–) and, in  subjects
from five families, birth weight varied from 2.
to 2. SDS (). GH treatment is thought to be
ineffective (). Heterozygosity for an IGFALS defect
leads to a height SDS decrease of ~. SD compared
with noncarriers, and preliminary data suggest that
GH treatment may increase growth ().

PAPP-A2
Recently, homozygous PAPPA mutations were de-
scribed in a total of five children in two families. They
presented with progressive growth failure, moderate
microcephaly, thin long bones, mildly decreased bone
density, and elevated levels of serum IGF-, IGFBP-,
IGFBP-, ALS, and IGF- (). The authors hy-
pothesized that, due to the absence of a normal PAPP-
A protein, IGF- and IGF- cannot be liberated from
the ternary complex, resulting in decreased IGF bio-
availability. Birth weight varied from2. to2. and
birth length from 2. to 2.. Two out of five af-
fected children were born SGA (). Two years of
treatment with biosynthetic IGF- led to a . to .
SDS gain in height and tended to improve bone mass
and microstructure ().

Disorders affecting paracrine factors or cartilage
extracellular matrix in the growth plate
Most of the genetic defects of paracrine pathways and
matrix formation result in some form of skeletal
dysplasia (, ). Because most genes associated
with short stature in childhood are already expressed
in utero, birth length SDS can be low, usually lower
than birth-weight SDS. Many skeletal dysplasias can be
diagnosed soon after birth by an experienced pedia-
trician or clinical geneticist based on the clinical
presentation and specific anthropometric measure-
ments, but clinical features can be so mild in infancy
that many of these babies are initially just labeled SGA
or ISS. In each SGA newborn with a low birth length,
the clinician should carefully assess body proportions
(most forms of skeletal dysplasia show short-limb
dwarfism) (Table ). If in doubt, a series of skeletal
radiographs can be made (), although in many
skeletal dysplasias body disproportion and skeletal
abnormalities develop with time. A customized gene
panel now appears the most efficient diagnostic
approach.

A description of the very large number of skeletal
dysplasias is far beyond the scope of this review, and
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the interested reader is referred to the recent nosology
(). For illustrative purposes, we summarize the
clinical features of genetic defects in three of the
various paracrine pathways in the growth plate and
one example of a disorder of matrix formation. More
examples (e.g., BMPs, WNT, and PTHrP/IHH) were
recently reviewed (–).

Several fibroblast growth factors (FGFs) and their
receptors play an important role in growth plate reg-
ulation. Heterozygous activating mutations in FGFR
impair bone elongation and lead to a spectrum of
disorders, ranging from the nonviable thanatophoric
dysplasia (MIM , ) to achondroplasia
(MIM ), hypochondroplasia (MIM ) and
even proportionate short stature (). Birth length SDS
distribution of babies with achondroplasia is shifted to
the left by ~ SD, birth-weight SDS by . SD (Table )
(). Thus, SGA is uncommon in achondroplasia,
whereas the clinical picture tends to be quite specific
and easily recognizable. The effect of GH treatment
(only registered for this indication in Japan) on adult
height is . SDS (~ cm) ().

The clinical presentation of hypochondroplasia
(MIM ) includes rhizomelic limb shortening,
limitation of elbow extension, brachydactyly, relative
macrocephaly, generalized laxity, and specific radio-
logic features (). Mean birth size of children may be
decreased, based on the high frequency of dyschon-
drosteosis and hypochondroplasia in patients with ISS
and SGA (). GH treatment leads to increased
height SDS in the first years, but no data are available
on its effect on adult height ().

Another important paracrine factor is CNP (encoded
by NPPC), which signals predominantly via its re-
ceptor encoded by NPR. Homozygous inactivating
mutations of NPR cause severe acromesomelic dys-
plasia, Maroteaux type (MIM ) (). Hetero-
zygous carriers of NPR mutations (MIM )
show a similar phenotype as short stature homeobox
(SHOX) haploinsufficiency (Leri–Weill syndrome, MIM
), with short forearms and short lower legs
(mesomelia), but without Madelung deformity ().
Heterozygous NPR mutations may explain up to %
of cases with assumed ISS or SGA (, ). No data
on GH treatment are available. Recently, two children
with heterozygous NPPCmutations with short stature
and small hands were reported ().

Heterozygous mutations of IHH are known to be
associated with brachydactyly type A (MIM )
(), but recently these were also demonstrated in
mildly disproportional short children with nonspecific
skeletal abnormalities. Most cases were born SGA for
length, and % of cases presented abnormal hand
radiographs, including shortening of the middle
phalanx of the second and fifth fingers with cone-
shaped epiphyses (Table ) ().

An example of a genetic defect leading to an ab-
erration of cartilage matrix formation is a syndrome

caused by a heterozygous mutation of ACAN
(encoding aggrecan). Cases present with a mild skeletal
dysplasia, spondyloepiphyseal dysplasia type Kim-
berley (MIM ), or as short stature without
evident radiographic skeletal dysplasia (MIM )
(). It was originally thought that heterozygous
ACAN mutations would invariably lead to advanced
bone age and early cessation of growth. In fact, Sanger
sequencing for ACAN in short children born SGA
with documented bone age advancement (.. years)
(n =  out of a total cohort of ) led to the detection
of four cases with pathogenic ACAN mutations. In all
these cases birth length SDS was lower than birth-
weight SDS (). However, bone age can also be
normal or slightly delayed (, ). A prevalence of
.% was found in children referred for short stature
(). Mean birth weight and length is in the lower half
of the normal range (), and ~% to % of cases
are SGA at birth. Patients with this condition can
suffer from early-onset osteoarthritis and/or osteo-
chondritis dissecans. At present, data are still in-
sufficient to assess the effects of GH treatment, either
alone or combined with a GnRHa and/or an aro-
matase inhibitor ().

Disorders affecting intracellular pathways
A relatively frequent genetic defect in short children is
an aberration of the gene encoding SHOX, located at
the tip of the X and Y chromosome, and transmitted
in a pseudoautosomal fashion (). SHOX acts as a
transcriptional activator and a gene-dose effect is
apparent: biallelic inactivating SHOX mutations cause
the severe Langer mesomelic dysplasia (MIM ),
whereas heterozygous mutations or deletions of SHOX
or its enhancers [or even duplications ()] cause a
milder skeletal dysplasia, Leri–Weill dyschondrosteosis
(MIM ) (with the classic Madelung deformity of
the wrist) or present as ISS or SGA with minor or no
dysmorphic features or body disproportion (MIM
) (Table ). Body proportions are usually mildly
affected (mesomelia), but they may also be normal,
particularly in children with SHOX enhancer deletions
(). SHOX mutations account for % to % of
individuals presenting with ISS (). GH treatment
results in a similar short-term growth response and
adult height gain as observed in Turner syndrome
(), and preliminary data suggest that addition of a
GnRHa may increase the GH effect ().

A second intracellular pathway that plays a role in
cellular proliferation and differentiation of growth
plate chondrocytes is the Ras/MAPK signaling path-
way. Activation of this pathway results in a number of
overlapping syndromes, called “rasopathies,” including
Noonan (MIM ), LEOPARD (MIM ),
Costello (MIM ), cardiofaciocutaneous (MIM
), and neurofibromatosis-Noonan syndromes
(MIM ), all characterized by postnatal growth
failure of varying degree and sometimes without
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obvious clinical features (). Birth length was sig-
nificantly below the population’s mean (2. 6 .
SDS) and % complied with the definition of SGA
(). GH treatment of Noonan syndrome leads to a
taller height SDS in childhood and possibly also adult
height (). GH is registered for Noonan syndrome in
the United States, but not in Europe and Japan.

Children with neurofibromatosis type , caused
by a heterozygous mutation in NF, also tend to be
short in addition to the other classical clinical features,
and their birth weight and length are shifted to the left
by ~ SD ().

Genetic defects in fundamental cellular processes
Mutations in genes encoding proteins involved in fun-
damental cellular processes can produce severe global
growth deficiencies, termed primordial dwarfism, which
affect not just the growth plate but multiple other tissues
throughout the body and typically impair both prenatal
and postnatal growth (Table ). These conditions can be
associated with a normal or low head circumference, and
with or without DNA repair defects (). Most are
characterized by specific clinical features, which usually
would lead to targeted genetic testing, but in some the
phenotype can be close to normal except SGA.

From the various primordial dwarfism syndromes
associated with a normal head circumference, the
Floating-Harbor syndrome (MIM , caused by
heterozygous mutations in SRCAP) can have a mild
phenotype (). Thirteen out of  individuals had a
birth weight below2 SDS (). Insufficient data are
available to evaluate the effect of GH treatment ().
Mulibrey nanism (MIM , caused by biallelic
TRIMmutations) presents with a similarly low birth
size. -M syndrome is caused by defects in CUL
(MIM ), OBSL (MIM ), or CCDC
(MIM) and is characterized by prenatal and
postnatal growth failure (). This syndrome is as-
sociated with a gene expression profile of reduced
IGF expression and increased H expression similar
to that found in SRS (). There are insufficient data
on the effect of GH treatment.

The forms of primordial dwarfism with distinct
microcephaly can usually be easily recognized clini-
cally [e.g., Cornelia de Lange syndrome (MIM ),
Meier–Gorlin syndrome (MIM ), microce-
phalic osteodysplastic primordial dwarfism (MOPD)
types I (MIM ) and II (MIM ), and
Seckel syndrome (MIM )] [reviewed in ()
and ()]. Also, mutations in aminoacyl-tRNA
synthetases are characterized by SGA ().

Of the DNA repair defects, the best-known ex-
ample is Bloom syndrome (MIM ), caused by a
mutation in the gene encoding DNA helicase RecQ
protein-like- (RECQL). Fanconi anemia (MIM
) is a clinically and genetically heterogeneous
disorder that causes genomic instability. Characteristic
clinical features include developmental abnormalities

in major organ systems, early-onset bone marrow
failure, and a high predisposition to cancer ().
Other syndromes in this category include Cockayne
syndrome (MIM ), Rothmund–Thomson syn-
drome (MIM ), and LIG (MIM ) ()
and XRCCmutations (MIM ) (). For these
types of disorders, GH treatment is contraindicated,
given the uncertain long-term side effects on cell di-
vision and possible oncogenesis.

Chromosomal abnormalities and CNVs
Turner syndrome can be diagnosed prenatally or early
postnatally based on the classical clinical features (e.g.,
lymphedema of hands and feet, or webbed neck) but in
many cases the diagnosis is made at a much later stage,
particularly in girls carrying X-chromosome abnor-
malities other than the classical ,X karyotype—for
example, mosaicisms. Full-term babies with Turner
syndrome are on average  cm shorter and  g
lighter than normal female newborns, and approxi-
mately one-third are born SGA (). The disturbed
prenatal and postnatal growth is probably mainly
caused by SHOX haploinsufficiency, but there is only
partial overlap between the clinical features of Turner
syndrome () and SHOX haploinsufficiency ().

There are several other chromosomal abnormali-
ties and CNVs associated with prenatal and postnatal
short stature, but these are usually detected based on
their phenotype (, ). However, CNVs can also
be found in nonsyndromic SGA and ISS (), as
shown in a combined analysis of five cohorts. Out of
 patients with short stature of unknown cause
evaluated by chromosomal microarray (probably)
pathogenic CNVs were identified in  patients (%)
(). Seven recurrent CNVs, that is, q., q,
p., Xp., p., q., and q., were
responsible for ~% of all pathogenic/probably
pathogenic genomic imbalances found in short stat-
ure of unknown cause ().

Diagnostic approach
Figure  shows a flowchart of the evaluation of the SGA
newborn. The clinician searches for diagnostic clues
through the medical history (including maternal health,
teratogens, pregnancy, placental pathology) and physical
examination, including weight, length and head cir-
cumference SDS (symmetric vs asymmetric), ophthal-
mologic evaluation, and hearing screen. Traditionally,
babies have been evaluated for several congenital in-
fections, but it has been suggested to limit this to urinary
cytomegalovirus testing ().

In Fig. , a flowchart is shown of our diagnostic
approach of the short child born SGA. First, the cli-
nician will try to detect diagnostic clues from the
medical history, physical examination, growth pattern,
an X-ray of the left hand and wrist, and a screening
laboratory panel. The X-ray should not only be used to
assess skeletal age, but also to check for anatomic

“One of the likely causes for the
lack of catch-up growth is
a genetic abnormality
associate with prenatal and
postnatal growth failure.”

867doi: 10.1210/er.2018-00083 https://academic.oup.com/edrv

REVIEW
D

ow
nloaded from

 https://academ
ic.oup.com

/edrv/article/39/6/851/5048351 by guest on 23 April 2024

http://dx.doi.org/10.1210/er.2018-00083
https://academic.oup.com/edrv


abnormalities associated with genetic disorders (e.g.,
SHOX, NPR, ACAN, IHH). Genetic testing for Turner
syndrome should be performed in girls when height
SDS is.. SD lower than target height SDS, for which
we favor an array analysis (SNP array or comparative
genomic hybridization array) above a karyotype. The
diagnostic power to detect Turner syndrome is similar
(), but with an array also CNVs and (with a SNP
array) uniparental isodisomy can be detected. If Turner
syndrome and pathogenic CNVs or UPDs are excluded
in girls, the clinician can consider performing further
genetic testing using a specific exome-based gene panel
targeted on growth-related genes (, , ).
Similarly, boys can be tested with array analysis, and if
there is sufficient suspicion of a primary growth dis-
order, with a growth-specific gene panel. If there are
strong indications for a specific genetic syndrome (e.g.,
Madelung deformity, which is pathognomonic for

SHOX haploinsufficiency), Sanger sequencing com-
bined with a multiplex ligation-dependent probe am-
plification test of the pertinent gene can be performed
(“candidate gene approach”), but the wide phenotypic
range of most genetic syndromes () implies that there
is a risk that a number of sequential genes will have to
be tested before the genetic etiology is found (, ).
Potential third and fourth steps include RNA se-
quencing and amethylation array (). In special cases,
for example, if a novel monogenic disorder is suspected,
whole-exome sequencing in a “trio” (patient and both
parents, or including siblings) can be performed. We
expect that with future genetic techniques the total
diagnostic yield will further increase. However, this will
probably also show that in many cases SGA is caused
by a combination ofmultiple (epi)genetic variants ().

The prior probability of a secondary growth disorder
in short children born SGA is low. However, if there are

SGA-born baby

Clues for maternal/placental factors:
Phys Exam: symmetric SGA (early insult) 
or asymmetric (late placental dysfunction) 
based on weight, length and head 
circumference. Body disproportion, 
dysmorphic features, short upper or forearm, 
microcephaly, cryptorchidism

Clues for maternal/placental factors:
Medical history: see Table 1. 
Check maternal life-style (alcohol, smoking),  
medical and environmental conditions in 
pregnancy. Family history for short stature; 
body proportions of parents 

Check for clues for 
maternal/placental 

or fetal factors
History/Phys Exam

Asymmetric 
(low BW; BL and BHC spared)

Maternal and placental 
factors in last trimester?

Tentative explanation 
of low birth weight

Asymmetric
 (low BW and BL; BHC spared)

Check criteria for Silver-Russell  
syndrome, Turner syndrome 
and neurofibromatosis type 1

Test for these conditions

Silver-Russell syndrome, 
Turner syndrome or NF1

SGA of unknown origin

Symmetric
 (low BW, BL and BHC)

Further assessment 
of FAS

CMV, Rubella, 
toxoplasmosis, Zika

Suspect for FAS?

Test for 
congenital infections

Further genetic 
testing for 

syndromic causes

Dysmorphic 
features?

Further genetic testing 
for skeletal dysplasias

Assess crown-rump 
length vs body length

Early placental insufficiency
Defects in IGF signaling

Yes

Yes

No YesNoNo

No

No

Normal

Abnormal

Yes

+

+–

–

© 2018 Illustration ENDOCRINE SOCIETY

Figure 2. Clinical assessment of the SGA newborn. The medical history and the balance between birth weight (BW), birth length (BL),
and birth head circumference (BHC) determine the likelihood of maternal or placental causes vs fetal causes. Symmetric SGA (with
similar reductions in BW, BL, and BHC) may be associated with fetal alcohol syndrome, congenital infections, dysmorphic syndromes,
early placental insufficiency, or defects in IGF signaling. The most frequent type of asymmetric SGA (with a low BW in comparison with
BL and BHC) may be caused by placental insufficiency at later gestation but also by some dysmorphic syndromes and skeletal dysplasias.
The other type of asymmetric SGA (with a low BW and BL relative to BHC) may point toward SRS, Turner syndrome, or
neurofibromatosis type 1. CMV, cytomegalovirus; FAS, fetal alcohol syndrome; IGF, insulin-like growth factor; NF1, neurofibromatosis 1;
Phys, physical; SRS, Silver-Russell syndrome. [© 2018 Illustration ENDOCRINE SOCIETY].
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diagnostic clues for such disorders from clinical, lab-
oratory, and radiologic assessment, further testing is
obviously indicated, including GH stimulation tests if
serum IGF- is low or in the lower half of the reference
range for age and sex. A relatively high serum IGF- in a
short child born SGA should lead to genetic testing of
IGFR. In case of a positive Netchine–Harbison score
(), genetic testing for SRS is indicated.

Short-Term Consequences of SGA

Mortality
Being born SGA is associated with increased mortality.
Pooled risk ratios for babies who were SGA (i.e., with a
birth weight in the lowest th percentile of the ref-
erence population) were . for neonatal mortality

and . for postneonatal mortality (), and in a
secondary analysis of nine studies the likelihood of
neonatal mortality among SGA infants (,th per-
centile) was threefold higher compared with their
appropriate-for-gestational-age (AGA) counterparts
(). The neonatal mortality risk of babies who were
both preterm and SGA was higher than that of babies
with either characteristic alone ().

Hypoglycemia
Approximately one-third of SGA infants become
hypoglycemic after birth (), for which various
causes are known. First, glycogen depletion is an
important factor in neonatal hypoglycemia ().
Second, SGA infants have lower levels of free fatty
acids and ketone bodies, even at low glucose con-
centrations, suggestive of reduced fat stores or an

Figure 3. Clinical assessment of the child born SGA with persistent short stature. With a thorough medical history, physical examination,
growth analysis, and an X-ray of the left hand and wrist, the clinician searches for clues for primary or secondary growth disorders. Although the
prior probability of secondary growth disorders is lower than that of primary growth disorders in short children born SGA, we advise laboratory
screening for the detection of anemia, GH deficiency (GHD), hypothyroidism, chronic renal failure, celiac disease and disturbances in electrolytes,
and bonemetabolism, in infants and toddlers also tests for renal tubular acidosis. Based on relevant clinical features, further investigations should
be performed for other secondary disorders, such as inflammatory bowel disease (IBD) or Cushing disease. The hand/wrist radiograph should not
only be assessed for skeletal age but also for anatomic abnormalities associatedwith primary growth disorders such as defects of SHOX,NPR2, IHH,
and ACAN. Girls who are .1.6 SD shorter than their target height SDS should be tested for Turner syndrome, either with array analysis or
metaphase cytogenetics. If that test is negative, further genetic studies should be considered, such as Sanger sequencing for a candidate gene, array
analysis, or an exome sequencing-based gene panel. FBC, full blood count; Phys, physical; X-hand/wrist, hand/wrist radiograph. [© 2018 Illustration
ENDOCRINE SOCIETY].

Short SGA-born 
child

Clues for primary growth disorder, 
including fetal alcohol syndrome:
Medical history: alcohol abuse, 
developmental delay, feeding problems 
in infancy, behavior problems 
Family: consanguinity, dominant short 
stature, early-onset osteoarthritis, 
discopathy, disproportion, dysmorphisms
Phys Exam: asymmetry, disproportion, 
dysmorphisms, short upper or forearm, 
heart murmur, microcephaly, 
cryptorchidism, muscular hypertrophy, 
congenital CNS symptoms
Growth: height SDS >1.6 SD below TH, 
stable height SDS in childhood, height 
SDS similar to one parent
X-hand/wrist: anatomic abnormalities

Check for clues for 
primary or secondary 

growth disorders
History/Phys Exam/
growth/bone age

≥1 clue for primary or 
secondary growth disorder

Short SGA 
unknown origin

Turner 
syndrome

Hypothyroidism or  
celiac disease

Test girls for 
Turner syndrome

Low FT4? Celiac 
screen abnormal?

Based on clinical features 
and lab decide on further 

testing for GHD, Cushing, IBD, 
hemoglobulinemia, chronic 

renal failure, metabolic bone 
disorders, psychosocial or 

iatrogenic causes

Based on clinical features
decide on candidate gene
approach (SRS, PWS, UPD,

Noonan, SHOX, NPR2, IHH, ACAN,
NF1, IGF1R ) or hypothesis-
free approach (array, exome

sequencing based panel)

Yes Yes
for primary for secondary

Normal

Abnormal+

+

– –

–

Clues for secondary growth disorder:
Medical history: decreasing or 
increasing BMI SDS, anorexia, fatigue, 
polyuria, polydipsia, medication 
(corticosteroids, methyl-phenidate), 
symptoms suggestive for increased 
intracranial pressure, vomiting, disturbed 
visual acuity 
Phys Exam: low or high BMI SDS, 
Cushingoid appearance, hypertension, 
acquired CNS symptoms
Growth: decreasing height SDS; 
decreasing BMI SDS (IBD) or increasing 
BMI SDS (Cushing, hypothyroidism, GHD)
X-hand/wrist: delayed bone age

Specific 
genetic cause

Lab screening
All: FBC, IGF-I, FT4, TSH, celiac 
screen, IgA, Na, K, creatinine, 

Ca, P, alkaline phosphatase
<3 yrs: plus blood gas

© 2018 Illustration ENDOCRINE SOCIETY
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inability to mobilize fuels, for example, by a lower
capacity to secrete counterregulatory hormones such
as cortisol (). Third, ~% of SGA infants have
inappropriately raised insulin levels at the time of
hypoglycemia, indicative of hypoglycemic hyperinsu-
linism (). Although this is usually transient, some
SGA infants exhibit prolonged hypoglycemic hyper-
insulinism, requiring treatment with diazoxide ().
This condition was reported to resolve within  to
 months (). Unrecognized, it may put infants at
risk for brain damage due to the lack of alternative
substrates such as ketone bodies. There is some evi-
dence suggesting that SGA infants with hypoglycemic
hyperinsulinism have an increased risk of ketotic
hypoglycemia in childhood (). Fourth, contributing
factors to the development of hypoglycemia in SGA
infants are asphyxia, hypothermia, and polycythemia.

Thermoregulation
SGA infants have an inferior thermoregulatory re-
sponse compared with their appropriate-sized coun-
terparts, which predisposes them to hypothermia.
Although brown adipose tissue stores for heat pro-
duction are usually not depleted, excessive heat loss
occurs through an increase in body surface area due to a
relatively large head size as well as increased transdermal
insensible losses. Lower subcutaneous and body fat
stores provide less thermogenesis and lower levels of
insulation, both of which contribute to hypothermia.
Additionally, hypoxia and hypoglycemia can negatively
affect the thermoregulatory response ().

Hematologic sequelae
Chronic intrauterine hypoxia induces erythropoietin
production, resulting in excessive red cell production
and impairment of thrombopoiesis. Polycythemia with
hyperviscosity increases the risk of necrotizing en-
terocolitis and thrombosis. Placental-to-fetal trans-
fusion during labor can further contribute to the
development of polycythemia (–). Chronic fetal
hypoxia with hepatic underperfusion may lead to
disordered coagulation ().

Thrombocytopenia is a frequent finding (.%) in
SGA infants, .-fold more often than in infants born
AGA (). Impaired thrombopoiesis, placental vas-
cular pathology, fetal consumptive coagulopathy,
platelet destruction, local imbalance of thromboxane
A causing placental vasoconstriction, and platelet
aggregation are all suggested mechanisms. Most cases
of neonatal thrombocytopenia are mild to moderate
and do not need intervention ().

Long-Term Consequences of SGA

Longitudinal growth and the GH–IGF-1 axis
Most children born SGA show spontaneous catch-up
growth to a normal height (i.e., above2 SDS). Catch-up

growth is usually completed within the first  years of
life but is most pronounced during the first  months.
However, catch-up growth may take longer in those
children born prematurely, up to the age of  years ().
By the age of  years, % of children born SGA had
attained a normal height ().

The % of children born SGA remaining short
(, , ) will reach an adult height well below the
normal range and/or target height range. If no catch-
up has been attained before the age of  years, there is a
sevenfold increased risk of persistent short stature in
those born with a birth length below 2 SDS, and a
fivefold increased risk in those born with a birth weight
below 2 SDS (). Therefore, a child with a height
below2 SDS at the age of  years should be referred
to a pediatrician with expertise in endocrinology (,
). Persistent short stature of children born SGA is
indeed commonly encountered in children presenting
to endocrine clinics with short stature, accounting for
~% of all cases (, ).

The reasons for insufficient catch-up growth in
children born SGA are poorly understood. Growth
retardation confined to the last trimester (leading to
asymmetric SGA) appears to have a relatively good
prognosis for catch-up growth (), but, in contrast,
other studies indicated that short children with a birth
weight and length below 2. SDS have a better
postnatal growth than do those with only a birth
length or birth weight below2. SDS (, ). One
of the likely causes for the lack of catch-up growth is a
genetic abnormality associated with prenatal and
postnatal growth failure, but disturbances in the
GH–IGF- axis may also play a role (, ). Ap-
proximately % of short children born SGA showed
reduced spontaneous GH secretion during a -hour
sampling period and/or a low GH peak during GH
provocation tests (–), and serum levels of IGF-
and IGFBP- were lower in short children born SGA
than in healthy controls (–). However, IGFBP-
proteolytic activity was increased in short children
born SGA, suggesting that the bioavailability of IGF-
is relatively high in spite of a low concentration ().
In contrast, some short children born SGA had normal
or high serum IGF- levels, suggestive of IGF- re-
sistance. ALS levels were decreased by . SDS in short
children born SGA compared with healthy controls,
and less reduced than the IGF- and IGFBP- levels
(). In prepubertal children born SGA with a normal
height, ghrelin and IGF- concentrations were higher
than in short children born SGA, or in children born
AGA with a short or normal stature (), suggestive
for a possible role of ghrelin in catch-up growth. At the
age of  years, the (BMI-, sex-, and puberty-adjusted)
serum IGF- concentration was higher and the leptin
concentration was lower in SGA than in children born
AGA, whereas no differences were found in the indices
of insulin action or sensitivity between the SGA and
AGA groups ().
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Owing to a complicated neonatal course, preterm
infants often tend to exhibit early postnatal growth
failure, labeled as extrauterine growth restriction (EUGR).
The risk of EUGR was found to increase with lower
gestational age and birth weight, acute illnesses,
bronchopulmonary dysplasia, postnatal corticosteroid
treatment, and feeding problems (–). Very
preterm infants with EUGR grew similarly during
childhood as those born SGA (). Preterm infants
with a length or weight below2 SDS at the corrected
age of  months who failed to catch up subsequently
had a similar risk of a short adult stature as SGA
infants ().

Pubertal development
In children born SGA, puberty starts slightly earlier
than average but still within the normal range (,
), and adrenarche is probably age appropriate
(). The progression of puberty is normal, although
age at menarche is slightly younger ().

Body composition
Weight gain during infancy and early childhood is a
more important determinant of body composition in
young adulthood than birth size (). In children
born SGA total and abdominal fat mass at  years of
age was closely related to the rate of weight gain in the
first  years of life (, ). By the age of  years,
children born SGA had a normal amount of visceral
fat in the abdominal region but their subcutaneous fat
was strikingly reduced, resulting in an elevated ratio of
visceral over subcutaneous fat (). One of the pu-
tative mechanisms involved in catch-up growth in
weight after SGA could be an increased insulin sen-
sitivity as part of various adaptation phenomena to
ensure weight recovery (, ).

The difference in body composition observed
during childhood persists into early adulthood (Table )
(–). Compared with adults born AGA, the
percentage of fat mass was similar in short adults born

SGA but higher in adults born SGA who had expe-
rienced spontaneous catch-up growth to a normal
height and weight. Compared with adults born AGA,
the percentage of lean body mass was lower in adults
born SGA, regardless of previous catch-up growth or
GH treatment (, , ). These observations
suggest that, in subjects born SGA, lean body mass is
reprogrammed during fetal and early life, with long-
lasting effects on body composition.

Blood pressure
In short children born SGA, an increased prevalence of
cardiovascular risk factors has been described (,
). Blood pressure was increased in children born
SGA, especially in those born prematurely (–).
Several studies have shown inverse associations be-
tween birth weight and risk factors for hypertension
and cardiovascular disease in adults (–). Short
adults born SGA had a higher systolic and diastolic
blood pressure compared with adults born AGA (,
), irrespective of whether they had remained short
or had caught up (, ) (Table ).

Dyslipidemia and other cardiovascular risks
In subjects born SGA, accumulation of fat mass during
childhood significantly determined serum lipid levels,
whereas birth size had no significant contribution
(). At the age of  year, short children born SGA
had a serum triglyceride level above the upper limit for
age, as compared with children born AGA of normal
stature (). Metabolic and transcriptomic profiles in
children born SGA aged  to  years displayed changes
associated with increased cardiometabolic risk (). A
lower serum adiponectin level in short prepubertal
children born SGA compared with short controls was
associated with an unfavorable lipid profile ().
However, another study indicated that lipid levels were
within the normal range in prepubertal short children
born SGA (). Reassuringly, lipid levels were similar
in short adults born SGA and in adults born AGA
(, ).

Table 8. Metabolic and Cardiovascular Consequences in Early Adulthood of Being Born SGA in Comparison With AGA-Born
Subjects

SGA With Persistent Short Stature SGA With Catch-up Growth References

Fat massa Similar Higher (P , 0.001) (380)

Lean body massa Lower (P , 0.05) Lower (P , 0.05) (380)

Systolic blood pressure,b mm Hg Similar Similar (381)

Diastolic blood pressure,b mm Hg Similar Similar (381)

Cholesterol concentrationc Similar Similar (381)

Carotid intima-media thicknessd Similar Higher (P = 0.025) (382)

Insulin sensitivityc Similar Lower (P = 0.006) (383, 384)

b-Cell functionc Similar Similar (383, 384)

aAdjusted for age, sex,
gestational age, and height SDS.
bAdjusted for sex and height.
cAdjusted for sex.
dAdjusted for age, sex, and
arterial diameter.
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In the Hagenau cohort (France), a twofold in-
creased risk of the metabolic syndrome was found
among young adults born SGA during  years of
follow-up, and, at the age of  the prevalence of the
metabolic syndrome was .% compared with .% in
young adults born AGA (). In contrast, a recent
study showed that the incidence of the metabolic
syndrome at age  years was similar in short adults
born SGA, adults born SGA of normal height, and
adults born AGA ().

Carotid intima media thickness (cIMT), a valid
marker for generalized atherosclerosis (), at the
ages of  and  years was higher in children born SGA
with spontaneous catch-up growth than in children
born AGA with a similar height, weight, and BMI
(). Similarly, cIMT was higher in SGA-born adults
with spontaneous catch-up growth compared with
short adults born either SGA or AGA (, ).
Furthermore, short adults born SGA had a similar
cIMT as did adults born AGA of normal height
(Table ) ().

Insulin resistance and type 2 DM
Adults born with a low birth weight often have
metabolic perturbations, such as insulin resistance,
glucose intolerance, and type  DM (–, ). In
the Japanese Nurses’Health Study, birth weight and its
percentile for gestational age were inversely associated
with adult-onset DM, and among womenwith a BMI in
the lower half of the normal range (. to . kg/m)
the odds ratio for DM in the ,-g birth-weight
group reached . (%CI, . to .), as compared
with the reference group with birth weights between
 and  g ().

In short children born SGA, insulin sensitivity
adjusted for BMI was reduced by % compared with
short children born AGA, whereas the acute insulin
response was higher (, ). At the age of  years,
children born SGA with spontaneous catch-up growth
were more insulin-resistant than were children born
AGA (, ). The rapid fat accumulation in the first
months of life was associated with a lower insulin
sensitivity in early adulthood (). Insulin sensitivity,
as assessed by a frequently sampled intravenous glu-
cose tolerance test, was similar in short adults born
SGA and in AGA-born adults, whereas it was lower in
adults born SGA with spontaneous catch-up growth
to a normal height (Table ) ().

In conclusion, metabolic alterations in adults born
SGA are particularly evident in those who experienced
early spontaneous catch-up growth to a normal height
and weight, as opposed to those who remained short
(, –).

Neurodevelopment
A study using the Swedish Birth Register, including the
data of., SGA-born males, showed that small
birth size and preterm birth increased the risk of

subnormal intellectual and psychological performance
at the age  to  years. Among SGA-born males, the
most important predictor of poorer intellectual out-
come was the absence of sufficient catch-up growth
(). Long-term neurodevelopmental sequelae in-
cluded a lower IQ score, school failure, and more
problem behavior (attention deficit and social be-
havior), particularly in children with persistent short
stature (–).

There are only few studies on brain architecture in
children born SGA (–), showing decreases in
brain weight, total brain volume, brain cell number,
and the total amount and concentration of myelin
lipids compared with those born AGA, particularly in
children who had experienced placenta insufficiency in
fetal life (). However, these studies had small
sample sizes and the analyses were not adjusted for the
smaller head circumference of the short children born
SGA.

In most studies, the IQ of children born SGA was
within the normal range but on average lower than
that of children born AGA. In none of the studies did
this difference exceed  SD ( IQ points) (–).
Among children born SGA those born smallest ()
or those who had experienced fetal growth restriction
() had the lowest IQ. This is in line with findings
from the Copenhagen Perinatal Cohort, showing
positive associations between birth weight and IQ
scores at the ages of , , and  years ().

A population-based register study in Sweden de-
scribed school performance of ,, children born
at term between  and . At the ages of , ,
and  years, those born SGA demonstrated small but
significant deficits in academic achievement compared
with those born AGA (). Additionally, teachers
were more likely to recommend special education in
them (, ). Furthermore, the risk of poor school
performance was no longer increased when adequate
catch-up growth was achieved. At the age of  years,
SGA-born subjects were not different from those born
AGA in years of education, employment, hours of
work per week, marital status, or satisfaction with life,
but they reported lower weekly income ().

Fetal thyroid function may partly explain the link
between IUGR and future neurodevelopmental prob-
lems. Growth-restricted fetuses had lower levels of
circulating free T (), which is the substrate for
cerebral T, in spite of an increased expression of
thyroid receptor isoforms in the placenta. There is also
evidence linking IUGR to reduced thyroid hormone
transport within the brain, as the expression of MCT
was reduced in the cortices of growth-restricted fetuses
(). Moreover, IUGR was accompanied by reduc-
tions in the expression patterns of thyroid receptor
isoforms in the fetal cerebral cortex and cerebellum
(). At age . years, thyroid function of short
children born SGA was not different from the refer-
ence population ().
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Bone mineral density
In short children born SGA, bone mineral density
(BMD) was decreased (–). After correction for
age, sex, adult height and weight, and lean body mass,
BMD was similar in adults born SGA with or without
sufficient catch-up growth ().

Gonadal function
In SGA-born males, increased serum FSH levels in
infancy, decreased testosterone levels in late puberty,
and a smaller testicular size in adulthood have been
found (, ). However, these studies did not
exclude males with SRS, who often have genital ab-
normalities known to influence reproductive function
in later life, such as cryptorchidism and hypospadia
(, , ). Among prepubertal boys without
cryptorchidism, serum inhibin B and anti-Müllerian
hormone (AMH) levels were not different between
those born SGA or AGA (). Furthermore, in
adulthood, no differences in serum levels of inhibin B,
AMH, testosterone, sex hormone–binding globulin,
non–sex hormone–binding globulin-bound testos-
terone, LH, and FSH were found between men born
SGA or AGA (–). Young SGA-born women
had normal serum AMH levels, indicating that they do
not have a smaller follicle pool size than do AGA-born
women (). More long-term follow-up studies on
gonadal function are needed before definite conclu-
sions can be drawn.

Kidney function
Several studies, both in humans and animals, have
shown that IUGR leads to smaller kidneys with lower
nephron numbers and more apoptotic cells (, ).
According to the hyperfiltration hypothesis, this may
result in glomerular hyperfiltration and, consequently,
albuminuria with progressive loss of kidney function
(). Indeed, in a meta-analysis low birth weight was
associated with the future development of albuminuria
(OR .), low estimated glomerular filtration rate
(OR .), and end-stage renal disease (OR .) ().
SGA was associated with decreased creatinine clear-
ance in a dose-dependent fashion at age  to  years
().

Psychosocial consequences
It is assumed that short children can suffer from
physical, social, and psychological problems (),
although research has provided little support ().
Theoretically, this could be caused by short stature per
se or might be associated with the underlying con-
dition. The physical limitations of short stature and the
younger appearance may result in being treated dif-
ferently by peers and, sometimes, in being bullied
(). Short children born SGA had lower scores on
tests of social functioning and health-related quality of
life compared with reference populations (, ).
Adult short stature is often perceived to be a

disadvantage, and it can cause difficulties in getting the
preferred job or career and lead to reduced health-
related quality of life ().

Mechanisms of Fetal Programming

Fetal programming refers to the concept that insults
acting during a critical window early in life could exert
effects on the body’s structure and function that may
persist for life. During embryonic development, the
organism adapts itself to the environment. De-
velopmental plasticity is the ability to develop in
various ways, depending on the particular environ-
ment. The match-mismatch paradigm describes that if
the prenatal and postnatal environments do match, the
settings of systems will leave the organism well pre-
pared for the postnatal environment, whereas a
mismatch between the prenatal and postnatal envi-
ronment may render the organismmore susceptible to
later cardiometabolic diseases ().

Thrifty phenotype hypothesis
The thrifty phenotype hypothesis, proposed by Hales
and Barker, states that fetal undernutrition leads to
reduced numbers of pancreatic b-cells, allowing di-
version of nutrients to the developing brain at the
expense of somatic growth (). Whether and when
type  DM becomes manifest is dependent on the rate
of b-cell senescence and the development of insulin
resistance, mostly by obesity. A variant of the thrifty
phenotype hypothesis is the fetal salvage model, which
proposes that fetal undernutrition programs periph-
eral insulin resistance rather than reduced b-cell mass
().

There are several animal models of fetal un-
dernutrition, including unilateral uterine artery liga-
tion, and maternal dietary restriction of proteins or
calories by ~% (). In these models, birth weight
was reduced by ~% to % (in unilateral uterine
artery ligation and calorie restriction models) to %
(in the protein restriction model). These experiments
showed that the undernourished offspring exhibited
permanent reductions in the secretion and action
of insulin. These alterations were accompanied by
morphological changes as well as functional impair-
ments of b-cells and insulin-sensitive tissues such as
skeletal muscle, adipose tissue, and liver (, ).
The molecular mechanisms behind these alterations
are thought to involve processes such as epigenetic
modifications, oxidative stress, and mitochondrial
dysfunction ().

The Dutch Hunger Winter of  to ,
although a historical disaster, provided a unique op-
portunity to study the long-term effects of severe fetal
undernutrition in humans. Owing to the sudden
cessation by the German occupier of food transports
from the rural east to the urban west, food stocks

“Prenatal exposure to famine
was associated with less DNA
methylation of the imprinted
IGF2 gene.”
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shrank rapidly in big cities such as Amsterdam starting
in November . Consequently, adults were only
granted  to  kcal of food per day. The food
shortages were nullified after the liberation in early
May . Dutch investigators traced subjects born at
the Wilhelmina Gasthuis Amsterdam in the period
between  November  and  February  for
participation in a survey at middle age. In summary,
the Dutch famine studies showed that undernutrition
in early gestation was associated with cardiovascular
disease propensity (, ). Undernutrition in late
gestation was associated with an increased risk of
developing type  DM (). Later studies, in a
composite sample from Amsterdam, Rotterdam, and
Leiden (), showed that prenatal exposure to famine
was associated with less DNA methylation of the
imprinted IGF gene () as well as alterations in the
degree of methylation of other genes involved in
developmental pathways (). Remarkably, the birth
weights of subjects who were exposed to famine in the
third trimester, when fetal weight velocity peaks, were
only reduced by  to  g ().

Fetal insulin hypothesis
According to the fetal insulin hypothesis, associations
between IUGR and type  DM could be explained by
polygenic variation associated with insulin secretion or
action (). This hypothesis was fueled by observa-
tions in mother/infant pairs discordant for mutations
in the glucokinase gene (). Glucokinase acts as the
pancreatic glucose sensor, and inactivating mutations
in the glucokinase gene cause maturity-onset diabetes
of the young type . Babies born to mothers carrying a
mutation in the glucokinase gene were on average
 g heavier at birth, attributable to increased fetal
insulin secretion in response to maternal hypergly-
cemia (). Conversely, babies carrying such a mu-
tation were  g lighter at birth due to decreased
insulin secretion (). When mothers and their
babies carried the same mutation, the two opposing
effects cancelled out and birth weight was normal
().

Type DM susceptibility genes could either reduce
or improve fetal growth, dependent on the parent of
origin. Maternal and paternal genes may influence
birth weight directly, by being inherited by the fetus.
Maternal genes may influence birth weight also
indirectly, through alterations in the supply of
nutrients to the fetus. In the data from the UK
Biobank (n = ,), associations between pa-
rental DM, birth weight, and participants’ type 
DM were demonstrated (). Paternal DM was
associated with a  g lower birth weight, and
maternal diabetes with a  g higher birth weight.
Birth weight was found to be a mediator of the
association between parental diabetes and type 
DM. The authors concluded that findings with
paternal diabetes are consistent with a role for the

same genetic factors influencing fetal growth and type
 DM ().

A recent genome-wide association study meta-
analysis of birth weight, encompassing the data of
, subjects, identified  loci where fetal geno-
type was associated with birth weight, nine of which
had also been associated with type  DM (). Fetal
genetic variation could explain ~% of the variance in
birth weight. Subsequent analyses revealed that genetic
factors contributed substantially to the inverse asso-
ciation between birth weight and cardiometabolic risk.

Fetal cortisol hypothesis
The fetal cortisol hypothesis postulates that a lower
activity of the placental barrier enzyme b-HSD type
 allows for a larger proportion of maternal cortisol to
reach the fetus, leading to IUGR, permanent alter-
ations in hypothalamic–pituitary–adrenal axis set-
tings, and, hence, predisposition to cardiometabolic
and neuropsychiatric diseases. Offspring of rats treated
during pregnancy with dexamethasone, which by-
passes placental b-HSD type  activity, had lower
birth weights as well as persistent increases in blood
pressure and glucose level (, ). Studies with the
b-HSD type  inhibitor carbenoxolone, by in-
creasing the supply of maternal corticosterone—the
principal glucocorticoid in rodents—to the fetus,
yielded similar results (, ). Glycyrrhizin in lic-
orice is known to inhibit b-HSD type  activity, and
children born to mothers who consumed at least
 mg of licorice per week during their pregnancies
had lower scores on several tests of cognitive function
and more externalizing behavior (). However,
heavy licorice consumption, although being associated
with gestational duration, was unrelated to birth
weight ().

Growth acceleration or fat accumulation
hypothesis
The growth acceleration or fat accumulation hy-
pothesis aims to offer an explanation for the associ-
ation between restricted fetal growth, early postnatal
catch-up growth, and later cardiometabolic disease
(, ). It was postulated that the growth-restricted
newborn becomes insulin-resistant after birth, when
abundant food intake leads to markedly elevated
concentrations of insulin and IGF- (). In animal
models overfeeding in the early postnatal period
permanently increased obesity risk, insulin resistance,
and cholesterol levels (). In humans rapid gain in
weight relative to length during the first  months of
life was associated with reduced insulin sensitivity,
increased abdominal fat, and a less favorable lipid
profile at young adult age ().

Stem cell hypothesis
The stem cell hypothesis proposes that intrauterine
malnutrition reduces the number of stem cells in
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tissues, leading to an earlier exhaustion of organs
(). This hypothesis implies that efforts should be
aimed at inducing proliferation, differentiation, and
survival of stem cells, or reversing the differentiation
state of more mature cells. Some studies have dem-
onstrated positive associations between size at birth
and leukocyte telomere length (LTL) (, ), which
is considered an index for biological aging. LTL is
influenced by oxidative and replicative stress, and
shorter LTL is associated with cardiovascular disease
predisposition (, ).

Growth Hormone Treatment of Children
Born SGA

Recombinant human GH has been used since 
and has replaced GH extracted from human cadaveric
pituitaries for the treatment of children with GH
deficiency. The indications for GH treatment have
gradually extended from replacement therapy in
children with GH deficiency to enhancing growth in
an increasing number of conditions in which short
stature is not due to GH deficiency, such as persistent
short stature in children born SGA.

The formal indications for GH treatment of short
children born SGA are slightly different between the
United States (Food and Drug Administration) and
Europe (European Medicines Agency), but in essence
they are based on the same principles: documented
small birth weight and/or length, short stature, an age
range at which (further) catch-up growth is unlikely
(and young enough to expect substantial adult height
gain), and absence of actual catch-up growth. How-
ever, the age at which treatment can be initiated is
 years in the United States and  years in Europe, and
a cut-off for height SDS at start of treatment according
to European Medicines Agency (2. SDS) is missing
in the Food and Drug Administration indication. An
important additional issue is less objective, namely the
absence of clinical features suggestive of a dysmorphic
syndrome (with the exception of SRS, which has been
accepted under the SGA indication from the begin-
ning). Obviously, this criterion depends on the clinical
skills of the physician but also on which physical signs
are considered abnormal and, in particular, which
additional (genetic) testing is performed.

In most countries, a fixed GH dose per kilogram
body weight or per square meter body surface area is
used, with a recommended dose of . mg/kg/d
(~ mg/m/d) in Europe and Japan (). In the
United States, the recommended dose ranges from
. to . mg/kg/d (~ to  mg/m/d). A more
personalized approach has also been advocated, based
either on clinical predictors of the growth response or
titration of serum IGF- concentrations ().

In all clinical trials involving short children born
SGA, the growth response to GH has been quite

variable, and it is likely that at least part of this var-
iability is associated with multiple gene variants ().
We believe that in SGA cohorts treated with GH,
particularly those who have reached adult height, it is
important that studies be carried out to identify the
specific genetic cause, so that at least retrospectively
the effect of certain genetic diagnoses on the growth
response to GH will be known. Such valuable data
could ultimately lead to improved GH response
prediction in short children born SGA.

Effect on longitudinal growth
The assumption underlying GH treatment in short
children born SGA is that faster growth and a taller
adult height (possibly reaching the normal range for
the population and/or target height) is of benefit to the
short child. We agree with Allen () and Sandberg
and Gardner () that there is quite some uncertainty
about the validity of this assumption, but a discussion
on the various arguments on the value of GH treat-
ment in non–growth hormone deficiency conditions is
beyond the scope of this review.

Several studies have shown that GH treatment
effectively induces catch-up growth and improves
adult height in most short children born SGA (–,
–). A systematic review published in 
identified four high-quality trials with adult height
outcome in short children born SGA treated with GH
and concluded that among the  children partici-
pating in these studies the mean height gain was on
average . SDS (). The GH-induced catch-up
growth is accompanied by normal body proportions
and proportional head growth (, ).

As mentioned above, the GH-induced growth
response in short children born SGA is highly variable
(), which led to studies aimed at identifying clinical
predictors. In the first year of GH treatment, the
growth response correlated positively with GH dose,
weight at start of GH treatment, and midparental
height SDS, and negatively with age at start of treat-
ment (). When these predictors were put in a
model, % of the variability of the growth response in
the first year of treatment was explained, with GH dose
being the most important predictor (% of variance),
followed by age at start of treatment.

In the second year of GH treatment, height velocity
during the first year of GH treatment, age at start of
treatment, and GH dose explained % of the variance
in growth response. The first-year response to GH
treatment was the most important predictor of the
second-year response, accounting for % of the
variance (). Height velocity in the second year of
GH treatment, chronological age, weight SDS, mid-
parental height SDS, and GH dose explained % of
the variance in growth response during the third
prepubertal year of GH treatment (). Adult height
SDS was explained by height (SDS) at GH start (+),
height gain (DSDS) during the first year on GH (+),

“Apart from the positive effects
on linear growth, GH has
well-documented lipolytic,
anabolic, and insulin
antagonistic effects.”
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years on GH (+), maternal height SDS (+), length
(SDS) at birth (+), and the diagnosis of SRS (2)
(explained variability %; error . SD). Adult height
gain SDS was explained by height gain (DSDS) during
the first year on GH (+), years on GH (+), and height –
midparental height (SDS) at GH start (2) (explained
variability %; error . SD) ().

In another prediction model, patient characteristics
found to be related to adult height SDS were height
SDS at start of GH treatment, target height SDS, GH
dose, bone age delay at start, and baseline IGFBP-
SDS, explaining ~% of the variance in adult height
SDS (). Determination of serum ALS levels before
start of GH treatment modestly improved the long-
term prediction of height SDS with % ().

Prematurity increases the risk of insufficient
postnatal catch-up growth (). However, among
short children born SGA, the growth response to GH
treatment did not differ between those born preterm
or at term (). Pretreatment adiposity predicted a
greater height gain and IGF- response during the first
year of GH treatment, providing support for a causal
role of insulin resistance in linking reduced body fat to
GH insensitivity (). Equivocal data have been re-
ported on the possible predictive effect of the exon
–deleted GHR polymorphism on the growth re-
sponse to GH (–).

Few studies have analyzed the effects of a higher
GH dose, for example, . mg/kg/d instead of
. mg/kg/d. No difference in adult height SDS was
found between these two GH dose regimens when
children started GH treatment during prepuberty (,
, ). Because the average serum IGF- is around
+ SDS when children are treated with a GH dose of
. mg/kg/d, whereas their adult height is not dif-
ferent from that of children treated with a dose of
.mg/kg/d (, , ), we recommend to treat short
children born SGA with a GH dose of . mg/kg/d,
and to only increase the GH dose when the growth re-
sponse is unsatisfactory and other causes of a poor
growth response are ruled out. GH dosing based on
IGF- titration resulted in a poorer growth response
than a treatment strategy based on a fixed GH dose,
and it is therefore not recommended ().

When considering the start of GH treatment, adult
height is significantly greater (by . SDS) when
treatment was started . years before the onset of
puberty (). Adult height of short early pubertal
children born SGA with a predicted adult height
below 2. SDS at the start of GH treatment may be
improved by the addition of a GnRHa. From the onset
of puberty boys treated with combined GH/GnRHa
grew on average . cm and girls . cm, which
exceeds the average total pubertal growth of the ref-
erence population (). Children born SGA who are
treated with combined GH/GnRHa treatment had a
shorter pubertal duration after discontinuation of
GnRHa than did those treated with GH only ().

However, their total height gain was greater (). As a
result, adolescents who started combined GH/GnRHa
treatment in early puberty at a significantly shorter
height than those treated with GH only reached a
similar adult height as those treated with GH only ().

Effect on pubertal development
On average, GH-treated children born SGA start
puberty at a similar age as the normal population,
although some start relatively early (, –).
GH treatment had no influence on the onset and
progression of puberty compared with AGA controls,
regardless of GH dose (. vs . mg/kg/d) (,
). Additionally, pubertal duration and pubertal
height gain were not significantly different between the
GH-dosage groups (, , ).

Effect on metabolic and cardiovascular health
Apart from the positive effects on linear growth, GH
has well-documented lipolytic, anabolic, and insulin-
antagonistic effects (). Long-term GH treatment
resulted in increased lean body mass due to its ana-
bolic effects on muscle mass, and decreased fat mass
due to its lipolytic effects (, , –). Short
children born SGA had reduced insulin sensitivity
before the start of GH treatment (), and GH
resulted in a further reduction in insulin sensitivity
with a compensatory increase in insulin secretion
(–). However, long-term GH treatment in large
study groups showed that HbAc levels remained
within the normal range, and that none of the GH-
treated SGA-born subjects developed type  DM (,
, ).

During long-term GH treatment, blood pressure
SDS and cholesterol levels decreased in GH-treated
children, and became significantly lower than in un-
treated children (, , , , ). The decrease
in blood pressure might be explained by decreased
matrix metalloproteinases, which are thought to play a
role in the development of atherosclerosis (). The
few studies reporting on cIMT in GH-treated children
born SGA showed no effect of GH treatment (,
), whereas prepubertal and pubertal children born
SGA with spontaneous catch-up growth had a higher
cIMT than did GH-treated children born SGA ().

As both GH and GnRHa treatment may have
negative effects on body composition, insulin sensitivity,
and blood pressure, combining these treatments has
raised concerns about the possible long-term effects on
metabolic and cardiovascular health. However, children
treated with combined GH/GnRHa for  years had
similar body composition, insulin sensitivity, b-cell
function, blood pressure, and lipid levels at adult height
as did those treated with GH only (, ).

Effect on neurodevelopment and quality of life
As mentioned above, lower cognitive functioning has
been described in short children born SGA (). The

876 Finken et al Children Born Small for Gestational Age Endocrine Reviews, December 2018, 39(6):851–894

REVIEW
D

ow
nloaded from

 https://academ
ic.oup.com

/edrv/article/39/6/851/5048351 by guest on 23 April 2024



presence of GH receptors in the brain implies that the
brain is a target for GH, and thus that GH treatment
could affect brain function. This was supported by
observations showing that GH treatment improved
cognitive functioning and mood in GH-deficient adults
(). However, the sparse data on the cognitive effects
of GH treatment in children born SGA (–) have
yielded equivocal results. In a Dutch study, GH
treatment was found to improve total and performance
IQ as well as attention (): after  years of treatment,
the average estimated total IQ scores of children born
SGA had significantly increased by five to ten points and
were in the same range as the normal population. In
contrast, in a cohort of children born SGA from Bel-
gium, no beneficial effect of  years of GH treatment on
IQ score was found (). Several methodological
issues may explain this discrepancy, such as small
sample sizes and the duration of GH treatment (which
was considerably shorter in the study from Belgium).
Another explanation may lie in the observation that
GH treatment was found to result in a gradual im-
provement in cognitive functioning that only becomes
apparent after . years of treatment, as was demon-
strated in GH-treated children with PWS (). Larger
and better controlled follow-up studies in GH-treated
children born SGA are required to resolve this issue.

Long-term GH treatment has been reported to
improve health-related quality of life (HRQoL) in short
children born SGA (, , , ). Short adoles-
cents born SGA treated with GH had higher scores
on “physical abilities” and “contact with adults” at age
 years than did untreated short adolescents born SGA
(). There was also a tendency for them to score
higher on “body image,” but this difference was not
statistically significant (). Another study showed
that HRQoL improved in prepubertal and pubertal
short children born SGA during GH treatment. Ad-
ditional GnRHa treatment had no adverse effect on
HRQoL ().

Effect on bone mineral density
The GH–IGF- axis also plays a role in the accrual of
bone mass (, ). Before the start of GH treat-
ment, short children born SGA had a decreased total-
body and lumbar-spine BMD, even after adjustment for
their shorter stature (–, ). During ~ years of
GH treatment, total-body BMD improved from 2.
SDS to 2. SDS, and lumbar-spine BMD im-
proved from2. SDS to2. SDS (). Adding
GnRHa to GH treatment of  years had no adverse
effect on BMD ().

Safety issues
Since the early s, multiple large cohort studies in
short children born SGA have been conducted,
showing that GH treatment is well tolerated and that
serious adverse effects are uncommon (, , ,
, ). Before GH treatment is initiated in a short

SGA-born child, it is recommended to perform a
thorough diagnostic workup (), which may include
an evaluation by a clinical geneticist. For example,
children with a heterozygous IGFR defect may need a
higher GH dosage to obtain an acceptable growth
response, and an elevated serum IGF- on treatment
may be accepted due to the partial IGF- insensitivity.
The detection of a mild form of skeletal dysplasia (e.g.,
SHOX haploinsufficiency, hypochondroplasia, het-
erozygous ACAN defects) will also influence the de-
cision whether to start GH treatment, or the dosage
regimen. GH treatment is contraindicated in several
disorders, such as chromosomal breakage syndromes
and DNA repair disorders. Diagnosing these syn-
dromes can be challenging, but identifying the genetic
etiology is important for health prognosis, genetic
counseling, and treatment options (, ).

Monitoring during growth hormone treatment
Table  shows the current standard of care for the
monitoring of short children born SGA during GH
treatment. During GH treatment, it is essential that
height, weight, and Tanner pubertal stage are moni-
tored regularly. It is recommended to determine the
IGF- level  to months after the start of treatment to
evaluate whether the GH dose requires adjustment.
Thereafter, it is advised to determine the serum IGF-
level annually. When IGF- levels remain high even
with a relatively low GH dose, one should consider to
perform IGFR mutational analysis and to examine
the presence of a possible underlying dysmorphic
syndrome such as Bloom syndrome (). Serum free
T levels decreased to levels just below the norm in
% of GH-treated SGA children but TSH levels
remained normal (), so it seems reasonable to
annually perform thyroid function tests.

As bone maturation in short children born SGA is
highly variable and unreliable for growth prediction,
radiological investigations are not very informative in
the prepubertal age range (). Because GH has
limited effects on cardiometabolic parameters during
treatment and no long-term adverse effects beyond
the treatment period, it is debatable whether meta-
bolic and cardiovascular parameters should be
monitored on a regular basis during GH treatment.
Because SGA-born subjects are at risk for the met-
abolic syndrome (–), one could argue to
follow metabolic syndrome parameters on an annual
base. In practice, monitoring of metabolic changes
includes the assessment of BMI, abdominal waist
circumference, fasting glucose and lipid levels, and
blood pressure. Periodical measurement of fasting
insulin is not recommended for clinical care because
of the absence of criteria to differentiate normal from
abnormal. Obviously, additional monitoring and
testing should be performed when indicated, for
example, in case of a positive family history for DM
or cardiometabolic diseases.

“GH treatment is well tolerated
and serious adverse effects are
uncommon.”
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Summary
GH treatment in short children born SGA increases
longitudinal growth and adult height, and it has
positive effects on cardiometabolic health and possibly
cognitive functioning (Fig. ). The addition of GnRHa
for  years in early pubertal children with a low
predicted adult height appears to improve adult height
gain. The safety profile of GH treatment alone or
combined with GnRHa is good.

Epidemiological and Longitudinal
Observations in Growth Hormone–Treated
Adults Born SGA

Because lower birth weight is associated with car-
diovascular and metabolic diseases in later adulthood
(, ), and because GH treatment reduces insulin
sensitivity and has stimulating effects on tumor cell
proliferation (), concerns were raised about the
long-term side effects of GH treatment.

In an attempt to evaluate long-term mortality in
patients treated with GH during childhood, the Safety
and Appropriateness of Growth Hormone Treatments
in Europe project was launched in eight European
Union countries (). Preliminary French data sug-
gested that GH treatment during childhood might
increase the risk of cardiovascular mortality in SGA-
born subjects (). However, these findings could
not be replicated by the preliminary data from three
other countries (Belgium, Netherlands, and Sweden)

participating in the same project (). The data from
these countries showed that there were no deaths due
to any form of cardiovascular disease or cancer ().
One of the main limitations of the Safety and Ap-
propriateness of Growth Hormone Treatments in
Europe project, however, is that data of participants
were compared with national reference data and not
with an appropriate control group of untreated short
subjects born SGA.

Recently, a large cohort of GH-treated young adults
born SGA was investigated during  years after dis-
continuation of GH treatment of cardiometabolic risks
(, , ). It included previously GH-treated
adults born SGA (n = ) who were compared with
untreated controls (n = ), consisting of  untreated
adults born SGA with short stature (below2 SDS), 
adults born SGA who experienced spontaneous catch-
up growth to a normal stature (above2 SDS), and 
adults bornAGAwith a normal stature (above2 SDS)
(, ). Discontinuation of GH treatment was as-
sociated with a significant increase in percentage body
fat and fat mass SDS, whereas lean body mass SDS
decreased (). The gradual increase in fat mass
percentage persisted until at least  years after dis-
continuation of GH treatment, and could not be
explained by aging or by lower serum IGF- level,
indicating that the changes reflected the loss of GH-
mediated lipolysis (). A persistent increase in fat
mass over time could have detrimental effects on
metabolic and cardiovascular health, and longer term
follow-up is therefore necessary. Lean body mass

Table 9. Standard of Care for the Monitoring During GH Treatment of Children Born SGA Who Are Short

At Start of
GH Treatment

Every 3 to 4 Months
During GH Treatment

Yearly During
GH Treatment

At Cessation of
GH Treatment

Physical examination

Height X X X X

Weight X X X X

Blood pressure X — X X

Tanner stage X X X —

Laboratory investigations

IGF-1, IGFBP-3 X — X X

Thyroid function tests: TSH, free T4 X — X X

Lipid levels: cholesterol,
low-density lipoprotein cholesterol,
high-density lipoprotein
cholesterol, triglycerides

X — — X

Glucose metabolism: fasting
glucose and insulin, HbA1c

X — — X

Imaging

X-ray hand/wrist X — Xa X

The contents of this table are
based on Clayton et al. (350)
and our own clinical
experience.
aIn prepuberty twice yearly.
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decreased during the first  months after GH cessation
but stabilized thereafter. At  years after discontinuation
of GH treatment, lean body mass was similar compared
with levels at discontinuation of treatment ().

Besides the longitudinal changes during  years after
discontinuation of GH treatment, body composition of
previously GH-treated SGA subjects was comparable to
untreated subjects. GH-treated adults born SGA had a
similar fat mass at  years after discontinuation of GH
treatment as untreated short adults born SGA, adults
born SGA with spontaneous catch-up growth, and
adults born AGA (, ). However, lean body mass
was lower in all categories of SGA-born subjects
compared with AGA subjects, suggesting programming
of lean body mass by (factors associated with) SGA
rather than by postnatal growth or GH treatment.

Studies on insulin sensitivity in the first year after
discontinuation of GH treatment reported variable
results, with some studies describing an increase in
insulin sensitivity to age-matched controls (, )
and another study reporting no change in insulin
sensitivity after discontinuation of treatment ().
Studies on insulin sensitivity based on the frequently
sampled intravenous glucose tolerance test showed
that the GH-induced lower insulin sensitivity in-
creased during  months after discontinuation of GH
treatment and remained stable thereafter until at least
 years after discontinuation of treatment (, ).
At  years after discontinuation of GH treatment,
insulin sensitivity and b-cell function were similar in
previously GH-treated SGA adults and untreated
adults. Adults born SGA with spontaneous catch-up
growth to a normal height and weight had the lowest
insulin sensitivity at  years of age, which is consistent
with previous findings showing that accelerated catch-
up in weight relative to length in early life was as-
sociated with a less favorable cardiometabolic health
profile in adulthood (, , ).

After discontinuation of GH treatment, systolic and
diastolic blood pressure initially increased, followed by a
decrease, resulting in a similar blood pressure at  years
after discontinuation of treatment compared with levels
at discontinuation of treatment (, ). There is only
one study reporting on cIMT after discontinuation of
GH treatment in adults born SGA, showing that cIMT
did not change after discontinuation of GH treatment
(). The beneficial effect of GH treatment on serum
lipid levels was sustained during  years after discon-
tinuation of treatment (). Besides insulin sensitivity
and b-cell function, also lipid levels and BMD were
similar between GH-treated adults born SGA and
untreated short adults born SGA (, , ). Serum
lipid levels were significantly lower in GH-treated
subjects compared with untreated short adults born
SGA (). The prevalence of metabolic syndrome was
similar in GH-treated SGA adults and untreated short
adults born SGA ().

In contrast, the beneficial effect of GH treatment
on BMD during treatment was followed by a trend
toward a gradual deterioration after GH discontinu-
ation (). At discontinuation of GH treatment, total-
body BMD was 2. SDS in males and 2. SDS in
females. During  years after discontinuation of GH
treatment total-body BMD decreased in males to2.
SDS whereas it remained similar in females. The mean
BMD of the lower spine decreased in both males and
females after discontinuation of GH treatment, but
remained above 2 SDS ().

In conclusion, at age  years metabolic and car-
diovascular health in previously GH-treated adults
born SGA was similar to that of untreated short adults
born SGA or AGA, indicating that long-term GH
treatment during childhood has no unfavorable effects
in young adulthood (, ). Longer follow-up is
required to investigate whether differences in car-
diometabolic health emerge with age.

Longitudinal changes during GH treatment
•

•

•

•

•

•

•

•

•

•

Longitudinal changes
during 5 years after GH cessation
•

•

•

•

•

•

Proportionate growth, improvement of height and a normalization of adult height.
Fat mass decreases.
Lean body mass increases.
Insulin sensitivity decreases.
Blood pressure and MMP-9 levels decrease.
Lipid levels decrease.
Peripheral thyroid metabolism changes, resulting in more 
biologically active T3 and less inactive rT3.
DHEAS, Inhibin B, and AMH levels are not influenced.
Bone mineral density of total body and lumbar spine increases.
IQ, behavior, self-perception and health-related quality of life improve.

Body fat increases during 5 years.
Lean body mass decreases during 6 months 
but remains similar thereafter.
GH-induced insulin resistance disappears.
Blood pressure increases temporarily but returns
to levels similar to those at GH-cessation.
Carotid Intima Media Thickness remains similar.
Lipid levels increase but remain within the
normal range.

Start of GH treatment Cessation of GH treatment (Adult Height) 5 years after GH-cessation

© 2018 Illustration ENDOCRINE SOCIETY

Figure 4. Effects of GH treatment during and after cessation of treatment in SGA-born subjects. DHEAS, dehydroepiandrosterone
sulfate; MMP-9, matrix metallopeptidase 9. [© 2018 Illustration ENDOCRINE SOCIETY].
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Suggestions for Follow-Up of Previously
GH-Treated Adults Born SGA

At present, there is limited knowledge as to how often
previously GH-treated adults born SGA should be
monitored. Based on the gradual increase in fat mass
after discontinuation of GH treatment, previously
GH-treated adults born SGA may be advised to
adopt a healthy life style, and not to become over-
weight. The frequency and intensity of cardiovascular
and metabolic disease monitoring will vary depending
on factors such as the presence of overweight and a
family history of DM and/or cardiometabolic diseases.
When none of these risk factors is present, no regular
follow-up may be required (). However, we would
advise previously GH-treated adults born SGA to seek
medical consultation in case of chronic fatigue, con-
siderable weight gain, and hypertension, particularly in
case of a family history of DM, cardiovascular disease,
or hypertension (). Besides, based on the available
data it seems important to also inform SGA-born
subjects with spontaneous catch-up growth to a
normal stature that they might have a higher risk of
metabolic and cardiovascular diseases in later life,
because metabolic alterations are particularly evident
in these SGA-born subjects. As subjects with SRS
have medical problems beyond short stature and the
long-term health profile of older subjects with SRS is
not yet known, we recommend transition of pre-
viously GH-treated subjects with SRS from the pe-
diatric endocrine to an adult endocrine care setting.

Conclusions

The causes of SGA are multifactorial. Clinicians
should attempt to establish the causes leading to SGA,

particularly if GH treatment is considered for per-
sistent short stature, because in some syndromes GH
treatment is contraindicated or adaptation of the GH
dose is needed.

Clinicians should use appropriate charts for the
assessment of fetal growth. If available, a growth chart
from the background population should be used. It is
currently unclear whether customization for factors
known to influence fetal growth adds value. For the
assessment of postnatal growth representative charts
should be used to allow appropriate monitoring of
postnatal (catch-up) growth.

SGA poses a risk factor for several infant and
adult conditions. It is, therefore, paramount to re-
duce the number of SGA births. Possible strategies
to do this include smoking cessation intervention
programs, prevention of maternal underweight, and
early identification (and prompt treatment) of
pregnancies at risk for preeclampsia. After birth,
rapid weight gain should be avoided, given the
evidence suggesting that the metabolic conse-
quences of being born SGA can be mitigated by
ensuring appropriate catch-up growth while avoiding
excessive weight gain.

Nonsyndromic short children born SGA as well
as children with SRS are amenable to GH treatment.
A set of recent data has shown that the average gain in
adult height is . SDS, with considerable variation
in the response to treatment. Add-on treatment
with a GnRHa may result in an even greater height
gain, and may thus be considered in children with a
predicted adult height below 2. SDS at early
puberty. Longer-term follow-up data have shown
that no unfavorable effects are to be expected at
young adult age. However, it remains to be explored
whether side effects emerge with age.
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MI, Zaina S, Sabanero M, Daza-Beńıtez L, Malacara
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409. Ibáñez L, López-Bermejo A, D́ıaz M, Marcos MV.
Endocrinology and gynecology of girls and women
with low birth weight. Fetal Diagn Ther. 2011;30(4):
243–249.

410. Lundgren EM, Cnattingius S, Jonsson B, Tuvemo T.
Intellectual and psychological performance in males
born small for gestational age with and without
catch-up growth. Pediatr Res. 2001;50(1):91–96.

411. McCarton CM, Wallace IF, DivonM, Vaughan HG Jr.
Cognitive and neurologic development of the
premature, small for gestational age infant through
age 6: comparison by birth weight and gestational
age. Pediatrics. 1996;98(6 Pt 1):1167–1178.

412. McCormick MC, Workman-Daniels K, Brooks-
Gunn J. The behavioral and emotional well-being
of school-age children with different birth weights.
Pediatrics. 1996;97(1):18–25.

413. Larroque B, Bertrais S, Czernichow P, Léger J. School
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H, Dunger DB, Juul A. A randomised controlled trial
evaluating IGF1 titration in contrast to current
GH dosing strategies in children born small for
gestational age: the North European Small-for-
Gestational-Age Study. Eur J Endocrinol. 2014;
171(4):509–518.

499. Lem AJ, van der Kaay DC, de Ridder MA, Bakker-van
Waarde WM, van der Hulst FJ, Mulder JC, Noordam
C, Odink RJ, Oostdijk W, Schroor EJ, Sulkers EJ,
Westerlaken C, Hokken-Koelega AC. Adult height
in short children born SGA treated with growth
hormone and gonadotropin releasing hormone
analog: results of a randomized, dose-response
GH trial. J Clin Endocrinol Metab. 2012;97(11):
4096–4105.

500. van der Steen M, Lem AJ, van der Kaay DC, Hokken-
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