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Abstract

Environmental factors can induce epigenetic alterations in the germ cells that can potentially be transmitted transgenera-
tionally. This non-genetic form of inheritance is termed epigenetic transgenerational inheritance and has been shown in a
variety of species including plants, flies, worms, fish, rodents, pigs, and humans. This phenomenon operates during specific
critical windows of exposure, linked to the developmental biology of the germ cells (sperm and eggs). Therefore, concepts of
the developmental origins of transgenerational inheritance of phenotypic variation and subsequent disease risk need to in-
clude epigenetic processes affecting the developmental biology of the germ cell. These developmental impacts on epigen-
etic transgenerational inheritance, in contrast to multigenerational exposures, are the focus of this Perspective.
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Introduction

The majority of environmental factors and toxicants do not
have the ability to alter DNA sequence or promote genetic mu-
tations directly [1]. However, many environmental factors can
promote abnormal phenotypes or increase the risk of disease.
Early life exposures during critical windows of development are
one of the most important aspects of this process [2]. These en-
vironmental impacts on phenotype and disease risk are often
not directly mediated through classical genetic mechanisms,
even over the course of many generations; instead epigenetic
mechanisms which can affect phenotype from one generation
to the next are important [3]. The epigenetic mechanisms
involved include DNA methylation, histone modifications, non-
coding RNAs (ncRNAs), and chromatin structure [3]. The envir-
onmental exposures that directly influence these epigenetic

processes can range from nutrition, temperature, and stress to
large numbers of environmental toxicants [1, 3], Table 1. The
majority of environmental exposures result in direct actions on
the somatic cells of specific tissues during critical windows of
development, for example to affect the numbers of cardiomyo-
cytes or nephrons which affect the later risk of the exposed in-
dividuals to adult onset disease [2], Table 2. While these effects
on somatic cells can have dramatic consequences for the indi-
vidual, in classical thinking they do not have the ability to pass
this phenotype transgenerationally: this is known as
Weissman’s barrier, which suggests that only the germline can
transmit genetic information between generations [4], Table 2.
Therefore, germ cell alterations are required to transmit mo-
lecular information to the next generation.

More recently, studies showing the ability of environmental
exposures to alter the epigenetics of the germline have revealed
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the potential to promote a transgenerational phenotype [5]. The
heritable transmission of environmentally induced phenotypes
is referred to as epigenetic transgenerational inheritance [3, 5–7]
(Table 3) and is of particular interest as it may transmit risk of
disease across generations in the absence of continued environ-
mental exposures. This non-genetic or non-Mendelian form of
inheritance requires epigenetic alterations of a germ cell (sperm
or egg) to transmit the environmentally induced phenotypes be-
tween generations [1, 3, 8]. The focus of this Perspective is on
the developmental origins of these germline changes and their
role in epigenetic transgenerational inheritance, not the direct
effects involved in multigenerational exposures. The ability to
directly expose a germ cell to induce effects in the offspring (i.e.
multigenerational exposure) are important, but the ability to
produce a permanent epigenetic alteration in the germ cells
which is maintained in the absence of the continued environ-
mental exposure suggests a novel form of inheritance which
could have a much greater impact on biology, disease etiology,
and evolution. Therefore, the literature reviewed will focus on
epigenetic transgenerational inheritance, in contrast to multi-
generational exposures.

Although direct exposure multigenerational observations
have been made, the initial observation of an environmental
factor promoting epigenetic transgenerational inheritance of
disease involved an agricultural fungicide, vinclozolin [5, 9]. A
wide variety of environmental factors from nutrition to toxi-
cants have now been shown to promote the epigenetic

transgenerational inheritance of disease or phenotypic vari-
ation [3] (Table 1). The largest group of environmental expos-
ures are toxicants including vinclozolin [5, 9, 10], methoxychlor
[5, 11], dioxin [12, 13], the plasticizer compound bisphenol A
(BPA) [6, 14, 15], the pesticide dichlorodiphenyltrichloroethane
(DDT) [16], phthalates [14, 17], and tributyltin [18]. Unbalanced
nutrition, ranging from calorie or protein restriction [19–22] to
high fat diets [23, 24], as well as manipulation of micronutrients,
such as folate [25], have also been shown to promote the epi-
genetic transgenerational inheritance of disease. Other environ-
mental factors such as temperature [26–29], stress [30, 31],
smoking [32, 33], nicotine [34], and alcohol [35] have also been
studied (Table 1). Therefore, a wide variety of different environ-
mental exposures involving different signal transduction mech-
anisms can promote the epigenetic transgenerational
inheritance of disease and phenotypic variation.

Environmental factors have also been shown to promote the
epigenetic transgenerational inheritance of disease or pheno-
typic variation in a wide variety of different species (Table 1).
Extremes of temperature, salinity, and drought promote abnor-
mal transgenerational phenotypes in plants [26–29]. Nutritional
challenges in worms (C. elegans) [36, 37], flies (drosophila)

Table 1: exposure induced epigenetic transgenerational inheritance

Toxicants Species Generation References

Vinclozolin (agricultural fungicide) Rat and mouse F4 [5, 9, 10]
Methoxychlor (agricultural pesticide) Rat F4 [5, 11]
TCDD/dioxin (industrial contaminant) Rat, mouse, fish F3 [12, 13, 40]
Plastics (bisphenol-A, phthalate-DEHP and DBP) Rat F3 [6, 14, 15]
Jet fuel [JP8] (hydrocarbon mixture) Rat F3 [47]
Permethrin and DEET pesticide and insect repellent Rat F3 [48]
DDT (pesticide) Rat F4 [16]
Bisphenol A (BPA) (plastic toxicant) Rat, mouse, fish F3 [49, 50, 98]
Phthalates (plastic toxicant) Rat F3 [17]
Tributyltin (industrial toxicant) Rat F3 [18]

Nutrition
Folate (nutrition) Mouse [25]
High fat diet (nutrition) Mouse and rat F2, F3 [23, 24]
Caloric restriction (nutrition) Human, rat, mouse, pig, worm, flies F2, F3 [19–22, 36, 37, 39, 42]

Other types exposures
Temperature and drought (plant flowering and health) Plant F2, F3 [26–29]
Stress (behavioral) Mouse, rat, human F2, F3 [30, 31, 44–46]
Smoking (health) Human F2, F3 [32, 33]
Nicotine (health) Rat F3 [34]
Alcohol (health) Rat F3 [35]

Table 2: sites of action and phenotypes of environmental factors

Site of action Biological response and toxicology

Somatic cells Allows tissue-specific toxicology and critical for
adult onset disease in the individual exposed but
not capable of transmitting a transgenerational
phenotype.

Germ cells Allows transmission between generations and in the
absence of direct exposure to promote a transge-
nerational phenotype.

Table 3: transgenerational versus multigenerational phenotypes

Phenotype Exposure Definition

Multigenerational Direct Coincident direct exposure of
multiple generations to an
environmental factor
promoting alterations in the
multiple generations
exposed.

Transgenerational None, except
the initial
generation

After the initial exposure, the
transgenerational phenotype
is transmitted through the
germ line in the absence of
direct exposure.
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[38, 39], fish [40], birds [41], pigs [42], rodents [5, 43], and humans
[19, 20] have all been shown to promote transgenerational
phenotypes. Smoking [32, 33] or nicotine [34] and alcohol- [35]
induced transgenerational phenotypes in rodents or humans
have been observed. Environmental stress has also been shown
to influence transgenerational phenotypes in rodents [30, 31]
and humans [44–46]. Environmental toxicants have been shown
to promote transgenerational phenotypes in rodents [5, 6, 9, 11–
14, 16–18, 47–50], fish [40], plants [26–29], and humans [32, 33],
Table 1. In all the species investigated environmental factors
have been shown to promote the epigenetic transgenerational
inheritance of disease or phenotypic variation. Therefore, the
phenomenon is highly conserved among species, supporting an
important role for this form of epigenetic transgenerational
inheritance.

The ability of environmental factors to promote the epigen-
etic transgenerational inheritance of diseases and phenotypic
variation has significant impact on concepts of the etiology of
disease, especially the non-communicable diseases (NCDs) –
diabetes, cardiovascular and chronic lung disease and some
forms of cancer, and obesity. Epidemiological and molecular
studies have shown that fixed genetic variations such as single-
nucleotide polymorphisms do not explain a substantial fraction
of the risk for these diseases at the population level (Table 4).
Nor can such variations explain the dramatic increase seen in
the prevalence of NCDs over a few decades globally or the differ-
ent patterns of disease between monozygotic twins [51], Table
4. The environmental exposures associated with disease listed
above have not been shown to promote genetic mutations caus-
ing disease [3]. Environmentally induced epigenetic effects can
help explain many of these observations.

Evolutionary biology studies have also demonstrated a num-
ber of observations that cannot easily be explained by classical
genetics alone. These include rapid evolutionary events or
microevolution involving disparate phenotypic variations
within a species [52–54]. The fusion of classical Darwinian con-
cepts, neo-Darwinian genetic concepts, and neo-Lamarckian
environmental epigenetic concepts has suggested a more holis-
tic theory for evolutionary molecular mechanisms [54]. For ex-
ample, recently the ability of environmental exposures to
promote the epigenetic transgenerational inheritance of sperm
epimutations has been shown to promote the development of
genetic mutations in later generations [55]. Therefore, a com-
bination of epigenetics and genetics will likely influence the
long term transgenerational phenotype [55]. Previously, it has
been shown that altered epigenetics can increase genome in-
stability to promote nearly all forms of genetic mutations [55,
56]. This suggests many evolutionary processes such as genetic
assimilation may be in part a function of earlier alterations in
epigenome [54, 55, 57]. Therefore, environmentally induced epi-
genetic transgenerational inheritance is a non-genetic inherit-
ance mechanism that has dramatic impacts on a wide range of
areas of science and medicine [1–3, 54, 58]. Critical elements

that need to be considered include the developmental impacts
and experimental limitations of epigenetic transgenerational
inheritance studies.

Developmental Biology

Understanding of developmental biology has now moved on
substantially from the concept of a genetic “programme” for de-
velopment, which protected the embryo and fetus from the in-
fluences of environmental factors [59]. In retrospect, it is hard to
understand why this idea took so long to be revised to include
epigenetic processes. The concept of Waddington (who coined
the word “epigenetic” in about 1942) of canalization emphasized
that, while it protected development from extraneous influ-
ences, it was nonetheless a mutable process which provided a
degree of developmental plasticity [60]. Today, the fields of evo-
lutionary developmental biology and ecological developmental
biology are well established [61, 62]. The transmission of pheno-
typic variation to offspring via developmental plasticity induced
through parental cues forms the basis for parental effects re-
ported in many species [63]. An area in which these concepts
have been particularly influential in medicine is the
Developmental Origins of Health and Disease. Developmental
Origins of Health and Disease research has shown how a range
of aspects of the developmental environment, especially those
mediated via the parents such as maternal (and to some extent
paternal) diet, body composition, and health-related behaviors,
can affect the development of the offspring. These processes
operate within the normal range, not only of diets and lifestyle
in contemporary societies but also in terms of prenatal develop-
ment. They are not therefore necessarily accompanied by overt
differences in phenotype visible at birth, even though epigenetic
changes to organs, systems, and control mechanisms may have
occurred. These physiological phenotype changes are then
associated with differences in responses to later environmental
challenges such as living in an obesogenic environment which
affects the individual’s risk of NCDs (for review see [2]).
Environmental and parental stimuli inducing developmental
plasticity operate over critical periods, and these have been
shown to commence even before conception on the germline
[64] and to involve the early embryo [65], the fetus [66], and the
newborn [67]. During each of these periods, epigenetic proc-
esses have been invoked [68].

Epigenetic transgenerational inheritance requires the germ-
line transmission of altered epigenetic information between
generations [1, 3, 5]. Therefore, the cell types and critical win-
dows of exposure to consider involve sperm and egg develop-
ment and differentiation. The onset of gonadal sex
determination corresponds to cell fate determination when a
primordial germ cell (PGC) differentiates into an egg or sperm
cell lineage [1, 3, 69]. This occurs during embryonic or fetal days
E8–E14 in the rodent or weeks 6–18 of gestation in the human
[1, 3]. This fetal development of sex determination period in
mammals is the initial critical window of exposure, and for
other species, there is a comparable time of embryonic develop-
ment when germ cell differentiation is initiated. The other crit-
ical window for germ cell development is gametogenesis when
differentiated sperm or egg develop. The egg develops later in
development when it is arrested in meiosis and differentiates
during follicle development [70]. The oogonia that are arrested
in the adult female are not actively developing but do provide a
potential target for environmental factors. The susceptibility of
the egg to epigenetic alterations at this adult stage of develop-
ment needs to be further investigated. In contrast, the sperm

Table 4: environmental epigenetic impacts on biology and disease

� Worldwide differences in regional disease frequencies
� Low frequency of genetic component of disease as determined

with genome wide association studies (GWAS)
� Dramatic increases in disease frequencies over past decades
� Identical twins with variable and discordant disease frequency
� Environmental exposures associated with disease
� Regional differences and rapid induction events in evolution
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actively undergo cell differentiation during spermatogenesis in
the adult, and so they are potential targets for epigenetic
change [1, 3, 70]. The majority of studies have demonstrated
that the fetal period of gonadal sex determination is a critical
window for environmentally induced epigenetic transgenera-
tional inheritance [5, 6, 9, 11–14, 16–18, 47–50]. However, recent
studies have also demonstrated that effects on the adult male’s
spermatogenesis can promote epigenetic transgenerational in-
heritance of altered phenotypes [46]. They include stress-
induced behavioral effects and nutritionally induced metabolic
conditions in rodents [30, 31]. Therefore, these critical develop-
mental periods for germ cell differentiation are the windows of
sensitivity for environmental factors to promote epigenetic
transgenerational inheritance.

The sperm and egg periods of development directly corres-
pond to the germ cell epigenetic programming windows [1, 3,
70]. The stem cells for the germ cells are PGCs that early in de-
velopment migrate to colonize the fetal gonad prior to gonadal
sex determination [69, 70]. During this migration and coloniza-
tion, the DNA methylation in the PGC is erased for the most
part to negligible levels, then, at the onset of gonadal sex deter-
mination, the germ-line DNA initiates a re-methylation of the
DNA in a sex-specific manner [1, 3, 69] (Fig. 1). The completion
of the male germ cell DNA re-methylation is later in fetal go-
nadal development and after birth in the female germ cell, but
the initiation of re-methylation is at gonadal sex determination
for both sexes [1, 3, 69], Fig. 1. Therefore, environmental expos-
ures at this period of gonadal sex determination have the cap-
acity to alter the epigenetic programming of the germ cells [3].
Although the female germ cell (oocyte) does not have a dra-
matic regulation of epigenetic processes in the adult, the male
germ cell does have epigenetic programming during spermato-
genesis as spermatogonia develop into spermatozoa in the
adult testis [3]. Environmental exposures have been shown to
alter this epigenetic programming [6, 7, 55] and to promote the
epigenetic transgenerational inheritance of abnormal physi-
ology [5, 6, 9, 11–14, 16–18, 47–50]. Therefore, alterations in epi-
genetic programming of the germ cells at these critical
developmental windows promote transgenerational pheno-
types and alteration in the epigenetics of the germ cells.

Environmental factors can readily alter epigenetic processes
but not readily alter DNA sequence [1]. However, the genetic
background will directly impact the influence of altered epigen-
etics. Therefore, any cellular, physiological, or biological phe-
nomena will involve a cascade of genetic and epigenetic events
to produce a differentiated cell or tissue [71] (Fig. 2). A cascade
of genetic events leading to a progression of gene expression
profiles will interact with the corresponding cascade of epigen-
etic alterations that occur during cellular differentiation.
Although the genetic cascade is less sensitive to environmental
factors, the epigenetic processes in an early critical window can
be modified such that the subsequent interactions between the
epigenetic and genetic events lead to altered differentiation
(Fig. 2). This in turn leads to an altered gene expression profile
and changed susceptibility for disease [71, 72]. The integration
of epigenetics and genetics during the early stages of develop-
ment provides a molecular mechanism for the disease suscepti-
bility and phenotypic variation observed [72]. In addition, these
molecular events provide a mechanism for the developmental
origins of disease and phenotypic variation [2, 73]. Although
most exposures will directly act on somatic cell development
and alter the exposed individual’s later life physiology and dis-
ease [2], in the event the exposure affects the germ-line and
does not get erased at fertilization, the development of an epi-
genetic transgenerational inheritance phenotype occurs.

To test this hypothesis, several transgenerational disease
models have been used to determine if the somatic cells crit-
ical to the disease have an altered epigenome and transcrip-
tome. The first is the transgenerational male fertility effects
involving spermatogenic cell apoptosis in the adult testis [5].
The adult testis somatic cell that supports the developing
spermatogenic cells is the Sertoli cell forming the seminifer-
ous tubule. Sertoli cells from control versus the vinclozolin F3
generation lineage (great grand-offspring) males were found to
have a dramatic alteration in both gene expression and epi-
genetic DNA methylation profiles [74]. The gene expression
profile identified could lead to altered pyruvate production
which could explain the spermatogenic cell apoptosis
observed [74]. A second example involved a female polycystic
ovarian follicles (PCO) transgenerational model [75]. Many
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Figure 1: epigenetic (DNA methylation) programming in the germline during various developmental periods. The green line is the male germline developmental pat-

tern and blue line the female germline developmental pattern (modified from [1])
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environmental toxicants promote this PCO transgenerational
disease [75]. The granulosa cells within the ovarian follicles
prior to the development of the PCO were found to have
altered epigenetic DNA methylation profiles and transcrip-
tomes in exposed lineage animals [75]. Many of the genes with
altered expression had been previously shown to be associated
with PCO [75]. These experiments demonstrate the importance
of direct measurements in the germ cells and relevant somatic
cell types themselves. Observations support the hypothesis
that transgenerational germ-line epigenetic alterations acting
through the embryonic stem cells can promote disease sus-
ceptibility in a wide variety of cells and tissues [76].

Critical Experimental Limitations

A number of experimental considerations need to be made in
the design of epigenetic transgenerational inheritance studies.
The first is to consider the critical windows of exposure dis-
cussed above in regards to germ cell development. Studies have
demonstrated that the critical window of gestation and fetal
development identified in many studies [5, 6, 9, 11–14, 16–18,
47–50] needs to be considered in the experimental design of
transgenerational studies. Exposure to a stimulus during a

window that preceded or followed the critical window of go-
nadal sex determination may produce effects other than those
on germ cell epigenetic programming. For example, a recent
study of vinclozolin actions used an exposure window that did
not include the entire gonadal sex determination window (em-
bryonic day E7–13 in mouse and E8–14 in rat) and found no
transgenerational effect [77]. In contrast to statements in a re-
cent review [78], this does not constitute a negative result, but
simply an experimental design that was not suitable.

Another critical experimental consideration is the impact of
inbreeding within the experimental model used. A number of
studies that did not induce epigenetic transgenerational inherit-
ance were performed using inbred strains of rodents [77, 79, 80].
Previously, literature has demonstrated inbreeding depression
of environmentally induced phenotypes, particularly toxicant
actions [81] and suppression of epigenetic processes has been
shown to be involved [82–84]. A study that compared inbred and
outbred lines of mice found transgenerational phenotypes in
the outbred but not the inbred strains [43]. Therefore, recent
studies that have used inbred strains and obtained negative ob-
servations may in part be confounded by such inbreeding [77,
78]. The molecular nature of this inbreeding depression on epi-
genetics remains to be established.

Figure 2: epigenetic and genetic cascade of events (arrows) from a stem cell state to a differentiated adult state involved in development. A normal or environmentally

modified state promotes genome alterations associated with an increase susceptibility for disease and phenotypic variation. The critical window of early development

is when environmental factors have the ability to alter the epigenome (modified from [71])

Figure 3: environmentally induced transgenerational epigenetic inheritance: schematic of environmental exposure and affected generations for both gestating female

and adult male or female. The multigenerational direct exposures are indicated in contrast to the transgenerational generation without direct exposure (modified from

[97])
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In defining epigenetic transgenerational inheritance, it is
critical to consider the absence of direct environmental expos-
ures in the transgenerational generations, as previously dis-
cussed [85] (Table 3). The direct exposure of a cell or individual
to an environmental exposure does not constitute a transge-
nerational phenotype but is due to direct exposure effects of the
germ cell pre-fertilization or somatic cells early in development
(embryonic, fetal, or postnatal) (Fig. 3). The exposure of an F0
generation pregnant female directly exposes her, the F1 gener-
ation fetus, and the F2 generation germ-line within the F1 gen-
eration fetus [3, 85]. Therefore, the F3 generation is the first
generation that is truly a test of transgenerational inheritance,
the F0, F1, and F2 generations being due rather to a multigener-
ational exposure [3, 85] (Fig. 3). In contrast, an adult male or
non-pregnant female when exposed has direct exposure of the
F0 generation adult and germ line that will generate the F1 gen-
eration, so it is the F2 generation (grandoffspring) which are the
first recipients of transgenerational inheritance [3, 85] (Fig. 3),
the F0 and F1 generations again being multigenerational expos-
ures. As an example, the paternal exposure to smoking effects
on the son is due to direct exposure effects on the germline and
not due to a transgenerational response [86]. Many studies have
been published that have claimed transgenerational inherit-
ance of phenotype but instead have been multigenerational ex-
posures not involving germ-line transmission of epigenetic
information in the absence of direct exposure [1, 3, 87].

As listed in Table 1, a large number of different laboratories,
with a wide variety of environmental exposures in a number of
different species, have demonstrated environmental induction
of epigenetic transgenerational inheritance [5, 6, 9, 11–14, 16–18,
47–50]. Several studies have reported an inability to induce
transgenerational phenotypes [77, 79, 80, 88] but did not con-
sider all the experimental limitations described above. A ques-
tion of the bioinformatics used [77] has also been raised [89].
The suggestion that these are negative studies [78] neglects a
consideration of these critical aspects of experimental design
and interpretation and therefore need to be made with caution.

Conclusions

Developmental considerations in environmentally induced epi-
genetic transgenerational inheritance of disease and pheno-
typic variation include the critical windows of exposure being
linked to germ cell development. The time of gonadal sex deter-
mination when germ cells are undergoing epigenetic program-
ming is a developmental period susceptible to induction of
transgenerational phenotypes. The adult stage for males will be
critical due to the epigenetic reprogramming during spermato-
genesis. Other developmental stages likely exist but require fur-
ther investigation. Studies not finding transgenerational
phenotypes need to consider the need to affect a critical win-
dow of exposure in development.

A number of studies have more recently suggested a role for
different epigenetic processes in the germline transmission of
epigenetic transgenerational inheritance. Previous studies have
focused on DNA methylation due to the link between epigenetic

programming and DNA methylation, Table 5. Genome wide ef-
fects on sperm DNA methylation profiles and the identification
of differential DNA methylation regions have been found with a
wide variety of environmental exposures [5–7, 11, 13, 14, 16, 47],
Tables 1 and 5. More recently, ncRNAs have also been shown to
be altered in sperm transgenerationally [31, 90–92], Table 5.
Interesting studies have also used ncRNA injection into eggs to
promote a transgenerational phenotype [31]. Histone retention
in sperm has also been shown to be altered, and alteration in
histone modifications and retention have been shown to be
involved [93–96]. Although no studies have extensively studied
the role of chromatin structure and epigenetic inheritance, it
also has been suggested [95]. Therefore, a number of studies
have suggested the combined roles of different epigenetic
processes in epigenetic transgenerational inheritance [3, 87, 90].
Although some reports suggest one molecular process may
be more important than another, a combination of them all
(Table 5) will likely regulate the epigenetic transgenerational in-
heritance phenomenon [3, 87].

Epigenetic transgenerational inheritance provides a non-
genetic form of inheritance. The impact on biology of environ-
mental factors which can promote transgenerational disease
and phenotypic variation is significant. For evolutionary biol-
ogy, the ability of environmental factors to promote pheno-
typic change is a neo-Lamarckian concept that can impact
neo-Darwinian theory. Integration of environmental epigen-
etics and classical genetics provides a more robust molecular
mechanism underlying evolution [54]. The combined mechan-
ism helps explain topics such as genetic assimilation.
Ancestral exposures that will have an impact on transgenera-
tional disease susceptibility can play a critical role in disease
etiology [3, 6]. The impact of environment on biology is signifi-
cantly enhanced when epigenetic transgenerational inherit-
ance is considered.

Genetics and genetic inheritance is absolutely critical for
biology. An additional consideration of epigenetic transge-
nerational inheritance as a non-genetic form of inheritance
does not reduce the importance of genetics but rather expands
the repertoire of molecular mechanisms which underlie many
aspects of biology that cannot be easily explained with clas-
sical genetics alone (Table 4). Therefore, complementary roles
for non-genetic and genetic inheritance exist and need to be
considered. This includes the regulation of any cellular,
physiological, or biological system. No system will involve
only genetics or only epigenetics as these molecular mechan-
isms are so integrated that they depend on each other [3, 71]
(Fig. 2). Future elucidation of molecular and biological proc-
esses will need to consider both to understand the function of
biological systems adequately.

These considerations have far reaching implications, be-
cause they indicate that environmental or lifestyle challenges
not only produce effects on the individuals exposed themselves
but may also be transmitted in potentially unmodified form to
their offspring over several subsequent generations. The protec-
tion of future unborn generations from such risk must be a
paramount consideration, raising a range of ethical as well as
practical considerations. The situation is made more acute by
the consideration that even if the inducing stimulus is removed,
such as reducing the level of an environmental toxicant, the
transgenerational phenotype and associated effects on disease
risk may still be transmitted. Transgenerational epigenetic in-
heritance thus has a range of implications for sustainable
health and economic development in many situations.

Table 5: transgenerational germline epigenetic processes

� DNA methylation [5–7, 11, 13, 14, 16, 47]
� Non-coding RNA (ncRNA) [31, 90–92]
� Histone modifications [93–96]
� Chromatin structure [95]

6 | Environmental Epigenetics, 2016, Vol. 2, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/article/2/1/dvw

002/2464897 by guest on 24 April 2024



References
1. Jirtle RL, Skinner MK. Environmental epigenomics and dis-

ease susceptibility. Nat Rev Genet 2007;8:253–62.
2. Hanson MA, Gluckman PD. Early developmental conditioning

of later health and disease: physiology or pathophysiology?
Physiol Rev 2014;94:1027–76.

3. Skinner MK. Endocrine disruptor induction of epigenetic
transgenerational inheritance of disease. Mol Cell Endocrinol
2014;398:4–12.

4. Surani MA. Human germline: a new research frontier. Stem
Cell Rep 2015;4:955–60.

5. Anway MD, Cupp AS, Uzumcu M et al. Epigenetic transge-
nerational actions of endocrine disruptors and male fertility.
Science 2005;308:1466–9.

6. Manikkam M, Guerrero-Bosagna C, Tracey R et al.
Transgenerational actions of environmental compounds on
reproductive disease and identification of epigenetic bio-
markers of ancestral exposures. PLoS One 2012;7:e31901.

7. Guerrero-Bosagna C, Settles M, Lucker B et al. Epigenetic
transgenerational actions of vinclozolin on promoter regions
of the sperm epigenome. PLoS One 2010;5:e13100.

8. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic
transgenerational actions of environmental factors in dis-
ease etiology. Trends Endocrinol Metab 2010;21:214–22.

9. Anway MD, Leathers C, Skinner MK. Endocrine disruptor vin-
clozolin induced epigenetic transgenerational adult-onset
disease. Endocrinology 2006;147:5515–23.

10.Stouder C, Paoloni-Giacobino A. Transgenerational effects of
the endocrine disruptor vinclozolin on the methylation pat-
tern of imprinted genes in the mouse sperm. Reproduction
2010;139:373–9.

11.Manikkam M, Haque MM, Guerrero-Bosagna C et al. Pesticide
methoxychlor promotes the epigenetic transgenerational in-
heritance of adult onset disease through the female germline.
PLoS One 2014;9:e102091.

12.Bruner-Tran KL, Osteen KG. Developmental exposure to
TCDD reduces fertility and negatively affects pregnancy out-
comes across multiple generations. Reprod Toxicol
2011;31:344–50.

13.Manikkam M, Tracey R, Guerrero-Bosagna C et al. Dioxin
(TCDD) induces epigenetic transgenerational inheritance of
adult onset disease and sperm epimutations. PLoS One
2012;7:e46249.

14.Manikkam M, Tracey R, Guerrero-Bosagna C et al. Plastics
derived endocrine disruptors (BPA, DEHP and DBP) induce
epigenetic transgenerational inheritance of adult-onset dis-
ease and sperm epimutations. PLoS One 2013;8:e55387.

15.Lombo M, Fernandez-Diez C, Gonzalez-Rojo S et al.
Transgenerational inheritance of heart disorders caused by
paternal bisphenol A exposure. Environ Pollut 2015;
206:667–78.

16.Skinner MK, Manikkam M, Tracey R et al. Ancestral dichloro-
diphenyltrichloroethane (DDT) exposure promotes epigen-
etic transgenerational inheritance of obesity. BMC Med
2013;11:228.

17.Doyle TJ, Bowman JL, Windell VL et al. Transgenerational ef-
fects of di-(2-ethylhexyl) phthalate on testicular germ cell as-
sociations and spermatogonial stem cells in mice. Biol Reprod
2013;88:112.

18.Chamorro-Garcia R, Sahu M, Abbey RJ et al.
Transgenerational inheritance of increased fat depot size,
stem cell reprogramming, and hepatic steatosis elicited by

prenatal exposure to the obesogen tributyltin in mice. Environ
Health Perspect 2013;121:359–66.

19.Pembrey ME, Bygren LO, Kaati G et al. Sex-specific, male-line
transgenerational responses in humans. Eur J Hum Genet
2006;14:159–66.

20.Veenendaal MV, Painter RC, de Rooij SR et al.
Transgenerational effects of prenatal exposure to the 1944-45
Dutch famine. BJOG 2013;120:548–53.

21.Burdge GC, Slater-Jefferies J, Torrens C et al. Dietary protein
restriction of pregnant rats in the F0 generation induces
altered methylation of hepatic gene promoters in the adult
male offspring in the F1 and F2 generations. Br J Nutr
2007;97:435–9.

22.Painter RC, Osmond C, Gluckman P et al. Transgenerational
effects of prenatal exposure to the Dutch famine on neonatal
adiposity and health in later life. BJOG 2008;115:1243–9.

23.Dunn GA, Morgan CP, Bale TL. Sex-specificity in transgenera-
tional epigenetic programming. Horm Behav 2011;59:290–5.

24.Burdge GC, Hoile SP, Uller T et al. Progressive, transgenera-
tional changes in offspring phenotype and epigenotype fol-
lowing nutritional transition. PLoS One 2011;6:e28282.

25.Padmanabhan N, Watson ED. Lessons from the one-carbon
metabolism: passing it along to the next generation. Reprod
Biomed Online 2013;27:637–43.

26.Song J, Irwin J, Dean C. Remembering the prolonged cold of
winter. Curr Biol 2013;23:R807–11.

27.Norouzitallab P, Baruah K, Vandegehuchte M et al.
Environmental heat stress induces epigenetic transgenera-
tional inheritance of robustness in parthenogenetic Artemia
model. FASEB J 2014;28:3552–63.

28.Zheng X, Chen L, Li M et al. Transgenerational variations in
DNA methylation induced by drought stress in two rice vari-
eties with distinguished difference to drought resistance.
PLoS One 2013;8:e80253.

29.Suter L, Widmer A. Environmental heat and salt stress induce
transgenerational phenotypic changes in Arabidopsis thaliana.
PLoS One 2013;8:e60364.

30.Dias BG, Ressler KJ. Parental olfactory experience influences
behavior and neural structure in subsequent generations. Nat
Neurosci 2014;17:89–96.

31.Gapp K, Jawaid A, Sarkies P et al. Implication of sperm RNAs
in transgenerational inheritance of the effects of early
trauma in mice. Nat Neurosci 2014;17:667–9.

32.Pembrey ME. Male-line transgenerational responses in
humans. Hum Fertil 2010;13:268–71.

33.Golding J, Northstone K, Gregory S et al. The anthropometry
of children and adolescents may be influenced by the pre-
natal smoking habits of their grandmothers: a longitudinal
cohort study. Am J Hum Biol 2014;26:731–9.

34.Rehan VK, Liu J, Sakurai R et al. Perinatal nicotine-induced
transgenerational asthma. Am J Physiol Lung Cell Mol Physiol
2013;305:L501–7.

35.Govorko D, Bekdash RA, Zhang C et al. Male germline trans-
mits fetal alcohol adverse effect on hypothalamic proopio-
melanocortin gene across generations. Biol Psychiatry
2012;72:378–88.

36.Benayoun BA, Brunet A. Epigenetic memory of longevity in
Caenorhabditis elegans. Worm 2012;1:77–81.

37.Kelly WG. Transgenerational epigenetics in the germline
cycle of Caenorhabditis elegans. Epigenetics Chromatin 2014;7:6.

38.Buescher JL, Musselman LP, Wilson CA et al. Evidence for
transgenerational metabolic programming in Drosophila. Dis
Model Mech 2013;6:1123–32.

Hanson and Skinner | 7

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/article/2/1/dvw

002/2464897 by guest on 24 April 2024



39.Grentzinger T, Armenise C, Brun C et al. piRNA-mediated
transgenerational inheritance of an acquired trait. Genome
Res 2012;22:1877–88.

40.Baker TR, Peterson RE, Heideman W. Using Zebrafish as a
model system for studying the transgenerational effects of
dioxin. Toxicol Sci 2014;138:403–11.

41.Brun JM, Bernadet MD, Cornuez A et al. Influence of grand-
mother diet on offspring performances through the male line
in Muscovy duck. BMC Genet 2015;16:145.

42.Braunschweig M, Jagannathan V, Gutzwiller A et al.
Investigations on transgenerational epigenetic response
down the male line in F2 pigs. PLoS One 2012;7:e30583.

43.Guerrero-Bosagna C, Covert T, Haque MM et al. Epigenetic
transgenerational inheritance of vinclozolin induced mouse
adult onset disease and associated sperm epigenome bio-
markers. Reprod Toxicol 2012;34:694–707.

44.Dias BG, Maddox SA, Klengel T et al. Epigenetic mechanisms
underlying learning and the inheritance of learned behaviors.
Trends Neurosci 2015;38:96–107.

45.Babenko O, Kovalchuk I, Metz GA. Stress-induced perinatal
and transgenerational epigenetic programming of brain de-
velopment and mental health. Neurosci Biobehav Rev
2015;48:70–91.

46.Skinner MK. Environmental stress and epigenetic transge-
nerational inheritance. BMC Med 2014;12:153.

47.Tracey R, Manikkam M, Guerrero-Bosagna C et al.
Hydrocarbons (jet fuel JP-8) induce epigenetic transgenera-
tional inheritance of obesity, reproductive disease and sperm
epimutations. Reprod Toxicol 2013;36:104–116.

48.Manikkam M, Tracey R, Guerrero-Bosagna C et al. Pesticide
and insect repellent mixture (Permethrin and DEET) induces
epigenetic transgenerational inheritance of disease and
sperm epimutations. Reprod Toxicol 2012;34:708–19.

49.Salian S, Doshi T, Vanage G. Impairment in protein expres-
sion profile of testicular steroid receptor coregulators in male
rat offspring perinatally exposed to Bisphenol A. Life Sci
2009;85:11–8.

50.Wolstenholme JT, Edwards M, Shetty SR et al. Gestational ex-
posure to Bisphenol A produces transgenerational changes in
behaviors and gene expression. Endocrinology 2012;153:
3828–38.

51.Castillo-Fernandez JE, Spector TD, Bell JT. Epigenetics of dis-
cordant monozygotic twins: implications for disease. Genome
Med 2014;6:60.

52.Day T, Bonduriansky R. A unified approach to the evolution-
ary consequences of genetic and nongenetic inheritance. Am
Nat 2011;178:E18–36.

53.Skinner MK, Guerrero-Bosagna C, Haque MM et al.
Epigenetics and the evolution of Darwin’s finches. Genome
Biol Evol 2014;6:1972–89.

54.Skinner MK. Environmental epigenetics and a unified theory
of the molecular aspects of evolution: a neo-lamarckian con-
cept that facilitates neo-Darwinian evolution. Genome Biol
Evol 2015;7:1296–302.

55.Skinner MK, Guerrero-Bosagna C, Haque MM.
Environmentally Induced epigenetic transgenerational in-
heritance of sperm epimutations promote genetic mutations.
Epigenetics 2015;10:762–71.

56.Wolff EM, Liang G, Jones PA. Mechanisms of disease: genetic
and epigenetic alterations that drive bladder cancer. Nat Clin
Pract Urol 2005;2:502–10.

57.Soubry A. Epigenetic inheritance and evolution: a paternal
perspective on dietary influences. Prog Biophys Mol Biol
2015;118:79–85.

58.Gluckman P, Beedle A, Hanson M. Principles of Evolutionary
Medicine, 1st edn. New York: Oxford University Press, 2009.

59.Bateson P, Gluckman P, Hanson M. The biology of develop-
mental plasticity and the predictive adaptive response hy-
pothesis. J Physiol 2014;592:2357–68.

60.Gluckman PD, Hanson MA, Low FM. The role of developmen-
tal plasticity and epigenetics in human health. Birth Defects
Res C Embryo Today 2011;93:12–8.

61.West-Eberhard MJ. Developmental Plasticity and Evolution. New
York: Oxford University Press, 2003.

62.Gilbert SF, Epel D. Ecological Developmental Biology: The
Environmental Regulation of Development, Health and Evolution,
2nd edn. Sunderland, MA: Sinauer Associates, 2015.

63.Uller T. Developmental plasticity and the evolution of paren-
tal effects. Trends Ecol Evol 2008;23:432–8.

64.Liu X, Chen Q, Tsai HJ et al. Maternal preconception body
mass index and offspring cord blood DNA methylation: ex-
ploration of early life origins of disease. Environ Mol Mutagen
2014;55:223–30.

65.Fleming TP, Velazquez MA, Eckert JJ. Embryos, DOHaD and
David Barker. J Dev Orig Health Dis 2015;6(5):337–83.

66.Saffery R. Epigenetic change as the major mediator of fetal
programming in humans: are we there yet? Ann Nutr Metab
2014;64:203–7.

67.Garmendia ML, Corvalan C, Uauy R. Assessing the public
health impact of developmental origins of health and disease
(DOHaD) nutrition interventions. Ann Nutr Metab
2014;64:226–30.

68.Hanson M, Godfrey KM, Lillycrop KA et al. Developmental
plasticity and developmental origins of non-communicable
disease: theoretical considerations and epigenetic mechan-
isms. Prog Biophys Mol Biol 2011;106:272–80.

69.Seisenberger S, Peat JR, Reik W. Conceptual links between
DNA methylation reprogramming in the early embryo and
primordial germ cells. Curr Opin Cell Biol 2013;25:281–8.

70.Seisenberger S, Peat JR, Hore TA et al. Reprogramming DNA
methylation in the mammalian life cycle: building and break-
ing epigenetic barriers. Philos Trans R Soc Lond B Biol Sci
2013;368:20110330.

71.Skinner MK. Environmental epigenetic transgenerational in-
heritance and somatic epigenetic mitotic stability. Epigenetics
2011;6:838–42.

72.Tang WW, Dietmann S, Irie N et al. A unique gene regulatory
network resets the human germline epigenome for develop-
ment. Cell 2015;161:1453–67.

73.Heindel JJ, Balbus J, Birnbaum L et al. Developmental origins
of health and disease: integrating environmental influences.
Endocrinology 2015;156(10):3416–21.

74.Guerrero-Bosagna C, Savenkova M, Haque MM et al.
Environmentally induced epigenetic transgenerational in-
heritance of altered sertoli cell transcriptome and epige-
nome: molecular etiology of male infertility. PLoS One
2013;8:e59922.

75.Nilsson E, Larsen G, Manikkam M et al. Environmentally
induced epigenetic transgenerational inheritance of ovarian
disease. PLoS One 2012;7:e36129.

76.Skinner MK, Savenkova M, Zhang B et al. Gene bionetworks
involved in epigenetic transgenerational inheritance of
altered mate preference: environmental epigenetics and evo-
lutionary biology. BMC Genomics 2014;16:337.

77. Iqbal K, Tran DA, Li AX et al. Deleterious effects of endocrine
disruptors are corrected in the mammalian germline by epi-
genome reprogramming. Genome Biol 2015;16:59.

8 | Environmental Epigenetics, 2016, Vol. 2, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/article/2/1/dvw

002/2464897 by guest on 24 April 2024



78.Whitelaw E. Disputing Lamarckian epigenetic inheritance in
mammals. Genome Biol 2015;16:60.

79.Schneider S, Kaufmann W, Buesen R et al. Vinclozolin—the
lack of a transgenerational effect after oral maternal expos-
ure during organogenesis. Reprod Toxicol 2008;25:352–60.

80. Inawaka K, Kawabe M, Takahashi S et al. Maternal exposure
to anti-androgenic compounds, vinclozolin, flutamide and
procymidone, has no effects on spermatogenesis and DNA
methylation in male rats of subsequent generations. Toxicol
Appl Pharmacol 2009;237:178–87.

81.Brown AR, Hosken DJ, Balloux F et al. Genetic variation, in-
breeding and chemical exposure—combined effects in wild-
life and critical considerations for ecotoxicology. Philos Trans
R Soc Lond B Biol Sci 2009;364:3377–90.

82. Johannes F, Colome-Tatche M. Concerning epigenetics and
inbreeding. Nat Rev Genet 2011;12:376.

83.Cheptou PO, Donohue K. Epigenetics as a new avenue for the
role of inbreeding depression in evolutionary ecology.
Heredity 2013;110:205–6.

84.Vergeer P, Wagemaker NC, Ouborg NJ. Evidence for an epi-
genetic role in inbreeding depression. Biol Lett 2012;8:798–801.

85.Skinner MK. What is an epigenetic transgenerational pheno-
type? F3 or F2. Reprod Toxicol 2008;25:2–6.

86.Northstone K, Golding J, Davey Smith G et al. Prepubertal start
of father’s smoking and increased body fat in his sons: fur-
ther characterisation of paternal transgenerational re-
sponses. Eur J Hum Genet 2014;22:1382–6.

87.Soubry A, Hoyo C, Jirtle RL et al. A paternal environmental
legacy: evidence for epigenetic inheritance through the male
germ line. Bioessays 2014;36:359–71.

88.Schneider S, Marxfeld H, Groters S et al. Vinclozolin—no
transgenerational inheritance of anti-androgenic effects after
maternal exposure during organogenesis via the intraperito-
neal route. Reprod Toxicol 2013;37:6–14.

89.Sharma A. Variable directionality of gene expression changes
across generations does not constitute negative evidence of
epigenetic inheritance. Environ. Epigenetics 2015; 1:1–5.

90.Yan W. Potential roles of noncoding RNAs in environmental
epigenetic transgenerational inheritance. Mol Cell Endocrinol
2014;398:24–30.

91.Grandjean V, Rassoulzadegan M. [Epigenetic inheritance of
the sperm: an unexpected role of RNA]. Gynecol Obstet Fertil
2009;37:558–61.

92.Stoeckius M, Grun D, Rajewsky N. Paternal RNA contributions
in the Caenorhabditis elegans zygote. EMBO J 2014;33:1740–50.

93.Erkek S, Hisano M, Liang CY et al. Molecular determinants of
nucleosome retention at CpG-rich sequences in mouse sper-
matozoa. Nat Struct Mol Biol 2013;20:868–75.

94.Hammoud SS, Nix DA, Hammoud AO et al. Genome-wide
analysis identifies changes in histone retention and epigen-
etic modifications at developmental and imprinted gene loci
in the sperm of infertile men. Hum Reprod 2011;26:2558–69.

95.van de Werken C, van der Heijden GW, Eleveld C et al.
Paternal heterochromatin formation in human embryos is
H3K9/HP1 directed and primed by sperm-derived histone
modifications. Nat Commun 2014;5:5868.

96.Carone BR, Hung JH, Hainer SJ et al. High-resolution mapping
of chromatin packaging in mouse embryonic stem cells and
sperm. Dev Cell 2014;30:11–22.

97.Sadler-Riggleman I, Skinner MK. Environment and the epi-
genetic transgenerational inheritance of disease. In: B
Chadwick (ed.), Epigenetics: Current Research and Emerging
Trends. Norfolk, UK: Caister Academic Press, 2015, 297–305.

98.Bhandari RK, Deem SL, Holliday DK et al. Effects of the envir-
onmental estrogenic contaminants bisphenol A and 17alpha-
ethinyl estradiol on sexual development and adult behaviors
in aquatic wildlife species. Gen Comp Endocrinol 2015;214:
195–219.

Hanson and Skinner | 9

D
ow

nloaded from
 https://academ

ic.oup.com
/eep/article/2/1/dvw

002/2464897 by guest on 24 April 2024


