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Aims Heart failure with preserved ejection fraction (HFpEF) is a growing public health problem. Impairment in left ven-
tricular (LV) diastolic function has been proposed as a key pathophysiologic determinant. However, the role of
concomitant systolic dysfunction despite preserved LV ejection fraction (LVEF) has not been well characterized. To
analyse LV myocardial deformation, diastolic function, and contractile reserve (CR) in patients with HFpEF at rest
and while during exercise, as well as their correlation with functional capacity.

...................................................................................................................................................................................................
Methods
and results

Standard echo, lung ultrasound, LV 2D speckle-tracking strain, and myocardial work efficiency (MWE) were per-
formed at rest and during exercise in 230 patients with HFpEF (female sex 61.2%; 71.3 ± 5.3 years) in 150 age- and
sex-comparable healthy controls. LV mass index and LAVI were significantly increased in HFpEF. Conversely, global
longitudinal strain (GLS) and MWE were consequently reduced in HFpEF patients. During effort, HFpEF showed
reduced exercise time, capacity, and VO2 peak. Increase in LVEF and LV GLS was significantly lower in HFpEF
patients, while LV E/e0 ratio, pulmonary pressures, and B-lines by lung ultrasound rose. A multivariable analysis out-
lined that LV MWE at rest was closely related to maximal Watts reached (beta coefficient: 0.43; P < 0.001), peak
VO2 (beta: 0.50; P < 0.001), LV E/e0 (beta: 0.52, P < 0.001), and number of B-lines during effort (beta: -0.36;
P < 0.01).

...................................................................................................................................................................................................
Conclusions The lower resting values of LV GLS and MWE in HFpEF patients suggest an early subclinical myocardial damage,

which seems to be closely associated with lower exercise capacity, greater pulmonary congestion, and blunted LV
contractile reserve during effort.
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Introduction

Heart failure with preserved ejection fraction (HFpEF) is a prevalent
and developing public health problem, which is associated with signifi-
cant morbidity and an increased risk of in-hospital, short-term,
and long-term mortality.1,2 Impairment in left ventricular (LV)
diastolic function has been proposed as a key pathophysiologic

determinant.3–5 Although the role of concomitant systolic dysfunc-
tion despite preserved LV ejection fraction (LVEF) has not been well
characterized, even if it may help to inform future treatment
strategies by defining subphenotypes in this heterogeneous
population.6,7

According to EAVCI/ASE stress echo recommendations,8 exercise
stress echocardiography (ESE) can be used in unexplained exertional
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.dyspnoea in order to reveal symptoms. Additionally, it can concomi-
tantly reveal exercise-induced LV dynamic diastolic dysfunction and
lack of contractile reserve (CR). On the other hand, there is insuffi-
cient evidence to support these indications.

Systolic function decline does seem to start before the reduction
of LVEF. Prior studies suggested that LV longitudinal function
assessed by tissue Doppler imaging and strain imaging, two load-
dependent techniques, may be impaired in HFpEF.9–12 Recently, myo-
cardial work (MW) was introduced as a new non-invasive index for
the evaluation of LV systolic function. This takes afterload into ac-
count through analysis of strain in relation to non-invasive LV pres-
sure.13–17

We hypothesized that in symptomatic patients with HFpEF,
speckle tracking and MW indices could provide a more objective and
loading-independent evaluation of LV systolic function, and could be
able to predict functional capacity during ESE.

On this grounds, the aim of this study is to analyse LV systolic func-
tion using speckle tracking, MW, and ESE in symptomatic patients
with HFpEF, while looking for a possible correlation between base-
line and stress echocardiographic parameters, and functional capacity
during physical effort.

Methods

Study population
HFpEF group

In accordance with ESC guidelines, in our prospective study we enrolled
270 consecutive patients with signs and symptoms of heart failure (HF),
New York Heart Association class II to IV symptoms, LVEF >_50%, and N-
terminal pro-brain natriuretic peptide (NT-proBNP) level >125 pg/mL, in
two cardiologic divisions: Monaldi Hospital (Naples) and Umberto I�

Hospital (Nocera Inferiore—Salerno). The recruitment period lasted
from May 2019 to February 2020.

Exclusion criteria were the following: unstable angina or acute myocar-
dial infarction; more than mild aortic valve disease; prosthetic heart valve
or prosthetic ring; severe mitral annular calcification; severe (>3þ) mitral
regurgitation; significant (>50% of stenosis) coronary artery disease by
coronary angiography; uncontrolled hypertension; severe chronic ob-
structive pulmonary disease; any contraindication to physical activity (e.g.
gonarthrosis, symptomatic peripheral artery disease); inability to exercise;
poor acoustic window.

According to these criteria, 40 patients were excluded for: significant
valvular heart disease (13 patients); severe chronic obstructive pulmon-
ary disease (10 patients); contraindication to physical activity (7 patients);
unstable angina (5 patients); and poor acoustic window (5 patients).

Control group

A group of 150 age- and sex-comparable asymptomatic subjects referred
to our echo lab for screening were also included as controls. Control
individuals were consecutively identified and recorded if they were
normotensive, had a normal 12-lead electrocardiogram (ECG), regular
LVEF (>55%) and wall motion score index. Subjects were removed if
they had: (i) arterial systemic hypertension (BP >_135/85 mmHg as aver-
age of three different visits) and/or were on active anti-hypertensive
treatment; (ii) overt coronary artery disease; (iii) primary cardiomyopathy
and/or genetic cardiovascular disease; (iv) congenital heart disease; (v) mi-
tral or aortic valvular insufficiency of higher degree than trivial, valvular

stenosis of any degree; (vi) any previous cardiac or vascular surgery or
interventional procedure (including ablation of accessory pathways); (vii)
any kind of cardiac therapy; and (viii) previous cardioembolic stroke,
including transient ischaemic attacks.

The study was approved by the institution’s ethics board and each par-
ticipant provided informed consent.

Study protocol
All the patients enrolled underwent a complete clinical and laboratory
evaluation. ECG, standard echocardiography, and LV 2D speckle-tracking
strain analysis were also performed at rest and during ESE.

Standard Doppler echocardiography
A standard transthoracic echocardiography was performed using the
commercially available ultrasound machine Vivid E9 (GE Ultrasound,
Milwaukee, WI, USA).

The following LV systolic function measures were collected: LVEF,
using the biplane Simpson method, the stroke volume, obtained from the
LV outflow tract (LVOT) diameter, and LVOT time–velocity integral. LV
mass was calculated using the Devereux formula and LV mass index
(LVMI) was obtained by dividing the LV mass for the patients’ body sur-
face area. A LVMI >115 g/m2 for men and >95 g/m2 for women defined
the LV hypertrophy.18 Relative wall thickness (RWT) was calculated as a
ratio between 2 LV posterior wall thickness and LV end-diastolic diam-
eter with a value >0.42 being considered as abnormal. The area–length
technique was used to assess the left atrial volume index (LAVI). The fol-
lowing diastolic measurements for the LV were gathered: E and A peak
velocities (m/s), E/A ratio, the early diastolic septal and lateral velocities e0,
the mean between them (average e0), and the average E/e0 ratio, as ex-
pression of LV filling pressures.3,19 Peak tricuspid regurgitant velocity
(TRV) and the systolic trans-tricuspid gradient were assessed through the
continuous wave Doppler on the tricuspid regurgitation jet. Pulmonary
artery systolic pressure (PASP) was calculated by adding to the systolic
trans-tricuspid gradient the value of right atrial pressure (RAP). The latter
was estimated by the inferior vena cava (IVC) dimension and inspiratory
collapsibility, while the lung ultrasound was also performed to assess pul-
monary B-lines.20

Two-dimensional speckle tracking

echocardiography
LV global longitudinal strain (GLS) was obtained by utilizing the 2D
speckle tracking echocardiography (STE) technique. Loops of three suc-
cessive cardiac cycles from the apical four-chamber, two-chamber, and
three-chamber views were acquired, with a frame rate between 30 and
70 frames/s (mean 58.4 ± 7.3 frames/s). These images were transferred to
the workstation and analysed through the software EchoPAC Version
202 (GE Vingmed Ultrasound, Norway). Endocardial borders were
manually traced in the end-systolic frame of the cardiac cycle, starting
from the apical long-axis view where it is simpler to identify the timing of
the aortic valve closure. The software generated a region of interest
(ROI) of the entire myocardial thickness, which could be manually
adjusted in width if deemed necessary, and a moving image displaying the
tracking. If the tracking was considered inaccurate, the operator could re-
peat the process, readjusting the ROI or selecting a new ROI. The soft-
ware then divided the LV myocardium in six segments, calculating
segmental and GLS. The same process was repeated for the apical four-
and two-chamber images, and the GLS was determined by averaging local
strains of all myocardial segments.16,18
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..Myocardial work
MW was calculated using a specific software (EchoPAC Version 202 -
GE Vingmed Ultrasound, Norway), which incorporates the LV pres-
sure non-invasively estimated through a cuff to the LV strain. Arterial
pressure was measured three times at rest immediately before
the echocardiographic study. The average of the three values of systol-
ic blood pressure, assumed to be equal to the peak systolic LV pres-
sure, was introduced in the software, which constructed an LV
pressure–strain loop and the area within the loop was used as index
of MW.13–17 Along with segmental and global values for MW, addition-
al indices were also provided:

• Constructive work (CW): work performed by myocardial segments
during the systolic shortening which contributes to the LV ejection;

• Wasted work (WW): work generated by some myocardial segments
needed to cause the systolic lengthening of other dyssynchronous seg-
ments, which does not contribute to LV ejection. The post-systolic
shortening also contributes to the WW.

• Myocardial work efficiency (MWE): is the ratio CW/(CW þ WW)
reported in percentage (0–100%)
A Bull’s eye with the segmental and global Time to peak, MW, CW,

WW, and MWE values were provided. The global amounts were calcu-
lated as the average of all segmental values (Figures 1 and 2).

Standardized submaximal exercise stress

echocardiography
After the resting echocardiography, all of the enrolled patients under-
went a semi-supine bicycle ESE using a standard protocol of incremental
25 W steps lasting 2 min, with the pedaling rate at 55 rpm.

The same ultrasound system of the standard rest echocardiography
was used. Images from parasternal long-axis and short-axis, from ap-
ical four-, two-, and three-chamber views were continuously recorded

during the different steps of the exam. Causes of interruption of the
study included new wall motion abnormalities, significant ST-segment
changes (i.e. ST-segment depression or elevation >_1 mm or more in
two contiguous leads), and the onset of symptoms or arrhythmias.
Functional parameters collected at rest and at peak effort included:
heart rate, systolic blood pressure, workload achieved in Watts, and
rate–pressure product. Peak oxygen consumption (VO2 peak) was also
assessed by cardiopulmonary test performed during the ESE study.
The following echocardiographic parameters were measured at base-
line and at pinnacle effort: LVEF, LV GLS, LV average E/e0 , tricuspid
annular plane systolic excursion (TAPSE), and PASP. Increase in EF
>5% defined a serious CR, according to the European guidelines.8 An
impaired LV diastolic reserve was defined as a post-exercise E/e0 >_15
indicating elevated LV filling pressures. LV GLS at peak effort was cal-
culated through the same procedure as described above for the rest
analysis, taken from the apical four-chamber, two-chamber, and three-
chamber views acquired during exercise.17 B-lines were evaluated
with the four-site simplified scan, from mid-axillary to midclavicular
lines on the third intercostal space. Each site scored from 0 = A-lines
to 10 = white lung. The positivity criterion for B-lines was a stress
score higher than rest for >_2points.20

Statistical analysis
All of the statistical analyses were performed by SPSS for Windows re-
lease 21.0 (Chicago, IL, USA). Continuous variables were expressed as
median (I, III quartile) or means ± standard deviation (SD). Unpaired t-
tests were carried out to, respectively, estimate differences intra-groups
and between groups. Linear regression analyses and partial correlation
tests by Pearson’s method were done to assess univariable relations. To
identify significant independent determinants of functional capacity, their
individual association with clinically relevant and echocardiographic varia-
bles was assessed by multivariable linear regression analysis. The

Figure 1 Seventeen-segment bull’s-eye representation of Global Longitudinal strain (A–E), Myocardial Work Index (B–F), MWE (C–G) in a patient
with HFpEF (upper) and in healthy subject (lower). Bar graphs showing the amount of Myocardial Constructive Work (green) and Global Wasted
Work (blue, D–H).
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following variables were included into the analysis: clinical data (age, sex,
BMI, mean blood pressure, NT-proBNP), standard echocardiographic in-
dices (LV volumes, LV mass index, resting and stress LV E/e0 , LAVI), B-
lines and strain measurements (resting and stress LV GLS and MWE).
These variables were selected according to their clinical relevance and
potential impact on LV cardiac purpose and on functional capacity.1–5

Variable selection was performed in the multivariable linear regression as
an interactive stepwise backward elimination method, with each time
excluding the one variable with the highest P-value, according to Wald

statistics. To decrease the inflation of the Type 1 error rate due to mul-
tiple testing, the statistical significance was defined as two-sided P-value
<0.01. Receiver operating characteristic (ROC) curve analysis was per-
formed to select optimal cut-off values of strain measurements.
Reproducibility of GLS measurements was determined in all of the sub-
jects. Intra/inter-observer variability were examined using the coefficient
of variation (COV), defined as the ratio of the standard deviation (r) to
the mean (l, %), by Bland–Altman analysis. CV, 95% confidence intervals
(CIs), and percent errors were reported.

Figure 2 Representative traces of global left ventricular (LV) pressure–strain loop (red) and segmental pressure–strain loop measured at the mid
infero-septal LV segment (green) in a patient with HFpEF (A). Global LV pressure–strain loop in a healthy subject (B).

....................................................................................................................................................................................................................

Table 1 Demographics and clinical features of HFpEF patients and healthy controls

Variable HFpEF patients (n 5 230) Controls (n 5 150) P-value

Female sex (%) 61.2 60.3 NS

Age (years) 71.3 ± 5.3 70.3 ± 5.4 NS

BSA (m2) 1.85 ± 0.17 1.81 ± 0.15 <0.05

BMI (kg/m2) 29.9 ± 3.6 25.7 ± 3.4 <0.01

Systolic blood pressure (mmHg) 136.5 ± 8.4 124.4 ± 5.8 <0.01

Diastolic blood pressure (mmHg) 87.4 ± 6.2 78.3 ± 9.2 <0.01

Heart rate (bpm) 73.4 ± 10.3 76.4 ± 11.4 NS

Arterial hypertension (%) 81.9

Diabetes mellitus (%) 33.2

Renal disease (eGFR < 60 mL/kg/1.73 m2, %) 38.4

Smoking or history of smoking (%) 19.4

Obesity (%) 31.8

Hyperlipidaemia (%) 24.6

Coronary heart disease (%) 22.7

Permanent atrial fibrillation (%) 32.3

NT-proBNP (pg/mL) 771 ± 303.6

Beta-blockers (%) 88.4

ACE inhibitors or ARB blockers (%) 89.5

Aldosterone receptor antagonists (%) 22.5

Antiplatelet agents/oral anticoagulants (%) 35.5

Diuretics (%) 85.8

Data are expressed as absolute number (%) or mean ± SD.
BMI, body mass index; BSA, body surface area; NS, non significant.
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Results

We selected a final population of 230 symptomatic patients with
HFpEF, 150 age, and gender-comparable healthy controls. An over-
view of the baseline characteristics of the study population is pro-
vided in Table 1. The average age was 71.3 ± 5.3 years, and the
majority of patients were female, who had increased BMI and a his-
tory of hypertension. Rates of therapy with diuretics, with an
angiotensin-converting enzyme inhibitor or angiotensin-receptor
blocker and beta-blockers were high. The median NT-proBNP level
was elevated (771 pg/mL, interquartile range: 426–1257 pg/mL).

Using standard echocardiography: LV wall thickness, LV mass
index, and LAVI were dramatically increased in HFpEF. Both LVEF
and right ventricular (RV) functional indexes (TAPSE and S’ wave) at
rest did not show compelling differences between the two groups.
Conversely, baseline LV GLS and MWE were significantly reduced,
and MWW was powerfully increased in HFpEF patients (Table 2).

As expected, LV filling pressures (average E/e0 ratio) were signifi-
cantly increased in HFpEF group, and normal in the control group. B-
lines (>_2) at rest were found in 21.3% of HFpEF patients and 5.1% of
controls (P < 0.001).

During effort, HFpEF showed reduced exercise time, exercise cap-
acity, and VO2 peak, as reported in Table 3. A rise in RV systolic func-
tion indexes was similar between the two groups. Contrastingly,

values of LVEF, LV GLS, and MWE were much lower in HFpEF
patients when compared with healthy controls. Of note, the reduced
MWE during effort was mainly determined by increased MWW dur-
ing stress. Additionally, HFpEF patients showed at peak effort an
increased LV E/e0 ratio, pulmonary pressures, and B-lines by lung
ultrasound.

Univariable analysis detected independent associations of baseline
GLS and MWE with maximal workload (Watts reached), peak VO2,
LV E/e0 ratio, and B-lines during effort, stronger than the association
of LVEF with the same functional parameters (Table 4). What’s more,
both GLS (r: 0.55; P < 0.001) and MWE (r: -0.58; P < 0.0001) were sig-
nificantly associated with NT-proBNP levels.

A multivariable analysis confirmed that LV MWE at rest was close-
ly related to peak effort measurements expressed in maximal Watts
reached (beta coefficient: 0.43; P < 0.001), peak VO2 (beta: 0.50;
P < 0.001), LV E/e0(beta: 0.52, P < 0.001), and in the number of B-lines
during effort (beta: -0.36; P < 0.01).

The independent association between resting LV MWE and peak
VO2 during ESE showed a powerful incremental value with respect
to clinical and standard echocardiographic data (Table 5).

Intra-observer variability: COV: LV MWE: 5.37 (ICC 0.71); Bland–
Altman analysis: LV MWE (95% CI ±1.7; percent error 3.2%).

Inter-observer variability: COV: LV MWE: 7.22 (ICC 0.77); Bland–
Altman analysis: LV MWE (95% CI ±1.3; percent error 3.6%).

....................................................................................................................................................................................................................

Table 2 Baseline standard Doppler echo and strain measurements in HFpEF patients compared with controls

Variable HfpEF (n 5 230) Controls (n 5 150) P-value

IVSd (mm) 12.3 ± 2.1 9.1 ± 2.3 <0.001

PWd (mm) 12.1 ± 2.2 8.9 ± 2.6 <0.01

LVEDV (mL) 126.4 ± 22.3 118.4 ± 12.6 NS

LVESV (mL) 55.2 ± 11.1 48.8 ± 8.2 NS

LV mass index (g/m2) 140.3 ± 25.4 80.4 ± 16.8 <0.001

RWT 0.48 ± 0.05 0.39 ± 0.03 <0.01

Biplane LVEF (%) 56.3 ± 3.5 58.4 ± 4.6 NS

LV GLS (%) -15.2 ± 2.8 -20.4 ± 3.3 <0.01

Myocardial work efficiency (%) 86.4 ± 3.2 93.2 ± 3.3 <0.0001

Myocardial constructive work (mmHg%) 2155.3 ± 423.2 2532 ± 305.4 <0.01

Myocardial wasted work (mmHg%) 257.6 ± 105.3 96.6 ± 44.1 <0.001

LV stroke volume (mL) 72.3 ± 17.8 71.4 ± 16.8 NS

Mitral E velocity (cm/s) 0.93 ± 0.7 0.80 ± 0.4 <0.01

Mitral A velocity (cm/s) 0.75 ± 0.6 0.83 ± 0.1 <0.01

E/A ratio 1.23 ± 0.3 0.95 ± 0.6 <0.01

Mitral septal E0 velocity (cm/s) 0.06 ± 0.3 0.11 ± 0.4 <0.001

Mitral lateral E0 velocity (cm/s) 0.07 ± 0.3 0.13 ± 0.5 <0.001

E/e0 ratio 14.5 ± 3.1 5.7 ± 2.8 <0.0001

Aortic root diameter (mm) 33.3 ± 3.2 30.2 ± 3.4 <0.05

LAVI (mL/m2) 33.4 ± 4.1 25.3 ± 3.6 <0.001

PASP (mmHg) 35.5 ± 3.8 23.6 ± 3.1 <0.001

TAPSE (mm) 21.4 ± 3.4 23.6 ± 3.4 NS

Tricuspid S0 velocity (cm/s) 13.8 ± 3.3 14.6 ± 4.2 NS

B-lines (median and IQR) 1.5 (0–35) 0.70 (0–24) <0.001

AV, aortic valve; IVSd, inter-ventricular septum thickness at end-diastole; LAVI, left atrial volume index; LV GLS, left ventricular global longitudinal strain; LV, left ventricle;
LVEDV, left ventricular end diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end systolic volume; NS, non significant; PASP, systolic pulmonary ar-
tery pressure; PWd, posterior wall thickness at end diastole; RWT, relative wall thickness; TAPSE, tricuspid annular plane systolic excursion.
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Discussion

In a population of HFpEF patients undergoing stress echocardiog-
raphy we found that: (i) compared with healthy controls, HF patients
exhibit subclinical LV systolic dysfunction at baseline, despite a pre-
served LVEF, as outlined by impaired GLS, enhanced WW and
reduced MWE; (ii) during exercise, an impaired LV systolic and dia-
stolic reserve was observed in the HFpEF group, along with a
reduced exercise tolerance; (iii) resting MWE is significantly corre-
lated with functional measurements and pulmonary congestion dur-
ing physical effort.

Previous reports about systolic function
in HFpEF
Although LVEF is the most commonly used and accepted measure of
systolic function, it is highly load-dependent and relatively insensitive
to subtle abnormalities of LV function.18,21 Previous studies involving
HFpEF patients have failed to demonstrate abnormalities in systolic
performance with traditional echocardiographic indexes.5–7 Early
data employing tissue Doppler Imaging suggested that longitudinal
systolic function may be abnormal despite preserved LVEF in condi-
tions predisposing to HF and in HFpEF.9,10 Nevertheless, tissue
Doppler imaging has technical limitations including preload/afterload
dependence and is constrained in its ability to assess different planes

of LV deformation other than longitudinal.16,22 In the last decades,
STE has shown a high sensitivity to detect subclinical cardiac dysfunc-
tion, even in presence of LVEF >55%. Thanks to its independence

....................................................................................................................................................................................................................

Table 3 Functional measurements and echocardiographic parameters at peak exertion in the overall study
population

Variable HfpEF Controls P-value

Functional measurements

Exercise time (min) 6.8 ± 3.1 11.2 ± 4.3 <0.001

Exercise capacity (W) 63.6 ± 21.5 114.4 ± 25.6 <0.001

Peak heart rate (bpm) 130.7 ± 22.4 144.3 ± 18.4 <0.01

Peak systolic blood pressure (mmHg) 190.4 ± 15.6 170.4 ± 18.6 <0.01

Rate-pressure product (bpm � mmHg) 24.800 ± 6.500 24.400 ± 5.530 NS

Peak VO2 (mL/kg/min) 16.4 ± 2.8 33.4 ± 3.4 <0.0001

Echocardiographic parameters

Biplane LV EF (%) 59.4 ± 4.9 64.4 ± 3.9 <0.01

PAPs (mmHg) 48.4 ± 6.9 30.4 ± 5.6 <0.001

E/e0 ratio 19.5 ± 3.3 7.8 ± 3.3 <0.0001

LV GLS (%) -16.6 ± 4.6 -22.8 ± 4.2 <0.001

MWE (%) 88.5 ± 2.2 97.8 ± 3.3 <0.0001

MCW (mmHg%) 2675.3 ± 353.45 3088 ± 404.6 <0.01

MWW (mmHg%) 347.3 ± 112.3 116.5 ± 34.3 <0.0001

TAPSE (mm) 25.4 ± 3.3 27.3 ± 3.1 NS

TDI RV peak systolic velocity Sm (cm/s) 15.6 ± 3.1 16.8 ± 3.3 NS

B-lines (median and IQR) 4.9 (0–43) 1.25 (0–27) <0.001

Delta EF (%) 5.5 ± 2.8 10.1 ± 3.1 <0.01

Delta GLS (%) 5.2 ± 2.2 9.4 ± 2.8 <0.01

Delta MWE (%) 2.4 ± 1.2 5.4 ± 2.4 <0.01

Delta MCW (%) 24.1 ± 3.2 25.1 ± 3.1 NS

Delta MWW (%) 35.3 ± 3.1 19.2 ± 2.4 <0.001

EF, ejection fraction; GLS, global longitudinal strain; MCW, myocardial constructive work; MWE, myocardial work efficiency; MWW, myocardial wasted work; NS, non signifi-
cant; PAPs, systolic pulmonary artery pressure; RV, right ventricle; TAPSE, tricuspid annular plane systolic excursion; TDI, tissue Doppler imaging.

.................................................................................................

Table 4 Univariable analysis: correlations between
resting LV echo indexes and functional parameters dur-
ing effort in HFpEF patients

Variable R P-value

LV EF Watts (at peak effort) 0.28 NS

VO2 peak 0.25 NS

LV E/e0 during ESE -0.33 <0.05

B lines during ESE -0.24 NS

LV GLS Watts (at peak effort) -0.38 <0.05

VO2 peak -0.42 <0.01

LV E/e0 during ESE 0.36 <0.01

B lines during ESE 0.27 NS

LV MWE Watts (at peak effort) 0.43 <0.01

VO2 peak 0.50 <0.001

LV E/e0 during ESE -0.52 <0.001

B lines during ESE -0.36 <0.01

GLS, global longitudinal strain; LV EF, left ventricular ejection fraction; MWE,
myocardial work efficiency; NS, non significant.
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.from angle of incidence, tethering, and cardiac translation, GLS has
been considered a reliable predictor of HFpEF, inversely correlated
to NT-proBNP levels even after adjusting for LVEF and diastolic
measures.11,12,23,24 Despite the superiority of GLS over LVEF and tis-
sue Doppler in the deeper evaluation of LV systolic performance, this
technique is still limited by loading dependence,16,22 that could affect
the correct measurement of myocardial contractile function in specif-
ic loading condition, such as hypertension or during effort.

In this context, MW analysis, incorporating LV pressure, is less
load-dependent if compared with strain, and therefore could provide
incremental information in the setting of HF patients.

Uniqueness of the present study
In the present study, a population of patients affected by HFpEF
showed lower values of GLS at rest despite a preserved LVEF, and
this is in line with previous reports25 describing in this setting a homo-
geneous reduction of longitudinal and radial function. However, the
study of MW adds further characterization of the present cohort,
demonstrating that the subclinical impairment of LV systolic and dia-
stolic function typical of this setting of patients translates into a signifi-
cant MWW augmentation, with a related reduction of MWE.
Actually, HFpEF is characterized by a prevalent diastolic dysfunction
and, in hypertensive patients (largely represented in our study popu-
lation), by a rise in arterial blood pressure, which led to an important
elevation in LV wall stress (afterload).26–30 Also the increase of LV
mass, as observed in our study cohort, is a crucial determinant of wall
stress and has been found to be an independent predictor of incident
HF.31 Since pressure overload and increased LV mass are associated
with accelerated decline in GLS over time, this could be potentially
responsible of LV contractility underestimation. Conversely, MW
analysis, through the quantification of global LV function corrected by
afterload, provides a more reliable information on myocardial per-
formance in this population, permitting to individuate patients with
incipient LV systolic decompensation.13–17 Indeed, the homogeneous
increase of MWW detected in our HFpEF compared with controls
should be ascribable to the enhanced wall stress produced in an at-
tempt to overcome the increased afterload. A similar finding was
observed by Chan et al.,32 who described progressively elevated val-
ues of MWW in hypertensive groups. Morbach et al.33 provided fur-
ther evidences, demonstrating that higher values of systolic and
diastolic pressure, as well as higher LV mass are associated with both
higher MCW and MWW, with subsequently reduced MWE.

In addition, it is known that HFpEF is characterized by an impair-
ment of LV active relaxation and/or increased passive LV diastolic
stiffness at rest,4 which becomes even more prominent during

exercise,34 and might have contributed to MWW enhancement and
MWE reduction.

In our study, both baseline GLS and MWE were also found to be
correlated with functional capacity, LV filling pressures, and pulmon-
ary congestion during effort. During stress, HFpEF population
showed a lower increase in LVEF and GLS when compared with con-
trols, as confirmed by previous reports that failed to demonstrate a
systolic reserve response in HFpEF patients even when treated with
spironolactone.35 Recently, Przewlocka-Kosmala et al.36 showed in
57 patients treated with spironolactone for 6 months that an im-
provement of functional capacity was detected by an MCW increase
during effort. Thus, they demonstrated that MW is a better determin-
ant than GLS of exercise capacity in HFpEF patients.

Our study provides further insight into the description of HFpEF
population, showing, in a larger cohort of patients, that MW, and in
particular MWW, is a sensible marker of systolic and diastolic dys-
function, that increases during effort. A greater augmentation of
MWW in HFpEF compared with controls, not accompanied by a
consistent improvement in MCW, is therefore associated with lower
values of MWE, which becomes a prognostic index of exertional in-
tolerance in HFpEF. The greater reliability of MW indices over GLS in
the prediction of myocardial performance during exercise stands on
the evidence that peak strain values are dependent on both LV con-
tractile force during systole and the opposing force exerted by after-
load; moreover, GLS does not take into account the variation of LV
afterload throughout the ejection, which could be even more pro-
nounced during effort. Conversely, non-invasive estimation of MW,
integrating deformation with afterload variation, has demonstrated to
overcome this strain limitation.

Our findings confirm that despite HFpEF is considered a chronic
disease with a main impairment of the diastolic function, the preclinic-
al subtle myocardial damage, that characterize the pathophysiologic
mechanisms underlying LV stiffening in HFpEF and can be detected
by cardiac magnetic resonance,37,38 could show up with systolic im-
pairment and haemodynamic maladaptation during exercise,
detected by resting GLS and MWE.

Thus, a complete strain study at rest and during ESE could have an
incremental role to support clinicians for the therapeutic manage-
ment and decision making of patients with HFpEF.

Study limitations
One of the studies limitations is that the results can be applied only
to the population of patients with HFpEF, who are capable of exercis-
ing in a semi-supine position. Moreover, it is a study conducted in
two centres, with a sample size too small to drive definitive general

....................................................................................................................................................................................................................

Table 5 Clinical and echocardiographic data associated with oxygen uptake (peak VO2) during physical effort in
HFpEF patients

Type of variables Model R2 P-value Variables selected (beta coefficient; 95% CI; P-value)

Clinical 4.3 <0.01 NT-proBNP (-0.40; -0.22 to 0.55; <0.01)

Clinical þ standard echo 13.8 <0.001 LV E/e0 during ESE (-0.41; -0.28 to 0.49; P < 0.001)

B lines during ESE (-0.30; -0.22 to 0.40; <0.01)

Clinical þ standard echo þ strain and work 19.7 <0.0001 Resting MWE (0.46; -0.35 to 0.52; <0.001)
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..conclusions concerning the myocardial deformation and work in.
Then, cardiac magnetic resonance evaluation would add further in-
formation about tissue characterization in HFpEF patients, however
such data were not available in our study population. Finally, the pos-
sibility that reduction in strain could be influenced by an increased
wall stress cannot be entirely excluded, since this changes in preload
and afterload are important determinants of myocardial deformation.
In order to overcome this constraint, we performed MW analysis
which is less load-dependent if compared with strain.13–16

Conclusions

LV myocardial function in HFpEF patients is impaired and this sug-
gests that the lower resting values of LV GLS and MW represent
early subclinical myocardial damage,37,38 closely associated with exer-
cise capacity, pulmonary congestion, and LV contractile reserve.

Longitudinal strain predicts outcome in low LVEF patients inde-
pendent of LVEF.22,39 Whether impaired longitudinal deformation
has prognostic significance in HFpEF remains to be determined.
Additional prospective studies by strain and MW analyses are war-
ranted to further understanding of the natural history of myocardial
work in HFpEF, the extent of reversibility of LV dysfunction with
medical therapy, and the possible long-term impact of such changes
on outcomes in patients with HFpEF.

Conflict of interest: none declared.
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