-
Views
-
Cite
Cite
Andrew Grey, Qi Chen, Xin Xu, Karen Callon, Jill Cornish, Parallel Phosphatidylinositol-3 Kinase and p42/44 Mitogen-Activated Protein Kinase Signaling Pathways Subserve the Mitogenic and Antiapoptotic Actions of Insulin-Like Growth Factor I in Osteoblastic Cells, Endocrinology, Volume 144, Issue 11, 1 November 2003, Pages 4886–4893, https://doi.org/10.1210/en.2003-0350
- Share Icon Share
Abstract
IGF-I is an endocrine and paracrine regulator of skeletal homeostasis, principally by virtue of its anabolic effects on osteoblastic cells. In the current study, we examined the intracellular signaling pathways by which IGF-I promotes proliferation and survival in SaOS-2 human osteoblastic cells. Inhibition of each of the phosphatidylinositol-3 kinase (PI-3 kinase), p42/44 MAPK, and p70s6 kinase pathways partially inhibited the ability of IGF-I to stimulate osteoblast proliferation and survival. Because activation of p70s6 kinase is downstream of both PI-3 kinase and p42/44 MAPK activation in osteoblasts treated with IGF-I, this ribosomal kinase represents a convergence point for IGF-I-induced PI-3 kinase and p42/44 MAPK signaling in osteoblastic cells. In addition, abrogation of PI-3 kinase-dependent Akt signaling, which does not inhibit IGF-I-induced p70s6 kinase phosphorylation, also inhibited the antiapoptotic effects of IGF-I in osteoblasts. Finally, interruption of Gβγ signaling partially abrogated the ability of IGF-I to promote osteoblast survival, without inhibiting signaling through PI-3 kinase/Akt, p42/44 MAPKs, or p70s6 kinase. These data suggest that IGF-I signals osteoblast mitogenesis and survival through parallel, partly overlapping intracellular pathways involving PI-3 kinase, p42/44 MAPKs, and Gβγ subunits.