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ABSTRACT
Cell heterogeneity designates the phenomenon by which a partic-

ular cell type is composed of morphologically and physiologically dis-
tinct cell subpopulations. We have previously isolated two subsets of
melanotrope cells in the intermediate lobe of the frog pituitary by
means of a separation procedure based on a Percoll density gradient.
High density (HD) melanotrope cells were found to exhibit a more
granulated cytoplasm and a lower secretory rate than low density
(LD) cells. In the present study, we have investigated the biochemical
and functional characteristics of eachmelanotrope cell subpopulation
by using various approaches, including chromatographic analysis for
the measurement of the proportion of acetylated aMSH, microfluo-
rimetric measurement of the cytosolic free calcium concentration
([Ca21]i), and in situ hybridization for quantification of POMC mes-

senger RNA (mRNA). Under basal conditions, LD melanotrope cells
showed higher secretory activity, acetylation rate, [Ca21]i, andPOMC
mRNA content compared to HD cells. Incubation of the cells with 100
nM TRH for 2 h induced a more pronounced activation of aMSH
secretion, [Ca21]i mobilization, and POMC mRNA accumulation in
LD than inHDmelanotrope cells. Conversely, TRH increased the rate
of acetylation of aMSH in HD cells, but did not affect acetylation in
LD cells. Taken together, these results demonstrate that the frog
intermediate lobe is composed of two subsets of endocrine cells with
distinct biochemical and functional characteristics. The coexistence of
two cell subpopulations in the frog pars intermedia is consistent with
the idea of a cell secretory cycle, in which each melanotrope subset
represents a specific state of cellular activity. (Endocrinology 138:
970–977, 1997)

THE DISTAL lobe of the pituitary is a complex and het-
erogeneous organ comprising several endocrine cell

types that produce different hormones (1). In addition, nu-
merous studies have shown that each pituitary cell type is not
a pool of homogeneous and synchronized cells, but is com-
posed of subsets of morphologically and physiologically dis-
tinct endocrine cells (2–5). This phenomenon, named cell
heterogeneity, has been evaluated in various adenohy-
pophyseal cell types with respect to morphofunctional and
ultrastructural characteristics (6, 7), secretory activity (8, 9),
response to secretagogues (10–12), and hormone gene ex-
pression (13, 14).
The intermediate lobe of the rat pituitary is composed of

two cell types, i.e. melanotrope and corticotrope cells (15),
which both synthesize the precursor protein POMC (16). The
intermediate lobe of amphibians, which consists of a single
endocrine cell type, the melanotrope cells (17), represents a
valuable model in which to investigate the phenomenon of
cell heterogeneity. Posttranslational processing of POMC in
amphibian melanotrope cells generates several biologically
active peptides, including aMSH and b-endorphin (18, 19).
The hormoneaMSH,which causes dispersion of the pigment
melanin in dermal melanophores, plays a pivotal role in the
control of background color adaptation (20). N-Terminal
acetylation of aMSH is an important processing event that
increases the melanotropic activity of the peptide (21). In
anuran amphibians, the major intracellular form of the pep-
tide is des-Na-acetyl aMSH, and the acetylation reaction to
generate aMSH is associated with the secretory process (22–
24). It has also been demonstrated that Na-acetylation is
physiologically regulated by background adaptation (25) or
hypothalamic neurohormones (26, 27).
The secretory activity of frog melanotrope cells is regu-

lated by multiple factors, including classical neurotransmit-
ters and neuropeptides (see Ref. 28 for review). In particular,
TRH is a potent stimulator of aMSH secretion from amphib-
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ian intermediate lobe (29–31). The effect of TRH on mela-
notrope cells is mediated through activation of phospho-
lipase C andmobilization of intracellular calcium stores (32).
Heterogeneity of rat melanotrope cells has previously

been reported with respect to secretory activity (33) and
POMCgene expression (34). Recently, two subpopulations of
melanotrope cells have been isolated in the intermediate lobe
of Rana ridibunda after separation of dispersed cells with a
continuous Percoll density gradient (35). These melanotrope
cell subsets, referred to as high density (HD) and low density
(LD) cells, differ in both secretory granule content and spon-
taneous aMSH secretion; HD cells have a more granulated
cytoplasm and a substantially lower secretory activity than
LD cells.
The aim of the present study was to compare the bio-

chemical and physiological characteristics of HD and LD
cells. For each subpopulation, we investigated the secretory
activity, the cytosolic calcium concentration ([Ca21]i) and the
POMC messenger RNA (mRNA) density under basal and
TRH-stimulated conditions. In addition, we compared the
rates of acetylation of aMSH in HD and LD melanotrope
cells.

Materials and Methods
Animals

Adult male frogs (Rana ridibunda) of about 40 g body weight were
purchased from a commercial supplier (Couétard, Saint-Hilaire de Riez,
France). The animalsweremaintained under runningwater at a constant
temperature (8 C) with a 12-h light, 12-h dark cycle for at least 1 week
before death. The frogs were killed by decapitation between 0800–0900
h, and the neurointermediate lobes were dissected under a microscope.
Animal manipulations were performed according to the recommenda-
tions of the local ethical committees and under the supervision of au-
thorized investigators.

Reagents and test substances

Collagenase type V, trypsin type I, BSA, Leibovitz culture medium,
and antibiotic-antimycotic solution were purchased from Sigma Chem-
ical Co. (St. Louis, MO). Indo-1 acetoxymethylester, pluronic F127, and
the calcium ionophore A-23187 were obtained from Molecular Probes
(Eugene, OR). TRH was purchased from PREM (Zyma Farmacéutica,
Barcelona, Spain). Percoll was obtained from Pharmacia LKB (Uppsala,
Sweden). FBS was obtained from Sera-Lab (Crawley Down, UK).

Isolation and separation of melanotrope cells

Isolated melanotrope cells were obtained using a dispersion protocol
described previously (35). Briefly, 40 neurointermediate lobes were col-
lected for each experiment and enzymatically dissociated by incubation
at 26 C in culture medium containing 0.2% (wt/vol) collagenase type V
and 0.2% (wt/vol) trypsin type I for 45 min. The culture medium con-
sisted of Leibovitz culture medium diluted 2:3 (to adjust to Rana ridi-
bunda osmolality) and supplemented with 1 mm glucose, 0.4 mm CaCl2,
and 1% (vol/vol) antibiotic-antimycotic solution, pH 7.4. The dissoci-
ation was continued in the same medium supplemented with 2 mm
EDTA for 5 min and with 1 mm EDTA for 5 min. Then, the tissues were
mechanically dispersed using a siliconized Pasteur pipette until a ho-
mogeneous cellular suspension was obtained. Cell viability, as deter-
mined by the trypan blue exclusion test (36), was 89%.

A density gradient of Percoll was prepared as previously described
(35). A hyperbolic gradient was obtained bymixing 6ml of a 50% Percoll
solution with 3 ml of a 15% Percoll solution at a rate of 0.25 ml/min. A
250-ml sample of the cellular suspension (2.2 3 106 cells) was carefully
loaded on top of the gradient. After centrifugation (3,000 3 g for 25 min;
4 C), nine fractions of 1ml eachwere collectedmanually. Cells contained
in fractions 1 (bottom of the gradient) and 4 plus 5 contained the HD and

LD cell subpopulations, respectively. HDmelanotrope cells represented
20.8% of the total cells recovered from the gradient, whereas LD cells
represented 52.1%.

Culture of melanotrope cell subpopulations

Primary culture of each melanotrope cell subset was performed to
evaluate their functional characteristics under both basal and TRH-
stimulated conditions. Aliquots of 30,000 cells were plated on 35-mm
petri dishes and incubated at 26 C in 2ml culturemedium supplemented
with 10% FBS. After 48 h, the medium was removed, and the cells were
preincubated in 1 ml serum-free culture medium for 2 h. The cells were
incubated for another 2 h with 1 ml medium in the absence or presence
of 100 nm TRH.Medium samples were collected and centrifuged at 603
g for 5 min, and the supernatants were stored at 220 C until hormone
assay. After culture, cells were processed for in situ hybridization. To
determine the [Ca21]i, cells were plated on microgrid coverslips (Ep-
pendorf, Netheler, Germany) at a density of 5000 cells/well and incu-
bated in 2 ml culture medium supplemented with 10% FBS for 3–5 days
until [Ca21]i measurement.

HPLC

Incubation media were first prepurified on Sep-Pak cartridges (All-
tech Europe, Laarne, Belgium). Each sample was then subjected to re-
verse phase HPLC analysis on Lichrosorb RP-18 column (0.46 3 25 cm;
Merck, Paris, France) using a gradient established with 0.1% trifluoro-
acetic acid (vol/vol; pH 2.4) and a mixture of acetonitrile-methanol
(80:20, vol/vol). The column was equilibrated with 25% acetonitrile-
methanol and eluted at a flow rate of 1ml/min using the gradient shown
in Fig. 2. The following synthetic standards were analyzed using the
same gradient: des-Na-acetyl aMSH, aMSH, and diacetyl aMSH, aswell
as their respective sulfoxide derivatives. Oxidation of the synthetic stan-
dards was performed using hydrogen peroxide as described previously
(37). Fractions were collected every 1 min and dried in a Speed-Vac
concentrator (Savant, Hicksville, NY)

aMSH RIA

The concentrations of aMSH-related peptides in the culture media
and HPLC fractions were measured using a double antibody RIA
method described previously (38). The sensitivity of the assay was 3
pg/tube. The aMSH antiserum exhibited full cross-reactivity with des-
Na-acetyl aMSH, aMSH, and diacetyl aMSH. The cross-reactivity of the
antiserum with other POMC-derived peptides was lower than 0.1%.

Measurement of cytosolic calcium concentration

Cultured cells were first incubated with 5 mm indo-1 acetoxymeth-
ylester and 0.02% (vol/vol) Pluronic F127 in culture medium for 30 min
at 22 C in the dark. The cells were washed twice with freshmedium, and
[Ca21]i was monitored by a dual wavelength microfluorimetry system
constructed from an inverted microscope equipped with a fluor 340
objective in the epifluorescence mode (Nikon Corp., Tokyo, Japan). The
fluorescence emission of indo-1 induced by excitation at 355 nm was
recorded at two wavelengths (405 and 485 nm) by separate photometers
as previously described (39). After conversion of photon currents to
voltage signals, both 405- and 485-nm signals and the 405/485 ratiowere
continuously monitored by a software FASTINCA 1.03 (Nikon Corp.).
[Ca21]i was calculated from the formula established by Grynkiewicz et
al. (40): [Ca21]i 5 Kd 3 b 3 [(R 2 Rmin)/(Rmax 2 R)], where Kd is the
dissociation constant for indo-1 (250 nm), b is the fluorescence ratio
between the signal at 485 nm in calcium-free medium and the signal at
485 nm in calcium-saturated medium, R is the 405/485 ratio of any
unknown calcium concentration, Rmin is the 405/485 ratio obtained after
incubation of cells with 2 mm EGTA and 10 mm A-23187 for 30 min at
22 C in culture medium in the dark (calcium-free conditions), and Rmax
is the 405/485 ratio obtained after incubation of cells with 2 mm CaCl2
and 10 mm A-23187 for 30 min at 22 C in culture medium in the dark
(calcium-saturated conditions). The averaged values were: Rmin 5
0.102 6 0.001, Rmax 5 0.713 6 0.018, and b 5 3.677 6 0.246 (n 5 90). The
effect of TRH on [Ca21]i was tested by administering pulses of 10 mm
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TRH for 2 sec in the vicinity of the cells by means of a pressure ejection
system.

In situ hybridization of POMC mRNA

Quantification of POMC mRNA was performed by in situ hybrid-
ization using a nonradioactive procedure, as previously described (41).
After removal of the culture medium, cells were rinsed with 0.01 m PBS
(pH 7.2) and fixed in petri dishes with 4% paraformaldehyde in PBS for
15 min at room temperature. After three washes with PBS, cells were
dehydrated in graded ethanol and stored at 280 C until use. Before
hybridization, cells were thawed, hydrated, and treated with 1% (vol/
vol) Triton X-100 in PBS for 10 min. After two washes in PBS, cells were
incubated with 5 mg/ml proteinase K (Boehringer Mannheim, Mann-
heim, Germany) in PBS for 15 min at 37 C. The enzymatic activity was
stopped with 2 mg/ml glycine in PBS. Cells were washed in PBS,
postfixed with 4% paraformaldehyde in PBS for 5 min, washed again,
and dehydrated in graded ethanol. Cells were prehybridized for 2 h at
37 C in a solution containing 50% (vol/vol) deionized formamide (Sig-
ma), 5 3 SSPE (20 3 SSPE is 3 m NaCl, 0.2 m NaH2PO4zH2O, and 0.02
m EDTA, pH 7.4), 4% (vol/vol) dextran sulfate (stock 40%, wt/vol;
Sigma), 5 3 Denhardt’s solution [50 3 Denhardt’s solution is 1% (wt/
vol) Ficoll type 400 (Pharmacia LKB), 1% (wt/vol) polyvinylpyrrolidone
(Sigma), 1% (wt/vol) BSA, 0.1% (vol/vol) SDS (stock 10% (wt/vol); pH
7.2), 200 mg/ml yeast transfer RNA (Boehringer Mannheim), 250 mg/ml
heat-denatured salmon spermDNA (Sigma), and 2 mg/ml polyadenylic
acid (Sigma). The probe used in this study was the EcoRI 1184-bp insert
of frog POMC complementary DNA subcloned into pGEM-3Zf (42). The
fragment was purified by agarose gel electrophoresis and then digoxi-
genin-labeled by random priming using a digoxigenin DNA labeling kit
(BoehringerMannheim). Cells were coveredwith 200 ml heat-denatured
labeled POMC DNA probe (35 ng/dish) in the hybridization solution.
Hybridization was performed in a humid chamber for 16 h at 37 C. The
dishes were subsequently rinsed with 2 3 SSC (20 3 SSC is 3 m NaCl
and 0.3 m sodium citrate, pH 7.4) for 90 min, 1 3 SSC for 90 min, 0.5 3
SSC for 30 min at 37 C, and 0.5 3 SSC for 30 min. Cells were washed
in buffer 1 (100 mm Tris-HCl and 150 mm NaCl, pH 7.5) and incubated
with 10 mm levamisole (Sigma) in buffer 2 (100 mm Tris-HCl, 150 mm
NaCl, and 50 mmMgCl2, pH 9.5) for 1 h. Then, cells were washed twice
with buffer 1 and treatedwith 1% (wt/vol) blocking reagent (Boehringer
Mannheim) for 30min. Thereafter, cellswere incubatedwith the alkaline
phosphatase-labeled antidigoxigenin F(ab) fragment (BoehringerMann-
heim) diluted 1:500 in buffer 1 for 4 h. After successive washes in buffers
1 and 2, cell-bound alkaline phosphatase activity was visualized by
incubating the cells with the color solution [3.5 ml/ml 5-bromo-4-chloro-
3-indolyl phosphate, 4.5 ml/ml nitroblue tetrazolium salt (Boehringer
Mannheim), and 0.24 mg/ml levamisole in buffer 2] for 16 h in the dark.
The color reaction was stopped by rinsing the plates with buffer 1.
Finally, they were mounted in buffer 1 plus glycerol (1:1).

Control staining included 1) pretreatment of dishes with 200 mg/ml
pancreatic ribonuclease A and 150 U/ml ribonuclease T (Sigma) in 2 3
SSC for 1 h at 37 C, 2) omission of the probe, and 3) omission of the
antidigoxigenin serum. As an additional control, the probe was tested
in a cell type (human monocyte THP-1 cells) that does not express
POMC.All controlswere processed concurrentlywith samples using the
same protocol.

POMC mRNA quantification was accomplished on a Dasher 386SX
computer (Data General, Westboro, MA) equipped with IMAGO soft-
ware for image analysis (SIVA Research Group, University of Córdoba,
Córdoba, Spain) and connected by a CCTV camera (Hitachi, Tokyo,
Japan) to a light microscope (Zeiss, Oberkochen, Germany). A 340
objective and a stabilized light source were used. Before measuring each
set of cells, Köhler focus was carried out to ensure an even and homo-
geneous illumination. The staining intensity (optical density) and the
area of each individual cell (50 cells randomly selected/dish) were
measured to calculate the integrated optical density. This parameter was
correlated with the amount of POMC mRNA in the cell.

Background was evaluated for nonstained cells (10 cells/dish) and
subtracted. To avoid within-experiment variations, control and treated
cells were hybridized and measured simultaneously.

Statistical analysis

Data were expressed as the mean 6 se of the number of experiments
indicated in each figure. The statistical analysis was preceded by a test
for the joint assessment of normality (Kolmogorov-Smirnov test). Stu-
dent’s t test orMann-Whitney rank sum test were applied depending on
whether the distribution of data was parametric or nonparametric, re-
spectively. Mathematical processing and statistical analysis were per-
formed with the software SIGMAPLOT 5.01 and SIGMASTAT 1.02
(Jandel Scientific, Corte Madera, CA).

Results
Secretory activity of the melanotrope cell subpopulations

The absolute amount of aMSH secreted during 2 h by HD
cells under basal conditions (19.4 6 3.0 ng/100,000 cells; n 5
4) was significantly less than that secreted by LD cells (96.06
13.8 ng/100,000 cells; n5 4; P, 0.001). Incubation of the cells
with 100 nm TRH provoked a significant stimulation of
aMSH secretion in the two melanotrope cell subsets (Fig. 1).
The relative increase in aMSH release was 2-fold higher in
LD cells (1307%) than in HD cells (1141%).

Analysis of aMSH-immunoreactive peptides secreted by the
melanotrope cell subpopulations

Reverse phase HPLC analysis coupled with RIA quanti-
fication revealed the existence of four major forms of aMSH
in culture media of LD and HD cells (Fig. 2). Peaks I and II
exhibited the same retention time as the sulfoxide derivatives
of des-Na-acetyl aMSH and aMSH, respectively, whereas
peaks III and IV coeluted with des-Na-acetyl aMSH and
aMSH, respectively. A minor component (peak V) coeluting
with diacetyl aMSHwas also resolved in culture medium of
LD cells. The sulfoxide form of diacetyl aMSH (retention
time, 35 min) was not detected. Therefore, peaks I and III

FIG. 1. Effect of TRH on aMSH secretion from cultured frog mela-
notrope cell subpopulations. HD (solid bars) and LD cells (hatched
bars) were incubated in the absence (C) or presence of 100 nM TRH
for 2 h. The data represent the mean (6SEM) of four independent
experiments. *, P , 0.05; **, P , 0.001 (vs. corresponding control). #,
P , 0.001 (vs. HD cells; all determined by Student’s t test).
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represent the nonacetylated forms of aMSH, whereas peaks
II, IV, and V represent the acetylated forms.
Under basal conditions, the proportions of des-Na-acetyl

aMSH and acetylated forms of aMSH secreted by HD cells
were not significantly different. Conversely, the amount of
acetylated forms of aMSH secreted by LD cells was signif-
icantly higher than that of des-Na-acetyl aMSH (Fig. 3). Spe-
cifically, the percentage of acetylated forms secreted by the
two melanotrope cell subsets was 38.3% in HD cells and
57.9% in LD cells. Incubation of HD cells with 100 nm TRH
produced a significant increase in the proportion of acety-
lated forms of aMSH released by the cells (P , 0.05; Fig. 3).
In contrast, although TRH provoked a significant increase in
the total amount of aMSH released from LD cells (P, 0.001),
the proportions of nonacetylated and acetylated forms of
aMSH secreted under these conditions were similar (Fig. 3).

Measurement of [Ca21]i in the melanotrope cell
subpopulations

Under basal conditions, [Ca21]i was significantly lower in
HD cells (97.5 6 13.3 nm; n 5 61) than in LD cells (166.9 6

14.5 nm; n 5 77; P , 0.001). Ejection of 10 mm TRH in the
vicinity of the cells provoked a rapid and massive increase
in [Ca21]i in the two subpopulations of melanotrope cells
(Fig. 4). The percentages of cells responsive to TRH were
similar in the two cell subsets, i.e. 62.3% in HD and 66.1% in
LD cells. Sequential administration of TRH provoked a sub-
stantial attenuation of the Ca21 response in both cell sub-
populations (Fig. 4). Quantitative analyses of different pa-
rameters calculated from such experiments are summarized
in Table 1. The maximal [Ca21]i achieved after the first stim-
ulation was significantly higher in LD cells than in HD cells
(P , 0.01). In contrast, the percentage of [Ca21]i increment
after the first ejection of TRH was significantly higher in HD
cells than in LD cells (P , 0.01). The lag between the ad-
ministration of TRH and the maximum [Ca21]i response was
not significantly different in the two cell subpopulations. In
both cell subsets, the lag period was significantly shorter
after the second and third pulses than after the first pulse of
TRH (P , 0.01).

POMC mRNA expression in the melanotrope cell
subpopulations

The percentages of POMC-positive cells identified by in
situ hybridization were not significantly different (P . 0.05)
in HD cells (76.2 6 9.2%; n 5 3) and LD cells (70.6 6 6.2%;
n 5 3); these values were in the same range as those mea-
sured previously by immunocytochemistry (81% and 76%,

FIG. 2. Reverse phaseHPLCanalysis ofaMSH-immunoreactive pep-
tides released by cultured frog melanotrope cell subpopulations. The
culture media from HD (A) and LD (B) cells were prepurified on
Sep-Pak C18 cartridges and chromatographed on a Lichrosorb RP-18
column. All fractions collected (1 ml each) were dried and assayed for
aMSH-like immunoreactivity (a-MSH-LI). The arrows indicate the
elution times of synthetic standards. The broken lines show the con-
centration of acetonitrile-methanol (80:20) in the eluting solvent.
Sdesa, Sulfoxide derivative of des-Na-acetyl aMSH; Sa, sulfoxide
derivative of aMSH; Sdia, sulfoxide derivative of diacetyl aMSH;
desa, des-Na-acetyl aMSH; a, aMSH; dia, diacetyl aMSH.

FIG. 3. Comparison of the concentrations of nonacetylated and acety-
lated forms of aMSH released by cultured frog melanotrope cell sub-
populations. HD (solid bars) and LD (hatched bars) cells were incu-
bated in the absence (C) or presence of 100 nMTRH for 2 h. The culture
mediumwas analyzed by HPLC and the aMSH-immunoreactive pep-
tides (a-MSH-LI) were quantified by RIA. The nonacetylated form
(DES) corresponds to des-Na acetyl aMSH and its sulfoxide deriva-
tive. The acetylated form (AC) corresponds to aMSH, its sulfoxide
derivative, and diacetyl aMSH. The data are the mean 6 SEM of three
independent experiments. *, P, 0.05; **, P, 0.01 (vs. corresponding
control). #. P , 0.05 (vs. corresponding DES; all determined by Stu-
dent’s t test).
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respectively) (35). Densitometric quantification of POMC
mRNA levels showed that the mRNA content was 1.8-fold
higher in LD cells than in HD cells (P , 0.01). Incubation of
the cells with TRH for 2 h caused amodest increase in POMC
mRNA levels in both HD and LD cells (22.1 6 9.9% and
26.0 6 6.4%, respectively); the effect of TRH was significant
(P , 0.05) only in LD cells (Fig. 5).

Discussion

The present study has demonstrated that the frog pars
intermedia is composed of two melanotrope cell subsets that
exhibit distinct secretory activities, aMSH acetylation rates,
[Ca21]i patterns, and POMC mRNA contents.

Functional heterogeneity of melanotrope cell subpopulations
under basal conditions

Separation of pituitary cells by density gradients has pre-
viously demonstrated the existence of cell subpopulations
exhibiting differential secretory activity. For instance, in ag-
ing rats (43) and prepubertal pigs (11), HD somatrope cells
were found to secrete higher amounts of GH than LD cells.
Reverse hemolytic plaque assay and immunoblotting tech-
niques have also shown that individual pituitary cells be-

longing to the same phenotype may differ in their secretory
activity (2, 8, 44). The present study indicates that the amount
of aMSH secreted by LD melanotrope cells during a 2-h
incubation is 5 times higher than that secreted by HD cells.
In agreement with these data, studies conducted on rat lac-
totrope cells (which exhibit a number of functional similar-
ities with amphibian melanotrope cells) have shown that LD
cells secrete more PRL than HD cells (9).
It is well established that the N-terminal acetylation of

aMSH is an important posttranslational event that deter-
mines the biological activity of the peptide (21). As in am-
phibians, acetylation of aMSH occurs just before or during
the exocytotic process (22, 23), we have investigated the
acetylation activity in each melanotrope cell subpopulation.
HPLC analysis of conditioned culture medium confirmed
that LD cells have a higher secretory rate than HD cells and
revealed that HD cells secrete a lower proportion of acety-
lated forms of aMSH than LD cells. These findings indicate
that the two melanotrope cell subsets exhibit distinct secre-
tory patterns; LD cells have a higher secretory and acetyla-
tion activity than HD cells. As the amount of biologically
active (i.e. acetylated) forms of aMSH released by LD cells is
8 times higher than that released by HD cells, our data
indicate that LD cells must play a predominant role in the
maintenance of skin pigmentation.

FIG. 4. Effect of repeated pulses of TRH on [Ca21]i in cultured frog
melanotrope cell subpopulations. Each figure represents a represen-
tative recording fromHD (A) and LD (B) cells. The arrows indicate the
onset of TRH application (10 mM; 2 sec). The number of cells studied
was 53 in A and 62 in B.

TABLE 1. Characteristics of the effect of TRH on [Ca21]i in HD
and LD melanotrope cells in primary culture

Pulse HD cells LD cells

% of cells responding
to TRH

62.3 66.1

Basal [Ca21]i (nM) 1 95.2 6 12.2 162.8 6 10.8a

2 89.0 6 11.9 138.0 6 10.3b

3 70.5 6 7.8 108.8 6 14.4c

Maximal [Ca21]i (nM) 1 285.8 6 29.1 347.9 6 15.6b

2 203.4 6 30.4c 249.0 6 13.1d,e

3 173.5 6 24.4 201.3 6 19.2c

[Ca21]i increment (%) 1 255.3 6 37.0 145.4 6 20.4b

2 129.9 6 17.2c 112.8 6 21.8c

3 140.2 6 19.2 128.5 6 32.3

Time for maximal 1 15.4 6 1.8 10.8 6 0.8d

increment (see)f 2 13.9 6 1.5 11.3 6 0.8
3 11.6 6 0.5 10.5 6 1.3

Response duration (sec)g 1 83.4 6 8.4 72.3 6 5.3
2 53.0 6 5.2h 52.5 6 6.0e

3 47.1 6 5.8 48.3 6 5.2

1, 2, and 3 refer to the nth pulse of TRH administered. Measure-
ments were carried out on LD (n 5 53) and HD (n 5 62) melanotrope
cells from at least four separate experiments. Significance was de-
termined by Mann-Whitney rank sum test.

a P , 0.001 vs. corresponding pulse in HD cells.
b P , 0.01 vs. corresponding pulse in HD cells.
c P , 0.05 vs. preceding pulse for TRH in each parameter.
d P , 0.05 vs. corresponding pulse in HD cells.
e P , 0.001 vs. preceding pulse for TRH in each parameter.
f Time required to achieve the maximal increase in [Ca21]i after

TRH administration.
g Time comprised between the administration of TRH and the

recovering of [Ca21]i basal levels.
h P , 0.01 vs. preceding pulse for TRH in each parameter.
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The relationship between [Ca21]i and secretory activity of
melanotrope cells is well documented in mammals (45) and
amphibians (46, 47). We thus compared the resting [Ca21]i in
the two subpopulations of frog melanotrope cells. Our data
revealed that [Ca21]i was higher in LD than in HD cells,
indicating that the elevated secretory rate of the LD cell
subset can be accounted for by a high basal [Ca21]i. Studies
conducted in Xenopus laevis melanotrope cells have shown
that the N-type calcium channel blockerv-conotoxin inhibits
spontaneous Ca21 oscillations, whereas the L-type calcium
channel blocker nifedipine has no effect (48), indicating that
N-type voltage-operated Ca21 channels are responsible for
maintenance of basal [Ca21]i. In frog melanotrope cells, both
N- and L-type Ca21 channels have been characterized (49,
50). Whether the higher [Ca21]i observed in LD cells can be
ascribed to an increased density in N-type Ca21 channels
awaits further investigations.
A number of studies have demonstrated a correlation be-

tween hormone secretion and gene transcription in endo-
crine cells. For instance, in rats, LD lactotrope cells exhibit
both a high rate of PRL secretion and a high concentration of
PRL mRNA (9). Consistent with this concept, the present
study revealed that frog LD melanotrope cells contain a
higher amount of POMC transcripts than HD cells. We have
previously shown that LD melanotrope cells are less gran-
ulated and contain a lower concentration of aMSH than HD
cells (35). Taken together, these observations suggest that LD
cells display a high transcriptional activity, which contrib-
utes to replenish their POMC store and compensate their
elevated secretory rate. In contrast, HD melanotrope cells,
with a lower secretory capacity, would store the synthesized

hormone in secretory granules and release it at a much lower
rate.

Effect of TRH on the melanotrope cell subpopulations

It has previously been shown that TRH is a potent aMSH-
releasing factor in frogs (29, 30, 51, 52) and toads (31).We thus
compared the responses of the two melanotrope cell subsets
to TRH. The present data indicate that TRHwasmore potent
in stimulating aMSH release from LD than HD cells. These
data are consistent with other reports showing variations in
the responsiveness of rat lactotrope cells to TRH (53–55).
In amphibians, acetylation of aMSH is a regulated process

that can be modulated by dopamine (26, 27). In fish, TRH
administration specifically enhances the release of diacetyl
aMSH (56). Paradoxically, the effect of TRH on acetylation of
aMSH has never been investigated in amphibians. The
present study demonstrated that TRH causes an increase in
the rate of acetylation of aMSH in HD cells without affecting
the proportion of acetylated aMSH in LD cells. These data
suggest that TRH stimulation causes recruitment of the qui-
escent HD cells that are stimulated to produce predomi-
nantly the biologically active, i.e. acetylated form, of aMSH.
The mechanism of action of TRH has been investigated in

detail in GH3 cells (57–59). Activation of TRH receptors
causes stimulation of phospholipase C, leading to calcium
mobilization from intracellular stores. In amphibian mela-
notrope cells, TRH also activates polyphosphoinositide me-
tabolism (32). We now show that TRH produces a marked
increase in [Ca21]i in the two melanotrope cell subpopula-
tions. Repeated administration of TRH provoked an atten-
uation of the response, which can be ascribed to conversion
of the receptor from a high to a low affinity state (60) prob-
ably due to receptor phosphorylation (61). Interestingly, the
maximum [Ca21]i evoked by TRH activation was observed
in LD cells. It has been shown that in rat melanotrope cells,
a certain [Ca21]i threshold is required to trigger exocytosis
(45). Therefore, the greater responsiveness of LD melano-
trope cells to TRH may be accounted for at least in part by
the higher efficacy of TRH to induce calciummobilization in
the LD cell subset.
Finally, we found that TRH caused a significant increase

in POMCmRNA content in LD cells, but not in HD cells. The
ability of TRH to activate POMC gene transcription is con-
sonant with the more pronounced effect of TRH on the se-
cretory capacity of the LD cell subpopulation. In summary,
our data indicate that the predominant effect of TRH on
aMSH release from frog LD melanotrope cells is associated
with a stronger effect on [Ca21]i elevation and an increase in
POMC mRNA level in the LD cell subpopulation.

Physiological relevance of the existence of melanotrope cell
subpopulations

The phenomenon of cell heterogeneity has been described
for various types of pituitary cells (12, 35, 43, 62), but the
physiological relevance of this phenomenon has been diffi-
cult to interpret due to the complexity of the regulation and
the wide range of functions controlled by each endocrine cell
type. In amphibians, it is reasonable to assume that the het-
erogeneity of melanotrope cells must be directly related to

FIG. 5. Quantification of POMCmRNA in cultured frog melanotrope
cell subpopulations. This figure shows a representative profile of
POMC mRNA content in HD (solid bars) and LD (hatched bars) cells
in the absence (C) or presence of 100 nM TRH for 2 h. The data are
expressed in arbitrary units. *, P , 0.05 (vs. corresponding control);
#, P , 0.001 (vs. HD cells; both determined by Mann-Whitney rank
sum test).
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their main physiological role, that is the regulation of skin
pigmentation (20). Numerous studies have reported the ef-
fects of background color adaptation on the activity of pars
intermedia cells in the toadXenopus laevis. In particular, it has
been shown that melanotrope cells from black background-
adapted animals exhibit a high biosynthetic and secretory
activity (63). It has also been reported that in the medium of
perifused neurointermediate lobes fromdark-adapted toads,
the proportion of acetylated aMSH is much higher than that
in the medium from white-adapted animals (25). Similarly,
the POMC gene is actively expressed during adaptation of
Xenopus laevis to a black background (64). These observations
strongly suggest that LD cells, which exhibit an intense se-
cretory activity, a high acetylation rate, and an elevated
POMC mRNA content, are actually responsible for the pro-
cess of skin color adaptation. In support of this hypothesis,
De Rijk et al. (65) reported that pars intermedia cells from
black-adapted Xenopus laevis are scarcely granulated and
possess a developed rough endoplasmic reticulum; in other
words, they have the same morphological characteristics as
Rana ridibunda LD cells (35).
The heterogeneity of melanotrope cells in the frog pars

intermedia is consistent with the idea of a cell secretory cycle
by which the cells may regulate aMSH secretion in a flexible
and balancedway. The relative importance of each subpopu-
lation may then depend on the amount of hormone required
in a particular physiological state. Therefore, further inves-
tigations are needed to elucidate the implication of cell het-
erogeneity in the process of skin color adaptation.
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