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Metabolomics is a powerful tool for identifying both known
and new disease-related perturbations in metabolic path-
ways. In preclinical drug testing, it has a high potential for
early identification of drug off-target effects. Recent advances
in high-precision high-throughput mass spectrometry have
brought the metabolomic field to a point where quantitative,
targeted, metabolomic measurements with ready-to-use kits
allow for the automated in-house screening for hundreds of
different metabolites in large sets of biological samples. To-
day, the field of metabolomics is, arguably, at a point where
transcriptomics was about 5 yr ago. This being so, the field has
a strong need for adapted bioinformatics tools and methods.
In this paper we describe a systematic analysis of a targeted
quantitative characterization of more than 800 metabolites in
blood plasma samples from healthy and diabetic mice under
rosiglitazone treatment. We show that known and new met-

abolic phenotypes of diabetes and medication can be recov-
ered in a statistically objective manner. We find that concen-
trations of methylglutaryl carnitine are oppositely impacted
by rosiglitazone treatment of both healthy and diabetic mice.
Analyzing ratios between metabolite concentrations dramat-
ically reduces the noise in the data set, allowing for the dis-
covery of new potential biomarkers of diabetes, such as the
N-hydroxyacyloylsphingosyl-phosphocholines SM(OH)28:0
and SM(OH)26:0. Using a hierarchical clustering technique on
partial �2 values, we identify functionally related groups of
metabolites, indicating a diabetes-related shift from lysophos-
phatidylcholine to phosphatidylcholine levels. The bioinfor-
matics data analysis approach introduced here can be readily
generalized to other drug testing scenarios and other medical
disorders. (Endocrinology 149: 3478–3489, 2008)

METABOLOMICS IS defined as the comprehensive
quantitative measurement of low molecular weight

compounds systematically covering the key metabolites,
which ideally represent the whole range of pathways of
intermediary metabolism. In a systems biology approach, it
provides a functional readout of changes determined by
genetic blueprint, regulation, protein abundance and mod-
ification, and environmental influence. Other functional
genomics technologies, such as transcriptomics and pro-

teomics, are highly valuable but merely indicate the potential
cause for phenotypical response. They do not necessarily
predict drug effects, toxicological response, or disease states
at the phenotype level unless functional validation is added.
Metabolomics can bridge this information gap by depicting
such functional information because metabolite differences
in biological fluids and tissues provide the closest link to the
various phenotypical responses. Thus, it is clear that a prom-
ising approach to identifying possible functional relation-
ships between medication and medical phenotype lies in the
extensive characterization of the largest possible number of
metabolites from relevant or potentially impacted metabolic
pathways.

In recent years, electrospray ionization (ESI) tandem mass
spectrometry (MS/MS), often applied in concert with an
initial liquid or gas phase chromatography purification step,
has been used in a number of metabolomic studies. Rolinski
et al. (1) showed that ESI-MS/MS is a highly sensitive, linear,
and sufficiently precise method for the quantitative deter-
mination of amino acids and acylcarnitines in mouse blood.
The method also allows large-scale screening applications
when speed and cost-effectiveness are mandatory. More gen-
erally, these authors suggest that ESI-MS/MS may be used
to improve screening for inherited metabolic diseases, such
as amino acid disorders, disorders related to carnitine me-
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tabolism, peroxisomal disorders, disorders in cholesterol,
steroid, and lipid metabolism, lysosomal storage disorders,
congenital disorders of glycosylation, and disorders of pu-
rine and pyrimidine metabolism. For instance, Butler et al. (2)
analyzed serum samples from patients with clinical vascu-
litis compared with healthy individuals. In a pilot study,
Paige et al. (3) evaluated the potential of metabolomics in a
study of older depressed patients, and Kaddurah-Daouk et
al. (4) used a specialized metabolomic platform for the quan-
tification of over 300 polar and nonpolar lipid metabolites to
evaluate global lipid changes in schizophrenia both before
and after treatment with three commonly used atypical an-
tipsychotics. Rozen et al. (5) show that in motor neuron dis-
eases, and, more specifically, in amyotrophic lateral sclerosis
(ALS), perturbations of the metabolome that are character-
istic for the disease and/or a given drug treatment can be
identified. Using a commercial metabolomic platform, Law-
ton et al. (6) identified compounds that show statistically
significant changes in ALS compared with the healthy con-
trols, which can be considered as ALS biomarker candidates.
To understand better the metabolic side effects of protease
inhibitors on glucose and lipid homeostasis, Flint et al. (7)
determined the endogenous metabolome of hepatocytes and
adipocytes treated with atazanavir or lopinavir, and com-
pared them with the plasma metabolome of HIV patients
treated with these drugs.

Recently, quantitative targeted metabolomics using mul-
tiplexed tandem mass spectroscopy has been developed to
the point where it can now be applied on a high-throughput
basis. This allows the measurement of hundreds of metab-
olites in a fully automated manner for many samples at a time
(8). Today, almost any pharmaceutical research company or
any medical laboratory can access this technology either on
a fee-for-service basis or by using in-house instrumentation
and prefabricated measurement kits that contain all required
reactants, standards, and protocols, much like the microarray
kits used in transcriptomics. This technological advance
brings metabolomics to a point of sophistication requiring
more advanced bioinformatic and biostatistical methods to
cope with the ever-increasing amount of incoming metabolic
information. Indeed, one can argue that metabolomics today
is at the point where transcriptomics was 5 yr ago. In this
paper we present a new bioinformatics approach to this
challenge, addressing the analysis of a metabolomic data set
from diabetic mice under drug treatment.

Metabolic disorders such as type 2 diabetes are among the
prime candidate diseases for which a largely improved un-
derstanding can be expected to be gained from a truly holistic
metabolomic approach. One concrete question concerns the
effect of insulin-sensitizing drugs on the metabolomic path-
ways, which are possibly affected downstream of the insulin
signaling pathway itself. Rosiglitazone, marketed by Glaxo-
SmithKline (Middlesex, UK) under the name Avandia, is one
such antidiabetic drug from the thiazolidinedione class. Its
mechanism of action is by activation of the intracellular
receptor peroxisome proliferator-activated receptor �
(PPAR�). PPAR� agonists such as rosiglitazone induce the
expression of the adipocyte-derived hormone adiponectin
and increase plasma adiponectin levels. Adiponectin has
improved insulin sensitivity, and low adiponectin levels

have been associated with obesity and an increased diabetes
risk in both humans and animals. Apart from the effect of
rosiglitazone on insulin resistance (9), it induces the matu-
ration of small adipocytes (10). This leads to an increased
formation of adipocytes, which in turn increases the storage
potential of the adipose tissue (11). Thus, activating PPAR�
by rosiglitazone leads to a redistribution of fatty acids from
nonadipose tissue to adipose tissue with the consequence of
a reduced availability of triglycerides in plasma (10).

Our objectives here are to systematically identify relevant
diabetes biomarkers and to pinpoint metabolic pathways
that are affected by rosiglitazone treatment in healthy and
diabetic mice. We first discuss individual metabolite con-
centrations and show that known metabolic responses to
diabetes and/or drug treatment are indeed recovered from
the experimental data. We then analyze all possible ratios
between all metabolite pairs because in some cases, such
ratios are known to be better indicators for disease as are
absolute concentrations. For example, the ratio between ty-
rosine and phenylalanine is a widely used biomarker for
phenylketonuria (12). Finally, we introduce a more general
data analysis approach based on metabolite ratios and a
derived statistical parameter, the partial �2 value, which
allows for automatic identification of groups of metabolites
that respond to disease or drug treatment in a correlated
manner.

Materials and Methods
Experimental setup

The data set used in this study is issued from a preclinical trial of a
candidate antidiabetes drug, in which untreated animals and animals
treated with rosiglitazone are used as a reference. Here, we only analyze
the reference data obtained from a targeted quantitative metabolomic
characterization of plasma samples. A set of four different animal groups
[mutant diabetes/wild type (M/W); untreated/treated with rosiglita-
zone (U/T)] with 10 animals per group (nine in the mutant-treated
group) was used. The four groups will be referred to as follows: mutant
untreated (M-U), wild type untreated (W-U), mutant treated with ros-
iglitazone (M-T), and wild type treated with rosiglitazone (W-T). As the
diabetic animal model, the classical male homozygous db�/db� mouse
from a C57BL/6 background was used (13). The control group consisted
of heterozygous male db�/db� mice. The animals were offered water
and food ad libitum to develop the described diabetes phenotype. Treat-
ment was started at the age of 10 wk. At this point, the db�/db� mice
were clearly diabetic, as was confirmed by a doubled body weight and
doubled plasma glucose concentrations (Fig. 1) of the db�/db� mice
when compared with the wild type. Koranyi et al. (14) reported that
db�/db� mice fed ad libitum are severely insulin resistant at the age of
5 wk, evidenced by hyperglycemia and a doubled body weight when
compared with the wild type. They further reported a number of ad-
ditional clinical parameters that testify of the diabetes state of these
animals, i.e. highly increased plasma and pancreatic insulin levels.
Therefore, these parameters were not measured here (also see Ref. 15 and
references therein for more physiological details on the db�/db�
mouse model). The insulin-sensitizer rosiglitazone was given at con-
ventional animal testing doses (e.g. see Ref. 16). Information on the exact
dosage was not available due to confidentiality issues related to the
preclinical testing of the target drug. Medication was administered daily
in the morning, for a period of 10 d. All animals were killed in the
morning to avoid the influence of circadian rhythm in the animals’
metabolism. All animal experimentation was conducted in accordance
with accepted standards of humane animal care.
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Metabolite profiling

Targeted metabolite profiling by ESI MS/MS was performed at
Biocrates Life Sciences, Austria. The technique is described in detail by
U.S. Patent 20070004044 (accessible online at http://www.freepatents
online.com/20070004044.html). Briefly, a targeted profiling scheme is
used to screen quantitatively for known small molecule metabolites
using multiple reaction monitoring, neutral loss, and precursor ion
scans. The quantification of the metabolites of the biological sample is
achieved by reference to appropriate internal standards. The method is
proven to be in conformance with Title 21 Code of Federal Regulations

Part 11, and has been used in the past in different academic and indus-
trial applications (2, 17).

Metabolite spectrum

Concentrations of all analyzed metabolites are reported in �m. In
total, 802 different metabolites were screened and detected: 18 amino
acids; 50 reducing mono-, di-, and oligosaccharides [n-hexose (Hn),
deoxyhexose (dH), uronic acid (UA), and N-acetylglucosamine
(HNAc)]; 16 acylcarnitines (Cx:y, where x denotes the number of carbons

FIG. 1. Gluconeogenesis. Box plots of plasma concentrations (�M) of Hexose (H1) and of the glycogenic amino acids glycine, serine, and alanine
in mutant (M) and wild-type (W) mice, untreated (U), and treated with rosiglitazone (T). Box plots of body weight (bottom right) of the db�/db�
mice show that these mice are highly obese when compared with the wild type.

TABLE 1. Partial �2 values for the two factors “state” (M/W) and “medication” (U/T) and for the interaction of both factors (M/W � U/T)

Metabolite Abbreviation �2 M/W �2 U/T �2 M/W � U/T

Hexose H1 0.644 0.012 0.050
Glycine Gly 0.625 0.036 0.033
Serine Ser 0.214 0.045 0.023
Alanine Ala 0.187 0.220 0.077
Leucine/isoleucine Leu/Ile 0.626 0.164 0.001
Valine Val 0.607 0.106 0.005
Phenylalanine Phe 0.735 0.084 0.001
Ornithine Orn 0.518 0.001 0.062
Arginine Arg 0.341 0.390 0.006
Methylmalonyl carnitine C3-DC-M 0.693 0.032 0.102
Hydroxyl propionyl carnitine C3(OH) 0.540 0.011 �0.001
Pimeloylcarnitine C7-DC 0.654 0.004 0.050
Butenoylcarnitine C4:1 0.558 0.003 0.037

Selected metabolites are shown that display a strong difference in plasma concentrations between wild-type and diabetic mice. The complete
table of all �2 values for all measured metabolites is provided in Supplemental File 2.
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in the side chain and y the number of double bonds); five hydroxya-
cylcarnitines [C(OH)x:y]; five dicarboxylacylcarnitines (Cx:y-DC); free
carnitine (C0); and 707 lipids. These lipids are subdivided into 82 dif-
ferent ceramides (Cer) and glucosylceramides (GlcCer), 110 different
sphingomyelins (SMx:y) and sphingomyelin derivatives, such as N-
hydroxyldicarboacyloylsphingosyl-phosphocholine [SM(OH,COOH)x:
y] and N- hydroxylacyloylsphingosyl-phosphocholine [SM (OH)x:y], 95
glycero-phosphatidic acids (PAs), 85 glycero-phosphatidylcholines
(PCs), 103 glycero-phosphatidylethanolamines (PEs), 11 glycero-phos-
phatidylglycerols (PGs), 177 glycero-phosphatidylinositols (PIs), glyc-
ero-phosphatidylinositol-bisphosphates (PIP2), and -triphosphates
(PIP3), and 44 glycero-phosphatidylserines (PSs). Glycero-phospholip-
ids are further differentiated with respect to the presence of ester (a) and
ether (e) bonds in the glycerol moiety, where two letters (aa, ea, or ee)
denote that the first as well as the second position of the glycerol unit
are bound to a fatty acid residue, whereas a single letter (a or e) indicates
a bond with only one fatty acid residue, e.g. PC_ea_33:1 denotes a
plasmalogen phosphatidylcholine with 33 carbons in the two fatty acid
side chains and a single double bond in one of them. In some cases, the
mapping of metabolite names to individual masses can be ambiguous.
For example, stereochemical differences are not always discernable,
neither are isobaric fragments. A nomenclature of all screened-for me-
tabolites is provided in Supplemental File 1, which is published as
supplemental data on The Endocrine Society’s Journals Online web site
at http://endo.endojournals.org.

Bioinformatic data analysis

All possible ratios between pairs of metabolite concentrations are
computed and analyzed. Individual metabolite concentrations are nat-
urally included in this framework by adding a virtual metabolite “1” to
the list of variables. The virtual metabolite “1” concentration is set to
unity for all observations. This data set of (8032) metabolite ratios is then
analyzed using a two-way ANOVA with factors “state” (M/W) and
“medication” (U/T). Rather than looking at raw P values, which would
require additional correction for multiple testing, we use the partial �2

of the ANOVA as the primary descriptor to identify interesting com-
pounds because �2 is a good estimator of how much of the observed
variance in the data can actually be explained by the respective factor.

To select metabolite ratios that yield more information than single
metabolites alone, the gain in �2 (“�2-gain”) is computed for every
metabolite ratio as follows:

�2 � gain�M1

M2
�� min ��2�M1

M2
�

�2�M1

1 �,
�2�M1

M2
�

�2� 1
M2
��

where M1 and M2 denote any pair of metabolites. �2-gain values that are
highly above unity indicate pairs of metabolites that are candidates for
being linked through closely related metabolic pathways.

To identify not only isolated metabolites that are affected by “state”
or “medication” but also groups of metabolites that display a similar
behavior and groups that are correlated with other groups, a matrix of
�2 values is generated. The rows of this matrix are labeled by the
metabolites at the numerator position of the ratios, and the columns are
labeled by the metabolites at the denominator position. The matrix
entries are the �2 values for the metabolite pair and the selected factor.
In principle, there is one matrix for every factor and every possible
interaction in the regression model used in the ANOVA. Here, we only
analyze the two matrices for the factors “state” and “medication.”

A two-dimensional hierarchical average linkage clustering using a
Euclidean distance is applied to each �2 matrix. Alternative and more
sophisticated clustering methods can also be applied in the future. The
central idea introduced here is to use metabolite ratios in the ANOVA
and then to cluster the resulting matrices of �2 values. Each cluster,
defined by all connected pairs of metabolites, which all have an �2 value
higher than 0.3, then defines two groups of metabolites that display
similar profiles within the groups. These two groups are likely to interact
through some metabolic pathway or regulatory mechanism.

Results

First, we analyze single metabolite profiles and their re-
sponse to disease and medication by comparing the obser-
vations with already known results. A summary of these
results is given in Tables 1–3. In a second step, we analyze
ratios of metabolite concentrations. We show how this ap-
proach allows us to find metabolite pairs that are likely to be
linked through some (short) metabolic pathway. Here, we
focus on already known facts but also indicate some new
findings (Tables 4 and 5). Finally, we apply a cluster analysis

TABLE 2. Partial �2 values for U/T

Metabolite Abbreviation �2 M/W �2 U/T �2 M/W � U/T

Octadecenylcarnitine C18:1 0.041 0.548 0.002
Stearoylcarnitine C18:0 0.047 0.511 0.047
Octadecadienylcarnitine C18:2 0.003 0.475 �0.001
Palmitoylcarnitine C16:0 0.017 0.461 0.013
Myristoylcarnitine C14:0 0.010 0.447 0.008
Tetradecenylcarnitine C14:1 0.298 0.315 0.039
Hexadecenylcarnitine C16:1 0.172 0.292 0.018
Diacylphosphatidylinositol triphosphate PIP3_aa_C42:3 0.179 0.439 0.129
Diacylphosphatidylinositol bisphosphate PIP2_aa_C36:0 0.068 0.338 0.078
Dialkyl-phosphatidyl-choline PC_ee_C42:6 0.093 0.381 0.089
Diacylphosphatidylcholine PC_aa_C40:5 0.164 0.352 0.122
Diacylphosphatidylcholine PC_aa_C40:6 0.070 0.350 0.060
Dialkylphosphatidyl-choline PC_ee_C42:5 0.176 0.334 0.117

As in Table 1, selected metabolites are shown that display a strong difference in plasma concentrations between untreated mice and mice
treated with rosiglitazone.

TABLE 3. Partial �2 values for both factors

Metabolite Abbreviation �2 M/W �2 U/T �2 M/W � U/T

Diacylphosphatidylinositol bisphosphate PIP2_aa_C24:1 0.063 0.005 0.274
Alkylacylphosphatidyl choline PC_ea_C20:4 �0.001 0.073 0.259
Methylglutaryl carnitine C5_M_DC 0.004 0.068 0.232

As in Table 1, metabolites are shown that display a strong interaction between both factors, but only a small contribution of one factor alone.
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technique to the matrix of �2 values, which is defined by all
metabolite pairs. The resulting clusters identify groups of
metabolites that exhibit similar response profiles to disease
or drug treatment (Tables 6–10). The objective and auto-
mated identification of such groups of metabolites is the
methodological goal of this paper. We show that this method
not only allows us to recover already known facts (from the
previous steps) but also to identify new groups of potential
biomarkers of disease and/or drug on-target and off-target
effects.

Perturbations in amino acid and acylcarnitine
concentrations conform to the diabetes phenotype

In our data set, the diabetes phenotype reveals itself
through high sugar concentrations and reduced concentra-
tions of the glucogenic amino acids glycine, serine and ala-
nine in diabetic mice when compared with the wild-type
mice (Fig. 1). This observation may be explained by an im-
paired uptake of glucose by insulin-resistant cells, which
induces hepatic gluconeogenesis, a process that then con-
sumes glucogenic amino acids to initiate the production of
the glucose precursors pyruvate and 3-phosphoglycerate
(18). In contrast, plasma levels of the branched chain amino

acids (BCAAs) leucine/isoleucine and valine are increased in
diabetic mice. This is consistent with earlier reports of ab-
normally high BCAA plasma concentrations observed in ex-
perimental diabetic (streptozotocin-induced) rats (19) and in
insulin-dependent type 1 diabetic human patients (20). Ar-
ginine levels in the diabetic mice are found to be decreased,
a fact that is already known from experimental diabetic rats
(21) as well as from diabetic human patients (22). On the
other hand, ornithine levels are found to be increased in
diabetic mice. This observation suggests that the activity of
the arginase [Enzyme Commission of the International
Union of Biochemistry (EC) 3.5.3.1], which catalyzes the re-
action from arginine to ornithine, is increased in diabetes
(23). An alternative interpretation, an increased degradation
of arginine to citrulline by the nitric oxide synthase (EC
1.14.13.39), can be excluded because the concentrations of
citrulline do not show any significant difference among the
four mouse groups. The fact that the activity of ornithine
decarboxylase (EC 4.1.1.17) is reduced in numerous tissues
in diabetic rats (24) supports our interpretation of the in-
creased ornithine levels (Fig. 2).

In addition to the established facts about the amino acids
discussed previously, the methylmalonyl carnitine (C3-

TABLE 5. Selected pairs of metabolites that show a strong gain in partial �2 values for U/T when considering ratios between
concentrations

Metabolite in numerator Metabolite in denominator �2 M/W �2 U/T �2 M/W � U/T �2 gain
M/W

�2 gain
U/T

�2 gain M/W
� U/T

PG_aa_C44:7 PI_aa_C40:3 0.191 0.822 0.020 0.5 2.1 0.1
PIP2_aa_C36:0 UA_HNAc 0.008 0.774 0.008 0.1 2.2 0.1
PI_a_C18:0 PG_aa_C44:7 0.184 0.715 0.227 1.4 5.5 3.5
UA_HNAc PIP3_aa_C20:1 0.269 0.706 0.452 1.8 3.0 11.9
PIP2_aa_C36:0 PE_a_C30:3 0.037 0.701 0.212 0.5 2.0 2.7
PC_a_C18:1 PC_aa_C40:6 0.135 0.683 0.356 0.8 2.3 8.3
UA_HNAc PS_aa_C36:1 0.447 0.660 0.253 1.8 4.0 39.9
PC_a_C16:0 PC_aa_C40:6 0.008 0.653 0.206 0.3 2.2 4.8
PC_a_C16:0 PC_ee_C40:4 0.057 0.641 0.15 2.2 2.2 2.2
PC_a_C16:0 PC_aa_C38:4 0.058 0.638 0.149 2.2 2.1 1.9
PC_a_C18:1 PC_ee_C40:4 0.115 0.615 0.240 0.6 2.1 3.5
PC_a_C18:1 PC_aa_C38:4 0.114 0.612 0.237 0.6 2.0 3.0
LacCer_C18:0 SM_(OH)_26:3 0.347 0.612 0.583 1.5 2.1 4.5
PI_aa_C40:3 PE_aa_C40:5 0.029 0.612 0.030 0.1 2.6 0.3
PA_a_C26:6 SM_C22:3 0.698 0.611 0.789 10.4 18.8 10.5
UA_HNAc PIP2_aa_C28:0 0.517 0.604 0.459 4.3 3.7 60.8

TABLE 4. Selected pairs of metabolites that show a strong gain in partial �2 values for M/W when considering ratios between
concentrations

Metabolite in numerator Metabolite in denominator �2 M/W �2 U/T �2 M/W � U/T �2 gain
M/W

�2 gain
U/T

�2 gain M/W
� U/T

SM_(OH)_28:0 SM_(OH)_26:0 0.791 0.176 0.007 3.8 75.6 0.1
SM_(OH)_28:1 SM_(OH)_26:0 0.729 0.072 0.067 4.5 13.3 0.5
SM_C26:4 SM_(OH)_28:0 0.736 0.481 0.296 6.2 7.4 3.2
PC_ea_C38:8 PC_e_C32:1 0.736 0.220 0.072 2.6 0.9 0.9
PC_aa_C36:1 PC_e_C32:1 0.733 0.189 0.052 2.7 0.9 0.8
PC_ee_C38:1 PC_e_C32:1 0.727 0.153 0.031 2.9 0.8 0.6
PC_ee_C38:2 PC_e_C32:1 0.722 0.276 0.121 2.8 1.1 1.4
PC_aa_C36:2 PC_e_C32:1 0.722 0.263 0.114 2.7 1.1 1.3
PC_ee_C40:3 PC_e_C32:1 0.706 0.238 0.102 2.4 1.1 1.0
PC_a_C18:2 PC_a_C22:6 0.706 0.544 0.352 8.5 8.8 41.1
PC_a_C22:6 PC_a_C18:2 0.703 0.410 0.026 49.5 11.6 2.7
PA_a_C26:6 SM_C22:3 0.698 0.611 0.789 10.4 18.9 10.5
UA_HNS_UA_HNAc_UA PS_aa_C38:1 0.736 0.178 0.192 4.1 6.7 4.7

The variability of the concentration of each of these compounds cannot be explained by the respective factor(s) alone, whereas their ratios
clearly can. The complete table of all �2 values for all measured metabolite concentration ratios is available in Supplemental File 2.
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DC-M) shows a significant difference with a high �2 value for
the factor “state” (Table 1 and Fig. 3). An explanation for the
increase of this metabolite could be a ketosis induced in the
diabetic mice because an increased glucose production at
limited glucose use generally results in hyperglycemia. Si-
multaneously, the oxidation of an increased amount of free
fatty acids provided by lipolysis facilitates gluconeogenesis
and produces ketone bodies like acetoacetate (25). C3-DC-M
can be converted to acetoacetate (26) and may thus be taken
as an indicator of ketosis. In the past, diabetic ketosis was
thought to be limited mostly to patients with type 1 diabetes
mellitus, but recent studies support the observation of ketosis
also in type 2 diabetes (27). Besides C3-DC-M, plasma con-
centrations of three other short-chained acylcarnitines,
namely hydroxyl propionylcarnitine [C3(OH)], pimeloylcar-
nitine (C7-DC), and butenoylcarnitine (C4:1), are also sig-
nificantly increased in diabetic mice (Table 1 and Fig. 3). To
our knowledge, no straight-forward mechanistic explanation
for these observations can be given. Replication in indepen-
dent experiments with diabetic mice and then in human
diabetic patients are in order and may constitute a promising

avenue to extend further our functional understanding of the
underlying disease-relevant pathways in which these me-
tabolites are involved.

Metabolites that are impacted by drug treatment are
identified

Rosiglitazone influences the lipid metabolism by activat-
ing the transcription factor PPAR�, which induces adipocyte
maturation (10). These newly formed adipocytes increase the
lipid storage potential of the adipose tissue (11). Our data
show that rosiglitazone treatment significantly reduces
plasma concentrations of numerous acylcarnitines, in par-
ticular those of myristoyl- (C14), palmitoyl- (C16), and
stearoylcarnitines (C18) with saturated side chains, and of
hexadecenylcarnitine (C16:1), octadecenylcarnitine (C18:1),
and octadecadienylcarnitine (C18:2) with unsaturated side
chains, and this both in diabetic and in healthy mice (Table
2). This observation agrees with the expected effect of ros-
iglitazone on reducing the concentrations of nonesterified
fatty acids in individuals with type 2 diabetes (28) because

TABLE 6. Group 1–9 metabolites that are found to cluster with high �2 values for the factor “state” (M/W)

Group 1 Group 2 Group 5 Group 8 Group 9

PC_aa_C34:0 PC_a_C20:4 Alanine C0 C4_OH
PC_aa_C34:1 PC_a_C22:6 Arginine C2:0 C8:0
PC_aa_C34:2 PC_e_C20:0 Serine C3 C8_DC
PC_aa_C36:1 PC_e_C22:1 C5_M_DC C10:1
PC_aa_C36:2 PC_e_C26:0 C6 C14:0
PC_aa_C36:3 PC_e_C30:0 Group 6 Citrulline C16:0
PC_aa_C38:3 PC_e_C30:1 C3_DC_M Lysine C18:0
PC_aa_C38:5 PC_e_C32:0 C7_DC Tryptophan C18:2
PC_aa_C40:5 PC_e_C32:1 H1 Tyrosine Aspartic_Acid
PC_ea_C36:7 H3_HNAc2_NANA PC_ea_C30:7 Glutamic_Acid
PC_ea_C36:8 Group 3 HNAc_H2_dH PC_ee_C30:0 Histidine
PC_ea_C38:8 SM_C28_2 PC_aa_C36:5 PIP3_aa_C20:7 Methionine
PC_ee_C36:0 SM_OH_COOH_C24:0 PC_ee_C38:5 Proline
PC_ee_C36:1 SM_OH_COOH_C24:1 Threonine
PC_ee_C36:2 SM_OH_COOH_C24:4
PC_ee_C36:3 Group 7

PC_ee_C38:1 Group 4 C3_OH
PC_ee_C38:2 Alanine C4:1
PC_ee_C38:3 Arginine Leucine/Isoleucine
PC_ee_C40:3 Serine Ornithine
PC_ee_C40:5 UA_HNS_UA_HNAc_UA Phenylalanine
PC_ee_C42:5 Pentose Valine

TABLE 7. Group 10–13 metabolites that are found to cluster with high �2 values for the factor “state” (M/W)

Group 10 Group 11 Group 12 Group 13

PC_aa_C32:0 GlcCer_OH_COOH_C8:1 GlcCer_OH_COOH_C8:1 PC_aa_C34:1
PC_aa_C38:2 GlcCer_OH_COOH_C20:2 GlcCer_OH_COOH_C20:2 PC_aa_C36:1
PC_aa_C38:6 GlcCer_C24:0 PC_a_C16:0 PC_aa_C36:2
PC_ea_C32:8 HNAc_H4_dH2 PC_a_C18:0 PC_aa_C36:3
PC_ea_C34:7 PC_a_C16:0 SM_OH_28:0 PC_aa_C38:3
PC_ee_C32:1 PC_a_C18:0 SM_OH_28:1 PC_aa_C38:5
PC_ee_C34:0 PI_aa_C18:1 PC_ea_C36:8
PC_ee_C40:2 PI_aa_C20:6 PC_ea_C38:8
PC_ee_C40:6 PIP2_aa_C36:1 PC_ee_C36:1

PC_ee_C38:1
PC_ee_C38:2
PC_ee_C38:3
PC_ee_C40:3
PC_ee_C40:5
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free long-chain fatty acids are metabolized to acylcarnitines
when transported into mitochondria for �-oxidation. An al-
ternative (or additional) explanation is corroborated by the
increase of C0 concentrations in liver tissue of the treated
mouse group (unpublished data). This increase could be an
indicator for an inhibitory effect of rosiglitazone on the car-
nitine palmitoyltransferase I (EC 2.3.1.21), which catalyzes
the reaction of acyl-coenzyme A (CoA) with C0 to acylcar-
nitine. Further observations, such as reduced concentrations
of PCs and increased plasma levels of PI, PIP2, and PIP3
(Table 2), can be interpreted with respect to the aforemen-
tioned overall effect of rosiglitazone on the organism’s lipid
metabolism. PI, PIP2, and PIP3 additionally play an impor-
tant role as second messengers, e.g. in the sensitizing of cells
for glucose uptake by rosiglitazone treatment (29–31).

An additional outcome of the variance analysis is the pos-
sibility to find metabolites that are oppositely affected by
treatment with rosiglitazone in healthy and diabetic mice (�2

values for interaction terms; Table 3). One interesting exam-
ple is methylglutaryl carnitine (C5-M-DC), in which treat-
ment with rosiglitazone increases plasma concentrations of
C5-M-DC in diabetic mice, whereas it decreases these con-
centrations in healthy mice (Fig. 4). Such interactions are of
prime interest in drug testing. They may be indicators of
potential side effects that otherwise will only become ap-

parent during phase II clinical testing, or contrarily, these
interactions may lead to the premature abandonment of drug
testing in phase I if moderate side effects are observed in
healthy individuals, whereas such effects might not be
present in diseased patients. A complete set of all significant
�2 values for all metabolite concentrations is available as
Supplemental File 2.

Metabolite concentration ratios allow identification of new
potential biomarkers

We now turn to the analysis of relationships between pairs
of metabolites. The strength of detecting significant pairs of
metabolites using ratios between pairs of metabolite concen-
trations is exemplified by the ratio of the sphingomyelins
SM(OH)28:0 and SM(OH)26:0 (Fig. 5). The concentrations of
these compounds exhibit large variations in the metabolite
concentrations within the groups, thereby masking any po-
tential difference between the four mouse groups. In con-
trast, the ratios between the concentrations of those com-
pounds show considerably lower variation within the animal
groups, allowing for the identification of significant differ-
ences with respect to the factor “state.” This situation can be
described in an idealized manner by a steady-state approx-
imation in the case of metabolite pairs showing low intra-

TABLE 8. Groups that cluster together

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11 Group 12 Group 13

Group 1
Group 2 x
Group 3 x
Group 4
Group 5
Group 6 x x x x
Group 7 x
Group 8 x x
Group 9 x x
Group 10 x
Group 11 x
Group 12 x
Group 13 x x x x

TABLE 9. Groups of metabolites that clusters for the factor “medication” (U/T)

Group 14 Group 15 Group 16 Group 17

PI_aa_C20:7 C4:1 Arginine PC_aa_C18:7
PI_aa_C32:1 C6_OH C14:0 PC_aa_C36:1
PI_aa_C40:4 Ornithine C14:1 PC_aa_C36:2
PIP2_aa_C26:6 PC_e_C22:1 C16:0 PC_aa_C38:3
PIP2_aa_C26:8 PC_e_C26:0 C16:1 PC_aa_C38:4
PIP2_aa_C36:1 PC_e_C30:0 C18:0 PC_aa_C38:6
PIP3_aa_C10:2 PC_e_C30:1 C18:1 PC_ea_C18:0
PIP3_aa_C20:4 PI_a_C20:0 C18:2 PC_ea_C38:8
PIP3_aa_C36:4 PI_aa_C38:2 PC_aa_C40:5 PC_ee_C20:7
PS_a_C26:0 PI_aa_C40:3 PC_aa_C40:6 PC_ee_C38:1
PIP3_aa_C18:8 PI_e_C22:0 PC_ee_C42:5 PC_ee_C38:2
PIP3_aa_C20:2 PIP2_aa_C16:4 PC_ee_C42:6 PC_ee_C40:3
PC_a_C18:0 PIP2_aa_C26:0 PC_ee_C40:4
PC_e_C32:0 PIP2_aa_C28:0
SM_C20:2 PIP3_aa_C20:0
SM_C26:3 PIP3_aa_C20:6
SM_C30:4 PIP3_aa_C20:7
SM_OH_28:0 PIP3_aa_C42:3
SM_OH_COOH_16:3
SM_OH_COOH_26:0
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group variability in their ratio, but large intergroup varia-
tion, the equilibrium between the two metabolites would
then be governed by the corresponding factor (“state” or
“medication”). In this example, the plasma concentrations of
the single metabolites SM(OH)28:0 and SM(OH)26:0 vary
strongly in the group of untreated mutants. In contrast, the
variation of the ratio SM(OH)28:0/SM(OH)26:0 is very low
in all four groups, especially in the group of untreated mu-
tants, making the impact of the factor “state” on this ratio
clearly discernable. Indeed, in this case lower values of this
ratio in the diabetes groups are indicative of less long chain
fatty acids and, thus, of a higher activity of the �-oxidation,
as can be expected in diabetes. Thus, this ratio is a potential
biomarker candidate for a shift in the �-oxidation activity in
diabetic mice. The effect of information gain and reduction
of variability through the use of concentration ratios is also
impressively demonstrated by a second example, the ratio
SM(OH)28:1 and SM(OH)26:0 (Fig. 6), in which a similar
biochemical explanation may hold.

Other pairs of metabolites for which the concentration
ratios are found to be significantly different between the two
groups comprise a number of PCs (Table 4). As we will
discuss below, differences in these metabolites’ concentra-
tions are possibly due to a differential regulation of certain
acyltransferase enzymes. Here, we only note that these me-
tabolites were not identified in the classical analysis of single
metabolite concentrations, which again illustrates that me-

tabolite ratios may be valuable potential biomarkers, e.g. for
enzyme activity or regulation.

With regard to the factor “medication,” metabolite ratios
with a strongly increased �2 value were observed for a num-
ber of glycerophospholipids, in particular the PIs with one
and two a-bonded side chains (PI_a and PI_aa), PIP2 and
PIP3, and the PCs PC_a, PC_aa, and PC_ee (Table 5). This is
likely a consequence of a series of interrelated modifications

FIG. 2. The urea cycle. Plasma concentrations (�M) of arginine and citrulline, and of the nonproteinogenic amino acid ornithine.

FIG. 3. Plasma concentrations (�M) of methylmalonyl carnitine (C3-
DC-M), hydroxyl propionylcarnitine [C3(OH)], pimeloylcarnitine (C7-
DC), and butenoylcarnitine (C4:1).

TABLE 10. Groups that cluster together

Group 14 Group 15 Group 16 Group 17

Group 14
Group 15
Group 16 X X
Group 17 X
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of the overall lipid metabolism induced by the effect of ros-
iglitazone on adipocyte maturation. A more detailed analysis
of the underlying processes of these modifications based on
the present data set would now be possible but is beyond the
scope of the present paper. Therefore, the full set of all �2

values for all metabolite pairs is provided as Supplemental
File 2 and may serve as a starting point for further
investigations.

Functionally related groups of metabolites can be identified
by clustering of the �2 matrix of the concentration ratios

Up to this point, we considered only individual concen-
tration ratios. This confines the analysis to single metabolite
pairs. However, because the analyzed factors “state” or
“medication” often affect larger groups of metabolites in a
similar manner, we aspire to find such groups that exhibit
similar behavior (within the groups as well as between them)
using a clustering approach (see Materials and Methods). The
clustered �2 matrix for the factor “state” allows identifying

at least 13 groups of metabolites with similar profiles (Tables
6–8). Some of these clusters consist of groups of metabolites
that have already been discussed previously. For instance,
groups 4 and 6 relate the glycogenic amino acids serine and
alanine to a set of sugar variables. Group 7 involves the
BCAAs, but also ornithine, which, as discussed previously,
is linked to arginine in group 5. In the clustering matrix for
the factor “medication,” four corresponding groups of me-
tabolites could be identified (Tables 9 and 10). Two groups
(groups 14 and 15) mainly consist of PIs (PI, PIP2, and PIP3),
whereas two other groups (groups 16 and 17) mostly contain
long-chain acylcarnitines and glycero-phosphocholines
(PC_aa, PC_ea, and PC_ee). In mice treated with rosiglita-
zone, the concentrations of the long-chain acylcarnitines and
the glycero-phosphocholines are decreased, whereas the PI
levels are increased. The rediscovery of these already known
metabolic interactions through a quasi-objective and auto-
mated clustering method confirms the success of this ap-
proach and shows the available potential. In particular, it is
now possible to use the reported groups and the relation-
ships between them as a starting point for further in-depth
analysis, knowing that the impact of the factors “state” (di-
abetes) and “medication” (treatment with rosiglitazone) is
statistically significant by construction in all cases.

A cluster that provides presumably new information on
diabetes is constituted by groups 1 and 2. Group 1 consists
of the phosphatidylcholines PC_aa, PC_ea, and PC_ee,
whereas group 2 comprises mostly the lysophosphatidyl-
cholines PC_e and PC_a. Some of the metabolites in these two
groups have already been identified previously as being
relevant to diabetes, based on concentration ratios (see
above; Table 4). In diabetic mice the plasma concentrations
of metabolites from group 1 are increased, whereas the
plasma concentrations of metabolites from group 2 are de-

FIG. 4. Plasma concentrations (�M) of methylglutaryl carnitine
(C5-M-DC).

FIG. 5. Plasma concentrations (�M)of N-hydroxyacyloylsphingosyl-
phosphocholine [SM(OH)28:0] and [SM(OH)26:0] (top row), and the
ratio of both concentrations (bottom row).

FIG. 6. Plasma concentrations (�M) of N-hydroxyacyloylsphingosyl-
phosphocholine [SM(OH)28:1] and [SM(OH)26:0] (top row), and the
ratio of both concentrations (bottom row).
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creased with respect to the wild type. Most metabolite ratios
in this cluster have an �2 gain greater than two, indicating
that the metabolites from both groups are connected by some
direct metabolic pathways. Indeed, the enzymes alkylglyc-
erophosphocholine O-acyltransferase (EC 2.3.1.63) (32, 33)
and 1-acylglycerophosphocholine O-acyltransferase (EC
2.3.1.23) (34, 35) are known to catalyze the conversion of PC_e
and PC_a to PC_ea and PC_aa (Figs. 7 and 8). Thus, our
observations suggest that in diabetic mice the regulation of
these reactions is modified in a way that the equilibrium is
shifted to the PC_aa/PC_ea/PC_ee side. The precise func-
tional background of this observation requires further in-
vestigation, which may lead to new insight into the metabolic
pathways that are perturbed in diabetic patients. This ex-
ample highlights how an objective bioinformatics analysis of

high-throughput targeted metabolomics experiments can
lead to the formulation of new and testable hypotheses.

Discussion

In this paper we have presented a bioinformatics analysis
of what can be considered as a standard experimental setting
of a preclinical drug testing experiment with two indepen-
dent factors, “state” and “medication.” Targeted quantitative
metabolomics, covering a wide range of more than 800 rel-
evant metabolites, measured in a reproducible manner with
generally low in-group variability, provides an excellent test
bed for automated and objective analysis methods.

Our first objective here was to recover already known
metabolic effects of diabetes and of the treatment with the

FIG. 7. Conversion of PC_e to PC_ea and of PC_a
to PC_aa by the enzymes 1-acylglycerophospho-
choline O-acyltransferase (EC 2.3.1.23) and 1-al-
kylglycerophosphocholine O-acyltransferase (EC
2.3.1.63).

FIG. 8. Example of clustering by �2 (M/
W). The full matrix for both factors is
available in a zoomable format in Sup-
plemental Files 3 and 4.
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antidiabetes drug rosiglitazone. This objective has been
reached in several instances. The analysis of single metab-
olites recovered known pathways affected by diabetes,
namely gluconeogenesis, the impaired uptake of BCAAs by
muscle tissue, the diminished activity of ornithine decarbox-
ylase, the increased activity of the arginase, and the indica-
tion of an increase in ketone bodies. The analysis of single
metabolites with respect to the factor “medication” shows
effects that can be explained by the impact of rosiglitazone
on the nonesterified fatty acid metabolism, followed by a
decrease in long-chain acylcarnitine concentrations.

Our second objective was to identify new compounds and
pathways that may be related to diabetes. By submitting all
possible ratios between metabolite pairs to a two-factor vari-
ance analysis (ANOVA) and then focusing specifically on
metabolite pairs with a high �2 gain, we identify relations
between compounds that were not apparent in the initial
analysis of single metabolites. For instance, in diabetic mice
the �-oxidation appears to be significantly increased, as can
be deduced from the concentration shift of sphingomyelins
SM(OH)28:0 and SM(OH)28:1 to SM(OH)26:0. This makes
the ratio of this metabolic pair a potential biomarker for
diabetes. With respect to the factor “state,” newly identified
metabolites that are affected by rosiglitazone treatment but
that were not apparent in the analysis of single metabolites
are mainly groups of glycero-phosphocholines and a few
sphingomyelins. These results suggest an impact of medi-
cation on some PIP2, PIP3, PI, and PC compounds. Few of the
latter molecules were already apparent in the analysis of
single metabolites.

An inherent property of a multifactor ANOVA is the pos-
sibility to identify metabolites that are affected by interac-
tions between the factors. Here, methylglutaryl carnitine (C5-
M-DC) has been identified as a prime example, in which
treatment with rosiglitazone has an increasing effect on C5-
M-DC levels in diabetic mice, but a decreasing effect in wild-
type mice. In general, such differently affected metabolites
can be indicators for undesired side effects of medication.
Thus, these metabolites become valuable early indicators of
potential issues with a new drug that, otherwise, may only
be identified late in clinical drug testing because the effect of
the drug on healthy candidates in phase I would be opposite
of what would be seen in phase II testing of affected patients.
Our approach presents a straightforward way to spot such
potentially problematic metabolites.

In a more exploratory vein, we sought to identify groups
of potentially interrelated metabolites that could then be
used to enhance our understanding of principal metabolic
mechanisms underlying the disease or medication under
question. To achieve this goal, we applied a standard hier-
archical clustering method to the matrices that are consti-
tuted by the different �2 values from the ANOVA of the
metabolite ratios (see Materials and Methods). As a first ver-
ification of this approach, we identified groups of metabo-
lites that were already known from the previous analysis of
single metabolites and metabolite pairs, e.g. the amino acids
and sugars, which are indicative of an increased gluconeo-
genesis in diabetes, and are combined in a single cluster. In
addition, new groups of metabolites could be detected, in-
cluding different groups of glycero-phosphocholines related

to the diabetes “state.” The discovery of these new groups
generalizes the results from the analysis of ratios and, there-
fore, makes it possible to describe the behavior of entire
classes of metabolites. This approach can lead to a better
understanding of the underlying metabolic processes in case
of disease or of drug treatment. One example of such a
process that should now be further investigated depicts the
impact of diabetes on the regulation of the metabolic path-
ways that involve the enzymes 1-alkylglycerophosphocho-
line O-acyltransferase (EC 2.3.1.63) and 1-acylglycerophos-
phocholine O-acyltransferase (EC 2.3.1.23) in the conversion
of PC_e and PC_a to PC_ea and PC_aa, respectively (Fig. 7).

Future efforts will concentrate on testing and developing
these analysis methods for use in diabetic human studies.
The design of such clinical studies will be challenged by the
variability resulting from genetic differences, as well as vari-
ations in nutritional and sampling conditions when com-
pared with preclinical studies on mouse models.
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