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Insulin-like 3 (INSL3) is a small peptide produced by testic-
ular Leydig cells throughout embryonic and postnatal life and
by theca and luteal cells of the adult ovary. During fetal life,
INSL3 regulates testicular descent in males, whereas in
adults, it acts as an antiapoptotic factor for germ cells in males
and as a follicle selection and survival factor in females. De-
spite its considerable roles in the reproductive system, the
mechanisms that regulate Insl3 expression remain poorly un-
derstood. There is accumulating evidence suggesting that an-
drogens might regulate Insl3 expression in Leydig cells, but
transcriptional data are still lacking. We now report that tes-
tosterone does increase Insl3 mRNA levels in a Leydig cell line
and primary Leydig cells. We also show that testosterone ac-
tivates the activity of the Insl3 promoter from different spe-

cies. In addition, the testosterone-stimulating effects on Insl3
mRNA levels and promoter activity require the androgen re-
ceptor. We have mapped the testosterone-responsive element
to the proximal Insl3 promoter region. This region, however,
lacks a consensus androgen response element, suggesting an
indirect mechanism of action. Finally we show that mono-(2-
ethylhexyl) phthalate, a widely distributed endocrine disrup-
tor with antiandrogenic activity previously shown to inhibit
Insl3 expression in vivo, represses Insl3 transcription, at least
in part, by antagonizing testosterone/androgen receptor ac-
tion. All together our data provide important new insights
into the regulation of Insl3 transcription in Leydig cells
and the mode of action of phthalates. (Endocrinology 149:
4688–4694, 2008)

INSULIN-LIKE 3 (INSL3), ALSO known as relaxin-like
factor, is a member of the insulin-IGF-relaxin family of

growth factors and hormones (1, 2). This hormone is almost
exclusively expressed in the gonads. During fetal life, INSL3
is produced by maturing Leydig cells of the male gonad,
whereas in adults it is secreted by both the testis (Leydig
cells) and the ovary (theca and luteal cells) (1–4). Consistent
with its sexually dimorphic expression pattern during fetal
life, INSL3 was found to be a master regulator of gonadal
descent, an essential step of the male sex differentiation pro-
cess. Insl3�/� null mice have bilateral cryptorchid testes lo-
cated high in the abdominal cavity close to the kidneys (5, 6).
Further support for INSL3 as a regulator of testicular descent
came from elegant transgenic experiments in which INSL3
was overexpressed in pancreatic �-cells of Insl3 null mice (7).
In these animals, normal testis descent was restored. Even more
convincing was the generation of female transgenic mice over-
expressing INSL3, which led to descended ovaries (7, 8). In
adults, INSL3 acts as a germ cell survival factor (9) and would
also be involved in follicle selection and survival (10, 11).

Despite its important roles in reproductive development
and function, surprisingly very little is known regarding the

mechanisms regulating Insl3 expression in gonadal cells. At
the molecular level, so far only two transcription factors have
been shown to regulate INSL3 promoter activity in Leydig
cells: the nuclear receptors steroidogenic factor-1 (SF1;
Ad4BP/NR5A1) and NUR77 (NGFI-B/NR4A1) (12–16). At
the hormonal level, Insl3 expression was found to require the
pituitary LH in postnatal Leydig cells (3, 9, 17). This, how-
ever, is believed to be associated with the differentiation
status of Leydig cells, which is dependent on LH, rather than
the result of an acute response to LH as for steroidogenesis
(3, 18). In addition to LH, there is mounting evidence that
Insl3 expression would be regulated by androgens in several
species. In testicular feminized mice, which harbor a muta-
tion in the androgen receptor (AR) gene causing complete
androgen insensitivity (19–21), Insl3 expression is severely
decreased (22). In an AR hypomorphic mice model in which
AR levels are reduced (23), Insl3 expression was down-reg-
ulated nearly 10-fold (24). In these mice, LH and testosterone
levels were dramatically increased, consistent with normally
differentiated and functioning pituitary gonadotrope and
testicular Leydig cells (24). In adult rats, GnRH antagonists
(chemical castration) down-regulate Insl3 expression (9).
Treatment with human chorionic gonadotropin restored
Insl3 mRNA levels in GnRH antagonist-treated animals (9)
and hpg mice (3), which have a deletion of the Gnrh1 gene (25,
26). In humans, INSL3 and testosterone concentrations are
significantly correlated (17, 18). Finally, endocrine disruptors
exhibiting antiandrogenic activity, such as the widely dis-
tributed plasticizer phthalate, repress Insl3 expression in
Leydig cells (27–29). The exact mechanisms of action of an-
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drogens on Insl3 expression, however, remain completely
obscure.

In the present study, we provide evidence that testoster-
one regulates Insl3 transcription in Leydig cells in an AR-
dependent manner. We have also mapped an androgen-
responsive region in the human INSL3 promoter. Finally, we
found that mono-(2-ethylhexyl) phthalate (MEHP) represses
Insl3 transcription, at least in part, by antagonizing the tes-
tosterone stimulating effects.

Materials and Methods
Plasmids

The �1137-, �920-, and �656- to �11-bp human INSL3 promoter
fragment have been previously described (15). Additional deletion con-
structs to �132 and �85 bp were generated by PCR using the �1137-bp
construct as template along with a common reverse primer containing
a KpnI cloning site (underlined) 5�-GGG GTA CCG GTG GGT GGC GCC
GGG GCC AAG C-3� and the following forward primers that contain
BamHI cloning sites (underlined): �132 bp, 5�-CGG GAT CCC AGA AAG
GCT CTG GCA C-3� and �85 bp, 5�-CGG GAT CCT GAA GAA TGT
TCT G-3�. The �31- to �11-bp reporter construct was obtained by
subcloning a double-stranded oligonucleotide: sense oligo 5�-CGG TGG
GTG GCG CCG GGG CCA AGC GGG GAC CCC CTT TAT AGG CG-3�
and antisense 5�-GAT CCG CCT ATA AAG GGG GAC CCC GCT TGG
CCC CGG CGC CAC CCA CCG GTA C-3�.

Various trinucleotide mutant constructs in the context of the �1137-
and �132-bp reporters were generated using the QuikChange XL mu-
tagenesis kit (Stratagene, La Jolla, CA) along with the following oligo-
nucleotides (only the sense oligonucleotide is shown) in which the

mutations are in lowercase: M1, 5�-AAG GCC CTG GCC CTG GCC CTG
GAA tcc AGG CTC CTC TGG CAC TAA CCC C-3�; M2, 5�-CCC TGG
CCC TGG GAG AAA tta TCT GGC ACT AAC CCC ACC C-3�; M3, GCC
CTG GGA GAA AGG CTa gtG CAC TAA CCC CAC CCT TGA C-3�; M4,
5�-CCT GGG AGA AAG GCT CTG Gac aTA ACC CCA CCC TTG
ACC-3�; M5, 5�-AAG GCT CTG GCA CTA ACC aac CCC TTG ACC TTT
TTC CTG GGC G-3�; M6, 5�-CTC TGG CAC TAA CCC CAC aag TGA
CCT TTT TCC TGG GCG-3�; M7, 5�-GGC ACT AAC CCC ACC TTt caC
TTT TTC CTG GGC GGT CC-3�; M8, 5�-CTA ACC CCA CCC TGA CCg
ggT TCC TGG GCG GGT CCT GAA G-3�; M9, 5�-CCC CAC CCT GAC
CTT TTg aaT GGG CGG GTC CTG AAG AAT G-3�; M10, 5�-CCA CCC
TGA CCT TTT TCC Ttt tCG GGT CCT GAA GAA TGT TCT GTC C-3�.
The �978- to �5-bp mouse Insl3 promoter fragment was isolated by PCR
using mouse genomic DNA and the following primers: forward, 5�-GCG
GAT CCG AAT GGG GAT ATT AAA TAT GTG-3� (BamHI cloning site
is underlined) and reverse, 5�-GGG GTA CCG TGG CAG GAG GCA GTG
GGC AG-3� (KpnI cloning site is underlined).

A similar PCR-based approach using rat genomic DNA was used to
isolate the �508- to �5-bp of the rat Insl3 promoter along with the
following primers: forward, 5�-CTG GAT CCG GGC AGA GGC AGT
GC-3� (BamHI cloning site is underlined) and reverse, 5�-GGG GTA CCC
GGA GGC AGC GGG TAA GGA C-3� (KpnI cloning site is underlined).
All reporter constructs were subcloned in a modified pXP1 Luciferase
reporter construct (30) and subsequently verified by sequencing (Centre
de Génomique de Québec, Centre Hospitalier Universitaire of Québec
Research Centre, Québec City, Canada).

FIG. 1. Testosterone stimulates Insl3 expression in Leydig cells. A,
MA-10 Leydig cells were treated with either 1500 nM dimethylsulf-
oxide (open bar) or increasing doses of testosterone (T) (black triangle:
0.15, 1.5, 15, 150, and 1500 nM) for 36 h. B, MA-10 and primary
cultures of Leydig cells from rats were treated with 15 nM dimeth-
ylsulfoxide (open bars) or testosterone (T) (black bars) for 36 h. Total
RNA was next isolated and used in quantitative real-time PCR using
primers specific for Insl3 cDNA as described in Materials and Meth-
ods. Results were corrected with the Rpl19 cDNA. Results are the
mean of three individual experiments performed in duplicate (�SEM).
*, Statistically significant difference from control.

FIG. 2. The INSL3 promoter from different species is activated by
testosterone. A, MA-10 cells were transfected with a �1137 bp
human INSL3 promoter construct and treated with either 1500 nM
dimethylsulfoxide (open bar) or increasing doses of testosterone (T)
(black triangle: 0.15, 1.5, 15, 150, and 1500 nM) for 36 h. A different
letter indicates a statistically significant difference. B, MA-10 cells
were transfected with a �1137- to �11-bp human INSL3 promoter,
�978- to �5-bp mouse Insl3 promoter, and �508- to �5-bp rat Insl3
promoter and treated with 15 nM dimethylsulfoxide (open bars) or
testosterone (T) (black bars) for 36 h. *, Statistically significant
difference from the respective control. Results are shown as fold
activation over control (�SEM).
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Cell culture and transfections

The mouse Leydig cell line MA-10 (31) was provided by Dr. Mario
Ascoli (University of Iowa, Iowa City, IA). Cells were grown in
Waymouth’s media supplemented with 12% horse serum and 50
mg/liter of gentamicin and streptomycin sulfate, at 37 C in 5% CO2.
Cells were plated in a 24-well plate at a density of 90,000 cells/well
in Waymouth’s supplemented with 12% charcoal-treated horse se-
rum and allowed to recover for 16 –24 h before transfection. An
amount of 0.2 picomoles of Insl3 Firefly luciferase reporter construct
along with 8 ng of phRL-TK Renilla luciferase reporter, used as internal
control for transfection efficiency, were transfected using Lipo-
fectamine 2000 reagent (Invitrogen Canada, Burlington, Ontario,
Canada) according to the manufacturer’s recommendations. Four
hours later, media were replaced and cells were treated with either
testosterone (concentrations indicated in the figure legends) with or
without 30 �m di-2-ethylhexyl phthalate (DEHP) or MEHP (TCI
America, Portland, OR) for 24 –36 h. Cells were then lysed and lu-
ciferase activities measured using the dual-luciferase assay system
(Promega Corp., Madison, WI) and the EG&G Berthold LB 9507
luminometer (Berthold Technologies, Oak Ridge, TN). Transfections
were performed at least three times in duplicate using different
preparations of plasmid DNA.

Isolation of primary Leydig cells

Primary Leydig cells were isolated as described previously (32) from
35-d-old Sprague Dawley rats obtained on site. Serum-free medium 199
with Earle’s salts (Sigma-Aldrich Canada, Oakville, Ontario, Canada),
l-glutamine, 1.5 mm HEPES, 2.5 g/liter NaHCO3, and antibiotics (50
U/ml penicillin and 50 �g/ml streptomycin) was used during prepa-
ration and culturing. After 2 d in culture, the purity of the Leydig cell
preparation was evaluated to be about 95% enriched as assessed by
histochemical staining for 3�-hydroxysteroid dehydrogenase activity
(33). All experiments were conducted according to the Canadian Council
for Animal Care and have been approved by the Animal Care and Ethics
Committee of Laval University (protocol 2005-184).

RNA isolation, reverse transcription, and quantitative real-
time PCR

Total RNA was isolated using the RNeasy Plus minikit (QIAGEN
Canada, Mississauga, Ontario, Canada). First-strand cDNAs were syn-
thesized from a 5-�g aliquot of the various RNAs using the Superscript
III reverse transcriptase system (Invitrogen Canada). Quantitative real-
time PCR for Insl3 and Rpl19 were performed as previously described
(15, 34). Each amplification was performed in duplicate using at least
three different preparations of cDNAs for each of the three different
RNA extractions.

Statistical analysis

Statistical analyses were done using one-way ANOVA or ANOVA on
ranks (when parameters were not met) followed by a Student-Newman-
Keuls posttest. For all statistical analyses, P � 0.05 was considered

significant. All statistical analyses were done using the SigmaStat soft-
ware package (Systat Software Inc., San Jose, CA).

Results
Testosterone increases Insl3 mRNA levels in Leydig cells

To assess whether androgens could regulate Insl3 expres-
sion, we first treated MA-10 cells, a Leydig cell line known
to express AR (35), with increasing doses of testosterone,
doses that are within the physiological range found within
the rodent testis (200–350 nm) (36, 37). As shown in Fig. 1A,
Insl3 mRNA levels were significantly increased in response
to testosterone as determined by quantitative real-time PCR.
An even stronger response was observed when primary Ley-
dig cell cultures were used (Fig. 1B). These results indicate
that Insl3 expression is regulated by androgens in Leydig
cells and that the MA-10 Leydig cell line constitutes an ap-
propriate model to study the underlying mechanisms of
androgen action.

FIG. 3. Testosterone-dependent activation of Insl3 transcrip-
tion requires the androgen receptor. A, MA-10 Leydig cells were
transfected with a �1137-bp human INSL3 promoter construct
and pretreated with 50 �M dimethylsulfoxide (open bars) or in-
creasing doses of hydroxyflutamide (HF) (black triangle: 50 nM,
250 nM, 500 nM, 5 �M, 25 �M, and 50 �M) for 1 h followed by
addition of vehicle (�) or 15 nM testosterone (T, �) for 36 h. *,
Statistically significant difference from the respective control.
Results are shown as fold activation over control (SEM). B, MA-10
cells were treated with either dimethylsulfoxide (open bar), 15
nM testosterone (T) (black bar), 5 �M hydroxyflutamide (HF)
(gray bar), or a combination of hydroxyflutamide and testoster-
one (hatched bar). Total RNA was isolated and Insl3 expression
was determined by quantitative real-time PCR. Results were
corrected with the Rpl19 cDNA. Results are the mean of three
individual experiments performed in duplicate (�SEM). *, Sta-
tistically significant difference from control.

FIG. 4. The testosterone-responsive area is located in the proximal
INSL3 promoter. MA-10 cells were transfected with various 5� dele-
tion constructs of the human INSL3 promoter (the 5� end point of each
construct is indicated on the left of the graph) and treated with di-
methylsulfoxide (open bars) or 15 nM testosterone (T) (black bars). *,
Statistically significant difference from the respective control.
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Testosterone stimulates Insl3 promoter activity from
different species

Next, we ought to determine whether the effects of tes-
tosterone could be due to an increase in Insl3 gene transcrip-
tion. As shown in Fig. 2A, treatment of MA-10 Leydig cells
with increasing doses of testosterone led to a dose-dependent
activation of a �1137-bp human INSL3 reporter construct.
Similar results were obtained with the rat and mouse Insl3
promoters (Fig. 2B). Thus, testosterone can activate the Insl3
promoter from different species.

Testosterone acts in an AR-dependent manner to increase in
Insl3 transcription

Although testosterone is known to act mainly through AR,
some AR-independent responses to androgens have been
reported (reviewed in Ref. 38). The involvement of AR in
testosterone-induced Insl3 transcription was assessed by
treating MA-10 Leydig cells with testosterone in the presence
or absence of hydroxyflutamide, the biologically active form
of flutamide and a potent AR antagonist. Testosterone-me-
diated increase in INSL3 promoter activity (Fig. 3A) and
endogenous mRNA levels (Fig. 3B) were abolished in the
presence of the antagonist. The AR antagonist had no effect
when used alone (Fig. 3). All together, these results establish
the requirement of AR for testosterone-dependent stimula-
tion of Insl3 transcription.

Mapping of the testosterone-responsive element in the
INSL3 promoter

To locate the testosterone-responsive element in the hu-
man INSL3 promoter, a series of 5� progressive deletion
constructs were generated and transfected in MA-10 Leydig
cells that were then treated with 15 nm testosterone. As
shown in Fig. 4, deletion from �1137 to �132 bp had no effect
on testosterone responsiveness (nearly 3-fold). Further de-
letion to �85 bp severely blunted the testosterone-respon-
siveness of the INSL3 promoter to 1.4-fold. The testosterone-
activating effects were specific because a �31-bp minimal
INSL3 promoter construct was no longer responsive (Fig. 4).
These data indicate that the main testosterone-responsive
element(s) are located between �132 and �85 bp. A survey
of the 47-bp promoter sequence between �132 and �85 bp
did not reveal the presence of a consensus androgen response
element (GGTACAnnnTGTTCT). The 47-bp region, how-
ever, contains a half-site for the binding of nuclear receptors
(AGGTCA), which we previously described as a binding site
for the nuclear receptors NUR77 and SF1 (15, 16). To better
define the element within the 47-bp region, a series of mutant
constructs were generated in the context of the �1137-bp
(Fig. 5A) and the �132-bp (Fig. 5B) INSL3 promoter. In the
context of the �1137-bp promoter construct, mutations
M1-M3 had no impact on the testosterone-responsiveness of
the INSL3 promoter, whereas mutations M4-M7 caused a

FIG. 5. Fine mapping of the testosterone-responsive ele-
ment in the human INSL3 promoter. MA-10 Leydig cells
were transfected with either a wild-type (WT) or a series of
human INSL3 promoter constructs containing trinucle-
otide mutations in the testosterone-responsive region ei-
ther in the context of the �1137-bp (A) or �132-bp (B)
reporter. The wild-type INSL3 promoter sequence is shown
on top and the corresponding mutated nucleotides are
shown underneath in lowercase. MA-10 cells were treated
with either dimethylsulfoxide (open bars) or 15 nM testos-
terone (T) (black bars). A different letter indicates a statis-
tically significant difference. Results are shown as fold ac-
tivation over control (�SEM).
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small but significant reduction in the testosterone-dependent
activation (Fig. 5A). Mutations M8, M9, and M10, sequen-
tially changing each of the underlined triplet in the sequence
GACCTTTTTCC, had the most dramatic effects, decreasing
testosterone responsiveness to the level observed with the
�85-bp construct (from nearly 3-fold to 1.4-fold) (Fig. 5A).
Interestingly, this sequence contains the NUR77/SF1 nuclear
receptor binding site. Similar results were obtained in the
context of the �132-bp reporter construct with mutation M9
eliminating the testosterone-responsiveness of the INSL3
promoter (Fig. 5B).

MEHP antagonizes testosterone-induced Insl3 expression

MEHP, the active metabolite of a widely used plasticizer,
is known to repress Insl3 expression in vivo in Leydig cells
(29). Although the exact molecular mechanisms remain un-
identified, it is known that MEHP cannot bind to AR but
nonetheless acts as an antiandrogen (39–41). Because we
have shown that androgens activate Insl3 transcription, we
tested whether MEHP could modulate testosterone action on
Insl3 transcription. As shown in Fig. 6, 30 �m of MEHP
significantly inhibited the testosterone-mediated increase in
Insl3 mRNA in primary Leydig cells but had no effect in
unstimulated cells. Similarly, MEHP, but not its inactive
precursor DEHP, significantly reduced the testosterone-de-
pendent activation of the human INSL3 promoter (Fig. 7).
Thus, MEHP represses Insl3 expression, at least in part, by
antagonizing testosterone action.

Discussion

INSL3, a small peptide of gonadal origin, plays important
roles in reproductive function (42). In addition, its expression
in males is highly correlated with the functional status of
testicular Leydig cells and to circulating testosterone levels
(17, 18, 43–45). In the present study, we found that androgens
activate Insl3 transcription in Leydig cells and that this is

partly antagonized by MEHP, a widely distributed endo-
crine disruptor with antiandrogenic activity.

Expression of Insl3 in Leydig cells

Although the Insl3 gene is located within the last intron of
the Jak3 gene, the two genes have very divergent expression
profile. Jak3 is restricted to lymphoid and hematopoietic cells
(46, 47), whereas Insl3 is found exclusively in the gonads,
mainly in testicular Leydig cells (1–4). Jak3 and Insl3 are
therefore not likely to share regulatory elements despite their
close genomic association. Because of this atypical organi-
zation, it is believed that the regulatory motifs driving Insl3
expression in Leydig cells are located within a relatively
short 5� flanking sequence. In agreement with this, the first
200 bp upstream of the transcription start site were found to
be sufficient to confer activity to the mouse (12, 13), rat (14),
and human (our data) Insl3 promoter in MA-10 Leydig cells.
Within this fragment are found binding sites for the tran-
scription factors SF1 and NUR77 (12–16). Consistent with an
in vivo role for SF1, Insl3 expression was reduced in a Leydig
cell-specific Sf1 knockout mouse model (48).

Mechanism of androgen action on Insl3 transcription

In addition to these two transcription factors, we found
that testosterone also activates Insl3 expression in a mouse
Leydig cell line and primary Leydig cells from rats. These
data are supported by evidence from the literature whereby
modulation of androgen production or action in animal mod-
els was shown to cause a concomitant alteration in Insl3
mRNA levels (3, 9, 17, 18, 22, 24, 49).

We found that testosterone directly regulates the activity
of the Insl3 promoter from various species. This indicates that

FIG. 6. MEHP inhibits the testosterone-induced Insl3 expression.
Rat primary Leydig cells were treated with vehicle or 30 �M MEHP
in the absence (open bars) or presence of 15 nM testosterone (T) (black
bars) for 36 h. Total RNA was isolated and Insl3 expression was
determined by quantitative real-time PCR. Results were corrected
with the Rpl19 cDNA. Results are the mean of three individual ex-
periments performed in duplicate (�SEM). A different letter indicates
a statistically significant difference.

FIG. 7. Testosterone-mediated induction of INSL3 promoter activity
is repressed by MEHP. MA-10 Leydig cells were transfected with a
�1137-bp human INSL3 reporter construct and treated with vehicle
or 30 �M DEHP or MEHP in the absence (open bars) or presence of
15 nM testosterone (T) (black bars) for 36 h. A different letter indicates
a statistically significant difference. Results are shown as fold acti-
vation over control (�SEM).
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the mechanism of androgen action on Insl3 expression has
been evolutionarily conserved despite the poor sequence
conservation between the human and rodent Insl3 promoter.
Testosterone action on Insl3 transcription was found to be AR
dependent. The AR-responsive region that we mapped in the
human INSL3 promoter, however, does not contain an an-
drogen response element, suggesting that androgen-acti-
vated AR acts in a DNA binding-independent manner. AR
has been shown to modulate gene expression and cell func-
tion without directly binding to DNA through nonclassical
pathways (reviewed in Refs. 50 and 51).

Androgen-MEHP antagonism in Insl3 transcription

Phthalates are chemicals used to impart flexibility and
durability to polyvinyl chloride and comprise up to 40% of
the plastic volume. Phthalates are ubiquitous contaminants
of the environment and humans, and animals are inevitably
exposed to these chemicals (52–58). The primary targets of
phthalates are testicular Leydig cells (59).

In the present study, we found that MEHP, a biologically
active phthalate with endocrine disrupting activity, partly
inhibited testosterone action on Insl3 expression in a Leydig
cell line (MA-10) and primary cultures of rat Leydig cells.
Our data confirm that MA-10 cells are an appropriate model
to study phthalate-mediated effects, which is in agreement
with a previous study by Dees et al. (60). It is known that in
utero exposure to phthalates, including MEHP, causes sev-
eral detrimental reproductive defects, including unde-
scended testis, hypospadias, and decreased testosterone pro-
duction, in males in various animal models (reviewed in Ref.
61). They are believed to have adverse effects on human
reproductive health as well (reviewed in Ref. 62). Phthalate
exposure results in decreased expression of Insl3 and genes
involved in testosterone biosynthesis in Leydig cells (re-
viewed in Refs. 63 and 64). Although phthalates have anti-
androgenic effects, they cannot interact with AR (39–41).
Phthalate repressive effects in Leydig cells are believed to be
mediated, at least in part, through activation of the peroxi-
some proliferator-activated receptor (PPAR) (65, 66). In the
testis of PPAR�-deficient mice exposed to phthalates, ex-
pression of the peripheral-type benzodiazepine receptor,
which is involved in cholesterol transport, was no longer
repressed (67), and the overall testis structure was found to
be predominantly normal (68). Activated PPAR can repress
gene expression in a DNA-binding-independent manner
through the recruitment of corepressors or by interfering
with other DNA-associated transcription factors (65, 66). Re-
cently phthalates were also reported to act by decreasing
recruitment of the transcription factor CCAAT/enhancer-
binding protein-� to DNA but having no effect on SF1 (69).
Although the exact mechanism remains to be identified, we
found that the phthalate MEHP antagonizes AR action
through a region of the Insl3 promoter known to bind tran-
scriptional activators, which suggests that disruption of tran-
scription factor interactions might be involved.
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4694 Endocrinology, September 2008, 149(9):4688–4694 Laguë and Tremblay • MEHP Inhibits Testosterone-Induced Insl3 Expression

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/article/149/9/4688/2455844 by guest on 25 April 2024


