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Hypertension involves remodelling and inflammation of the arterial wall. Interactions between vascular and inflammatory cells play a critical role
in disease initiation and progression. T effector and regulatory lymphocytes, members of the adaptive immune system, play contrasting roles
in hypertension. Signals from the central nervous system and the innate immune system antigen-presenting cells activate T effector lymphocytes
and promote their differentiation towards pro-inflammatory T helper (Th) 1 and Th17 phenotypes. Th1 and Th17 effector cells, via production of
pro-inflammatory mediators, participate in the low-grade inflammation that leads to blood pressure elevation and end-organ damage. T regula-
tory lymphocytes, on the other hand, counteract hypertensive effects by suppressing innate and adaptive immune responses. The present review
summarizes and discusses the adaptive immune mechanisms that participate in the pathophysiology in hypertension.
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Translational Perspective
Evidence from experimental models of hypertension and hypertensive patients suggests an imbalance of T effector and regulatory subsets in
hypertension, causing low-grade inflammation, and contributing to blood pressure elevation and progression of end-organ damage. Novel
data increasingly identifies new potential targets within the immune system for therapeutic intervention. Interventions directed toward pro-
moting immunosuppressive T regulatory activity and reducing pro-inflammatory T effector lymphocytes, or the products or targets thereof,
could contribute to blood pressure control and limit target-organ damage.

Introduction
It has been increasingly recognized, but may remain underappre-
ciated, that an immune-inflammatory component participates in
the pathogenesis of hypertension. Infiltration of innate and adaptive
immune cells in the kidney, vessel wall and perivascular regions, to-
gether with other inflammatory processes such as elevated cytokine
release, reactive oxygen species (ROS) production, and expression
of adhesion molecules are a consistent feature of hypertension.1– 3

Aberrant activation of adaptive immunity, represented by T effector
lymphocytes, appears to play a key role in the development of
hypertension. Exactly how and why this occurs is still unclear, but
may involve increased sympathetic activity and co-stimulation
from innate cells.2 T effector cells interact with innate immune

mechanisms toexaggerate the inflammatory responseviaproduction
of pro-inflammatory cytokines and ROS and, hence, contribute to
the pathophysiology of cardiovascular disease and hypertension.1

T regulatory lymphocytes (Tregs), on the other hand, counteract
the elevation of blood pressure and associated kidney and vascular
damage by limiting innate and adaptive immune responses.1 This
review will aim to comprehensively examine the evidence for the con-
trasting roles of T effector and regulatory subsets in hypertension.

Immunity in hypertension:
a historical perspective
Since the early 1980s, an increasing amount of evidence has accumu-
lated that suggests a direct relationship between hypertension and
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immune dysfunction in experimental hypertensive animals. The
chronic phase of hypertension was shown to be blunted in athymic
mice undergoing partial infarction of one kidney and contralateral
nephrectomy.4 Thymus transplantation from wild-type mice restored
the ability to maintain chronic hypertension in athymic mice. Similarly,
spontaneous increase of systolic blood pressure was prevented by
neonatal thymectomy in Lyon genetically hypertensive (LH) rats.5

Olsen first demonstrated that intravenous injection of splenic cells
from deoxycorticosterone acetate (DOCA)-salt hypertensive and
renal hypertensive rats induced arterial hypertension in normoten-
sive rats.6 Similarly, lymphoid cell injections from LH rat donors
were also shown to be sufficient to cause blood pressure elevation
in Lyon normotensive rats.7 Hypertension was induced by transfer
of syngeneic spleen lymphoid cells from mice suffering from systemic
lupus erythematosus into normotensive mice, suggesting that hyper-
tension could be an immunologic disease induced by an abnormal
lymphoid system.8 Implantation of thymus tissue from normotensive
rats into young and developing spontaneously hypertensive rats
(SHR) partially suppressed the development of elevated blood pres-
sure.9 In another study, SHR were shown to exhibit reduced suppres-
sor T-cells activity.10 Chronic immunosuppressive treatment with
cyclophosphamide or cyclosporin induced a partial reduction in
blood pressure in SHR.11,12

Together, these results supported the hypothesis that cellular
adaptive immune reactions contribute to the pathogenesis of hyper-
tension. More recently, experimental hypertension studies have
identified roles for different subsets of T lymphocytes, an important
component of adaptive immunity, in hypertension. First, it is import-
ant to introduce the various subsets of T lymphocytes.

T-lymphocyte subsets
T lymphocytes can be distinguished from other lymphocytes by the
presence of the T-cell receptor (TCR) complex containing two
TCR chains (a and b), a CD3 co-receptor and a z-chain accessory
molecule. The majority of T lymphocytes contain TCRs composed
of a- and b-glycoprotein chains. During development in lymphoid
tissues, CD3+ T lymphocytes mature into either CD4+ or CD8+

single-positive cells, and leave the thymus and become immunocom-
petent. In a normal immune response, T lymphocytes require two
signals for activation (Figure 1).13 The first signal involves recognition
by T cells via their TCR, of an antigenic peptide presented by antigen-
presenting cells (APC) via their major histocompatibility complex
(MHC) class II molecules. The second is a costimulatory signal,
which is usually the interaction between B7 ligands (CD80 and
CD86) on APC with the T-cell co-receptor CD28. In response to
combined stimulation with antigen, costimulators, and particular
cytokines, naı̈ve CD4+ T helper (Th) cells (Th0) have been classically
described to differentiate into Th1, Th2 and Th17 effector cells, each
producing its own panel of cytokines and mediating separate func-
tions.14 Th1 cells secrete interferon (IFN)-g, interleukin (IL)-2, and
tumor necrosis factor (TNF)-b and play roles in cell-mediated
defense against intracellular microorganisms. Th2 cells produce
IL-4, IL-5, IL-10, and IL-13, which assist in B-cell activation and sup-
press cell-mediated immunity. Th17 cells secrete IL-17 and IL-22
and participate in defense against extracellular bacteria and fungi
and in autoimmune diseases. CD8+ T effectors differentiate into

cytotoxic (Tc) cells that secrete perforin, granzyme B, IFN-g, and
TNF-a. Perforin creates pores within the target cell membranes,
through which the granzymes can enter and induce apoptosis.15

A small group of T lymphocytes express theg/dTCR instead of the
conventional a/b TCR.16 g/d T cells are unique since, in addition to
effector functions shared with a/b T cells, these cells can perform
professional antigen-presenting capacity similar to dendritic cells
(DCs).17 These ‘innate-like’ T lymphocytes spans across the biology
of innate and adaptive immunity, and can rapidly produce IL-17A in re-
sponse to thepro-inflammatorycytokines IL-1and IL-23.18 Interesting-
ly, some g/d T lymphocytes that express CD39 carry out Treg
functions.19 Relatively, recent advances in immunology have also led
to the identification of new T effector lymphocyte subsets including
Th9, which produce IL-9 and IL-10 in abundance, and Th22, which pri-
marily produce IL-22.20

CD4+ naı̈ve T lymphocytes can also differentiate into T regulatory
lymphocytes (Tregs) (Figure 1).14 T regulatory lymphocytes have the
capacity to suppress innate and adaptive responses to autoantigens,
alloantigens, tumor antigens, and infectious agents. Therefore, Tregs
are important in the maintenance of immunologic self-tolerance and
immune homeostasis. Theyexpress IL-2 receptora-subunit (CD25),
and the transcription factor forkhead box P3 (Foxp3), which controls
the phenotype and function of Tregs. T regulatory lymphocytes
include natural Tregs, which develop in the thymus and constitute
the majority of circulating Tregs, and inducible Tregs (also known
as adaptive or peripheral Tregs), which differentiate from conven-
tional CD4+Tcells inperipheral tissues in response toantigens, cyto-
kines, and othercues.Tregs can suppress innate andadaptive immune
responses mainly via the anti-inflammatory effects of IL-10, although
other mechanisms may also be involved.21

It is important to realize that while T lymphocytes are traditionally
classified into different subsets mentioned above in order to delin-
eate their various functions, polarized T cells possess considerable
plasticity, and can change their phenotype and cytokine secretion de-
pending on the environment that the cells are in. For example, the
ratio between Tregs and Th17 cells, which are derived from the
same precursor, depends on the amount of IL-6 present in the cyto-
kine milieu.22 CD8+ T lymphocytes have also been known to be able
to perform regulatory function.23

T-effector lymphocytes
in hypertension
Harrison’s group first investigated the possibility that T and B cells
might represent a novel therapeutic target for the treatment of
hypertension.24 They used C57BL/6 mice lacking recombination ac-
tivating gene-1 (Rag12/2), an enzyme that plays an important role in
the rearrangement and recombination of the genes of immunoglobu-
lins and the TCR, and as a result are deficient in mature T and B cells.
They showed that Rag12/2 mice exhibited a blunted development of
hypertension, vascular oxidative stress in response to angiotensin
(Ang) II infusion or DOCA-salt. Adoptive transfer of T cells, but
not of B cells, restored the hypertensive phenotype in response to
Ang II in Rag12/2 mice. However, if reconstitution was carried out
with T lymphocytes from mice deficient in Ang II type 1a receptors
(AT1aR), or Agtr1a2/2, or deficient in the reduced nicotinamide
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adenine dinucleotide phosphate (NADPH) oxidase subunit p47phox
(Ncf12/2), the Ang II-mediated hypertensive response in Rag12/2

mice was partially blunted, and was not totally corrected, suggesting
that T-cell AT1aR activation and NADPH oxidase-dependent ROS
formation are important for the development of hypertension. Ang
II-induced adventitial collagen deposition and aortic stiffening were
also blunted in Rag12/2 mice.25 Furthermore, adoptive transfer of
T-cells to Rag12/2 mice restored the aortic stiffening and collagen
deposition caused by Ang II. Interestingly, this restoration was not
achieved through adoptive transfer of CD4+ or CD8+ T-cells
alone, indicating that the combination of CD4+ and CD8+ T-cells
is required for Ang II-induced vascular remodeling.25

Immunosuppressive therapy has also prevented blood pressure
elevation in other experimental models of hypertension. Mycophe-
nolate mofetil, which depletes B and T cells, protects against hyper-
tension and renal disease in salt-sensitive, 26,27 DOCA-salt,28 and SHR
rats.29,30 An increase in production of TNF-a by T cells was observed,
and treatment with a TNF-a antagonist, etanercept, prevented Ang
II-induced blood pressure rise and increase in vascular superoxide.
These observations have since been corroborated and extended by
others. Vital et al.31 demonstrated that lymphocyte-deficient Rag12/2

mice and irradiated wild-type mice receiving bone marrow from

Agtr1a2/2 mice exhibit reduced blood pressure response to Ang II,
thus also supporting a role for lymphocyte-associated AT1aR in Ang
II-mediated hypertension. Crowley et al.32 used severe combined im-
munodeficiency (Scid) mice on a C3H background, which also lack
lymphocyte immune responses, and showed that these mice have
blunted Ang II-induced hypertension, cardiac hypertrophy and renal
injury, due to enhanced production of nitric oxide (NO), prostaglandin
E2 and prostacyclin via stimulation of endothelial nitric oxide synthase
and cyclooxygenase-2-dependent pathways. More recently, Mattson
et al.33 similarly found blunting of salt-sensitive hypertension and
renal disease in rats with a genetic mutation in the Rag1 gene.

Paradoxically, Coffman’s group found that activation of AT1aR on
bone marrow-derived cells is protective in Ang II-induced hyperten-
sion and renal damage. Transfer of bone marrow from Agtr1a2/2

mice into irradiated wild-type 129/SvEv mice resulted in an augmen-
ted hypertensive response, elevated albuminuria and increased renal
macrophage infiltration and inflammation after chronic Ang II infu-
sion, compared with transfer of wild-type bone marrow.34 Using a
Cre/Lox approach, they showed that knocking out AT1aR specifically
in CD4+ T lymphocytes, potentiates Ang II-induced kidney injury,
renal expression of chemokines, and accumulation of T cells in the
kidney, despite similar blood pressure elevation compared with

Figure 1 Differentiation of naı̈ve T lymphocytes into various subsets in a normal immune response. Antigen-presenting cells (dendritic cells and
monocyte/macrophages) present antigens on major histocompatibility complex (MHC)-II to naı̈ve T cells (Th0) in secondary lymphoid tissues,
leading to T-cell clonal expansion and differentiation into effector T cells, such as T helper (Th)1, Th2, and Th17 or T regulatory (Treg) cells according
tocombined stimulationbydifferentcytokines. Th effector lymphocytes andTregsmigrate into tissues suchas thevasculature, particularly at the level
of the adventitia and perivascular fat. The effector lymphocytes (Th1 and Th17) cells activate other immune cells and participate in inflammation by
producing pro-inflammatory cytokines such as interferon-g, interleukin (IL)-6, and IL-17. T regulatory lymphocytes suppress innate and adaptive
responses via production of anti-inflammatory cytokines IL-10 and transforming growth factor-b. CD, cluster of differentiation; DC, dendritic
cell; MF, macrophage; NK cell, natural killer cell; Tc, cytotoxic T cell; TCR, T-cell receptor.

N. Idris-Khodja et al.1240
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/article/35/19/1238/2293084 by guest on 23 April 2024



wild type mice.35 This was associated with increaseddifferentiationof
CD4+ T cells towards a more pro-inflammatory (Th1) phenotype.
Tbet-deficient mice (Tbx212/2), which are incapable of mounting a
Th1 response, were protected from Ang II-induced kidney injury. It
should be noted, however, that Coffman’s group used the 129/
SvEv strain, which are particularly susceptible to kidney injury,
whereas most other studies used the C57BL/6 strain, which may
explain the results obtained.

The respective roles of CD4+ and CD8+ T lymphocytes in hyper-
tension are still under intense investigation. Gratze et al.36 used
Id2-knockout (KO) mice (Id22/2) lacking the gene for the inhibitor
of differentiation 2 (ID2), which results in dysfunction of innate
immune mechanisms through deficit of Langerhans and splenic
CD8a+dendritic cells, decreased natural killer cells and altered adap-
tive immunity through lack of CD8+ T memory lymphocytes. ID2
plays an important role in the differentiation, proliferation, invasion
and apoptosis of various cell types. Although Ang II pressor
responses were significantly blunted in Id22/2, bone marrow trans-
plantation of ID2-containing marrow cells did not restore the Ang II
responses, nor did transplantation of kidneys from Id22/2 into wild-
typemiceblunt Ang II-inducedhypertension.Basedon thesedata, the
authors concluded that Langerhans dendritic, natural killer, and
memory CD8+ T cells do not play a major role in Ang II-induced
hypertension. The investigators identified the vessel wall as the can-
didate tissue responsible for the insensitivity to Ang II-induced hyper-
tension in Id22/2, as these mice present an altered gene expression
of PPARa and PPARg and an antisenescence phenotype in their vas-
cular smooth muscle cells. Indeed, other studies have demonstrated
the protective role that PPARa and PPARg exert on the vascular wall
response to Ang II in rodents. 37– 39 In another study, Ang II-induced
arteriolar thrombosis in cremaster arterioles was found to be greater
in wild-type mice compared with Rag12/2, CD4+ T-cell- or Nox2
(gp91phox)-deficient (Cybb2/2) mice, whereas CD8+T-cell-deficient
mice exhibited an intermediate phenotype.40 Adoptive transfer of
wild-type or Cybb2/2 T cells into Rag12/2 restored the prothrombic
effects of Ang II. Thus CD4+, and to a lesser extent CD8+, T lympho-
cytes participate in at least Ang II-mediated microvascular throm-
bosis. As mentioned previously, CD4+ T lymphocytes differentiate
into effector Th1, Th2, and Th17 subsets, all of which seem to be
involved in hypertension. The evidence for this will be discussed in
the following subsections.

Alteration of Th1/Th2 balance
in hypertension
Several reports provide evidence for a direct role of Ang II in the
modification of T-cell balance towards a more proinflammatory
Th1phenotype, as indicatedby increased Th1cytokine IFN-gproduc-
tion,41,42 and a decrease in Th2-mediated responses, including IL-4
production, in Ang II-infused rats.41 These effects can be blocked
by AT1aR antagonists independently of haemodynamic responses
to Ang II.41 Interferon-g seems to be required for the initiation of
vascular inflammation, but not blood pressure elevation, since IFN g

KO mice have attenuated Ang II-induced vascular dysfunction, inde-
pendently of blood pressure changes.43 IL-2 treatment attenuated
the development of hypertension in young and adult SHRs,44

as well as reduced cardiac hypertrophy and improved renal

dysfunction in Dahl salt-sensitive rats.45,46 However, these findings
are contradictory to reports from other groups. IL-2 did not demon-
strate an antihypertensive effect in other studies in SHRs45– 47 and
Dahl salt-sensitive rats.46 Others have reported that IL-4 release con-
tributes to the development of hypertension while IFN-g is important
for the maintenance of normal blood pressure values in hypertensive
mice.48 In one study, IFN-g ameliorated the development of hyperten-
sion and vascular and renal injuries in Dahl salt sensitive rats.49 This
controversy may be derived from the differences in cytokines and
hypertensive animal models used in the studies. It is likely that the
pro-inflammatory state of low-grade inflammation promoting hyper-
tension is determined by the total milieu of various cytokines rather
than by a single one. There are several chemokine receptors charac-
teristically found on the surface of Th1-type T cells, one of which is
C-X-C chemokine receptor type 6, which interacts with the chemo-
kine ligand 16 (CXCL16). Chemokine ligand 16deficiencywas shown
to inhibit infiltration of macrophages and CD3+ T cells in the kidneys
of Ang II-treated mice.50 Thus, polarized Th1-mediated responses
may be important for the pathogenesis of hypertension.

Role of Th17 cells in hypertension
IL-17 promotes a vascular inflammatory response and is a critical
mediator of Ang II-induced hypertension and vascular dysfunction.
Madhur et al.51 demonstrated that Ang II-induced hypertension is
associated with increased Th17 cells and IL-17 production. In their
study, IL17a KO mice (IL-17a2/2) receiving chronic infusion of Ang
II displayed blunted hypertensive response, preserved vascular func-
tion, decreased superoxide production, and decreased aortic T-cell
infiltration, and the authors suggested that IL-17 contributes to main-
tenance of elevated blood pressure. IL-17a2/2 mice are also pro-
tected against aortic collagen deposition and stiffening in response
to chronic Ang II infusion.25 In another study, IL-17 infusion to
C57BL/6 mice significantly increased systolic blood pressure and
decreasedaortic NO-dependent relaxation.52 The authors identified
activation of RhoA/Rho-kinase by IL-17 as a potential mechanism
that contributes to endothelial dysfunction and hypertension.
DOCA-salt-induced hypertension in rats was associated with Th17
cell activation and decreased numbers of Tregs.53 In vivo treatment
of these DOCA-salt hypertensive rats with an anti-IL-17 antibody
reduced arterial hypertension, expression of profibrotic and pro-
inflammatory mediators as well as collagen deposits in the heart
and kidney.53 Moreover, it has been shown that a high-salt diet is
able to induce Th17 cell development through the p38/MAPK
pathway in humans and mice.54

Placental ischaemic rats have been shown to exhibit lower levels of
Tregs and higher autoimmune-associated Th17 cells.55 Adoptive
transfer of CD4+ T cells from pregnant reduced-uterine perfusion
pressure (RUPP) rats, a model of preeclampsia, into normal pregnant
rats induced a significant increase in mean arterial pressure, as well as
circulating inflammatory cytokines. Administration of IL-17 soluble
receptor C reduced circulating Th17 cells, oxidative stress, and
hypertension in RUPP rats.56 In a model of Tacrolimus-induced
hypertension, blood pressure elevation and endothelial dysfunction
were found to be due, at least in part, to an increase in Th17 and a de-
crease in Treg polarization.57 Modulation of DC function by aldoster-
one enhances CD8+ T-cell activation and promotes Th17
polarization of CD4+ T cells, which might contribute to the
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inflammatorydamage leading tohypertensionandcardiovascular dis-
eases.58 Together, these studies underline the critical role played by
Th17 cells in different models of hypertension.

Activation of T effector
lymphocytes in hypertension
It is still unclear how T effector lymphocytes are activated during
hypertension. In this section, the evidence for the roles of costimula-
tion by innate APCs and the central nervous system (CNS) in activat-
ing T effector cells during hypertension will be discussed.

Role of the costimulation in activation
of T effector lymphocytes
Activation of T effector lymphocytes in hypertension suggests that
antigen presentation by innate APCs plays a role. Recently, Vinh
et al.59 demonstrated a critical role for T-cell costimulation by
APCs in hypertension. Ang II-induced hypertension increased the
presence of activated (CD86+) dendritic cells in secondary lymphatic
tissues. Preventing T-cell costimulation either pharmacologically,
using a CTLA4-Ig (which blocks CD28 interactions with B7
ligands), or by genetic deletion of B7 ligands in mice prevented Ang
II and DOCA-induced hypertension,T-cell activation, vascularoxida-
tive stress and inflammation. CTLA4-Ig also reversed established Ang
II and DOCA-salt-induced hypertension.

Role of the central nervous system
Emerging evidence supports the notion that the CNS may modulate
innate and adaptive immune responses, and thereby influence the
pathophysiology of hypertension. Ang II administration into the
lateral cerebral ventricles was shown to increase mRNA expression
of pro-inflammatory splenic cytokines, such as IL-1b and IL-6.60

These responses were abrogated by splenic sympathetic denerv-
ation, suggesting that central Ang II may elicit a peripheral immune re-
sponse through the autonomic nervous system. The role of central
signalling in hypertension was investigated by causing anterior and
ventral to the third ventricle lesions in mice, intervention which is
known to prevent most forms of experimental hypertension by dis-
rupting signals from the subfornical organ to the hypothalamus.61

Third ventricle lesions in mice blunted Ang II-induced hypertension,
T-cell activation, and vascular infiltration of leucocytes. Cre/Lox-
mediated deletion of extracellular superoxide dismutase (Sod3) in
the cicumventricular organs of mice increased central signalling.62

This manipulation resulted in local increase in oxidative stress and
elevated sympathetic outflow, causing a slight increase in baseline
blood pressure and exaggerating hypertension in response to a low
dose of Ang II. T-cell activation was also increased in Sod3 KO mice
infused with a sub-pressor dose of Ang II.2 In agreement with these
observations,Zimmermanetal.63 reportedabluntingofAng II-induced
hypertension in C57Bl/6 mice receiving intracerebroventricular injec-
tions of an adenovirus encoding for cytoplasmic SOD. Specific inhib-
ition of the brain mitochondrial ROS also reduced the inflammatory
cells within the bone marrow to control levels and attenuated Ang
II-induced hypertension.64 Accordingly, the increase in central super-
oxide may be an important mechanism mediating hypertension.

T regulatory lymphocytes
in hypertension
We first identified a role for Tregs in a rat model of genetic hyperten-
sion.65 We used consomic rats that contained chromosome 2 from
normotensive Brown Norway strain on a Dahl salt-sensitive back-
ground. Chromosome 2 bears several quantitative trait loci for
hypertension and contains pro-inflammatory genes. We showed
that chromosome 2-dependent modulation of immune responses
in genetic hypertension occurred via Tregs. Consomic rats exhibited
reduced blood pressure and vascular inflammation, increased
aortic FOXP3 expression and activity of CD4+CD25+ and CD8+

CD25+ lymphocytes, as well as elevated production of anti-
inflammatory cytokines IL-10 and TGFb by Tregs, compared
with Dahl salt-sensitive rats.

We recently extended these findings by showing that adoptive
transfer of Tregs in C57Bl/6 mice blunted Ang II-induced hyperten-
sion, vascular oxidative stress and stiffness, endothelial dysfunction,
aortic macrophage and T-cell infiltration, and circulating levels
of pro-inflammatory cytokines in the plasma.66 We observed sim-
ilar protective effects of Tregs adoptive transfer in a model of
aldosterone-induced hypertension.67 Kavakan et al.68 demon-
strated that adoptive transfer of Tregs prevented Ang II-induced
cardiac hypertrophy and fibrosis, TNF-a expression, immune cell
infiltration, and electric remodelling, independently of blood
pressure-lowering effects. The discrepancy in blood pressure
results between our Ang II study and theirs may be explained by dif-
ferences in the Tregs adoptive transfer protocol and the mouse
strains used in these studies. Consistent with our findings, Matrou-
gui et al.69 used C57Bl/6 mice receiving intraperitoneal injections of
Tregs 3 times a week for 2 weeks, starting after Ang II infusion and
showed a reduction in blood pressure elevation in these mice. They
demonstrated that Ang II-induced apoptosis of Tregs is responsible
for the induction of vascular inflammation and endothelial dysfunc-
tion. Adoptive transfer of Tregs reduced Ang II-induced Tregs
apoptosis, macrophage activation and infiltration into coronary
arterioles and the heart, local TNF-a release, and coronary arteri-
olar endothelial dysfunction.

T regulatory lymphocytes production of IL-10 has been shown to
have vascular protective effects and limit Ang II-mediated oxidative
stress and vascular damage. Ang II-induced endothelial dysfunction
was exacerbated in IL 10KOmice (IL 102/2).70 Indeed, IL-10 released
by Tregs plays an important cardiovascular protective role in
hypertension.71 The transfer into hypertensive IL 102/2 mice of
Tregs isolated from control mice reduced systolic blood pressure
and NADPH oxidase activity, and improved endothelium-
dependent relaxation in resistance arteries, whereas the transfer
of Tregs isolated from IL 102/2 had no effect on hypertensive
wild-type mice. They further showed that IL-10 reduced oxidative
stress through the inhibition of NADPH oxidase activity via activa-
tion of p38 MAP kinase. Whether other immune-suppressive
mechanisms of Tregs participate in counteracting hypertension
remains unknown.1

Together, these studies indicate that Tregs have potent antihyper-
tensive properties, at least in part due to their ability to produce the
anti-inflammatory cytokine IL-10.
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Clinical perspectives
Elevated circulating levels of immunoglobulins, C-reactive protein,
and cytokines, and increased incidence of autoreactive antibodies
to arterial wall antigens have been reported in hypertensive patients,
suggesting that low-grade inflammation is present in hyperten-
sion.72,73 However, evidence of involvement of adaptive immunity
in human hypertension is still preliminary. Early studiesdemonstrated
that antihypertensive treatment in humans modified the distribution
of T lymphocytes.74 A Multicenter AIDS Cohort Study indicated that
untreated HIV-positive patients, i.e. severely lacking CD4+ T lym-
phocytes, were significantly less likely than HIV-negative patients to
have systolic hypertension.75 Antiretroviral therapy increased the
hypertension prevalence in HIV-positive patients. In another study,
mycophenolate mofetil immunosuppressive treatment of hyperten-
sive patients with psoriasis and rheumatoid arthritis was associated
with decreased blood pressure.76 T effector memory cell levels
have been reported to be increased in coronary heart disease
patients and correlate with media-intima thickness.77 Furthermore,

circulating levels of Th17 are increased in subjects with coronary
artery disease.2 Youn et al.78 first demonstrateda role forC-X-C che-
mokine receptor type 3 (CXCR3) chemokines, which are well-
known tissue-homing chemokines for T cells, in human hypertension.
Their study showed an increased fraction of immunosenescent
(CD282 and CD57+), pro-inflammatory, cytotoxic CD8+ T cells,
which secrete perforin, granzyme B, IFN-g and TNF-a, and increased
circulating levels of CXCR3 chemokines in hypertensive patients.
Finally, Tregs were decreased in women suffering from preeclampsia
compared with thosewith normal pregnancies.79 These studies dem-
onstrate that various subsets of T lymphocytes may indeed partici-
pate in the pathophysiology of human hypertension.

Conclusion
Experimental and clinical evidence discussed in this review strongly
suggests that adaptive immunity, represented by T effector and regu-
latory lymphocyte subsets, plays a dual role in hypertension (Figure 2).

Figure 2 Proposed role of T effector and regulatory lymphocytes in hypertension. Slight elevation in blood pressure (BP) in response to hyper-
tensive stimuli (angiotensin II, aldosterone, endothelin-1, salt and genetic susceptibility) occurs due to increased central signalling, perhaps causing mild
tissue injuryand formationofdamage-associatedmolecularpatterns (DAMPs) andneoantigens.Thismay lead toactivationof innateantigen-presenting
cells (APCs)and, subsequently, activationandpolarizationofnaı̈veCD4+Teffector lymphocytes (Th0) towardspro-inflammatoryThelper (Th)1/Th17
phenotypes. Th1/Th17 may contribute to vascular and kidney damage via production of reactive oxygen species (ROS), interferon (IFN)-g and inter-
leukin (IL)-17 and lead to maintenance of hypertension and progression of end-organ damage. T regulatory lymphocytes counteract hypertension and
associated injury by producing IL-10 or byother mechanisms, and suppression of innate and adaptive immune responses. CD, cluster of differentiation;
CNS, central nervous system; MHC-II, major histocompatibility complex-II; PAMPs, pathogen-associated molecular patterns; TCR, T-cell receptor.
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Increasedsympathetic outflowas aconsequenceof stimulationof the
CNS by hypertensive stimuli may result in mild blood pressure eleva-
tion, causing tissue injury and formation of neoantigens2 and/or
damage-associated molecular patterns (DAMPs).80 Activation of
innate APCs by DAMPs, or by pathogen-associated molecular pat-
terns (PAMPs) generated in response to low-grade infection,80,81

and direct stimulation by CNS, may be the cause of activation
of CD4+, and perhaps CD8+, T effector lymphocytes, and differ-
entiation of CD4+ T cells towards pro-inflammatory Th1/Th17
phenotypes.41 Th1/Th17 effector lymphocytes contribute to the pro-
gression of hypertension by producing pro-inflammatory mediators,
including ROS, IFN-g, TNF-a, and IL-17, to promote low-grade in-
flammation.24,41,42,51,52 T regulatory lymphocytes, on the other
hand, counteract hypertensive abnormalities by suppressing innate
and adaptive immune responses, perhaps by secreting IL-10.65–71

As such, circulating levels of Tregsor their immune-suppressive activ-
ity may be affected in hypertension.

Toconclude, studies showing the role of adaptiveT lymphocytes in
hypertension have identified novel targets for further investigation
into their therapeutic potential for the treatment of hypertension.
It is hoped that such studies will help develop new therapies or
improve existing ones that will result in better cardiovascular out-
comes for hypertensive patients.
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