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Atherosclerosis, the major underlying cause of cardiovascular disease, is characterized by a lipid-driven infiltration of inflammatory cells in large and
medium arteries. Increased production and activation of monocytes, neutrophils, and platelets, driven by hypercholesterolaemia and defective high-
density lipoproteins-mediated cholesterol efflux, tissue necrosis and cytokine production after myocardial infarction, or metabolic abnormalities as-
sociated with diabetes, contribute to atherogenesis and athero-thrombosis. This suggests that in addition to traditional approaches of low-density
lipoproteins lowering and anti-platelet drugs, therapies directed at abnormal haematopoiesis, including anti-inflammatory agents, drugs that suppress
myelopoiesis, and excessive platelet production, rHDL infusions and anti-obesity and anti-diabetic agents, may help to prevent athero-thrombosis.
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In Western societies, the consumption of diets high in calories,
saturated fat, and cholesterol combined with a sedentary lifestyle
lead to a high prevalence of atherosclerotic cardiovascular disease
(CVD). High-circulating blood lipids, including elevated low-density
lipoproteins (LDL) and triglyceride-rich lipoproteins, result in
increased entry and retention of these particles in the arterial
wall, leading to a macrophage-dominated chronic inflammatory pro-
cess and eventuating in atherosclerotic plaque rupture or erosion,
myocardial infarction, or thrombotic stroke.1 While elevated plasma
cholesterol levels have an essential role in atherogenesis, co-
morbidities such as smoking, hypertension, and diabetes accelerate
atherosclerotic CVD. In addition, chronic kidney disease,2,3 recur-
rent infections,4,5 myeloproliferative neoplasms (MPNs),6 – 10 and
autoimmune disease such as rheumatoid arthritis11,12 and systemic
lupus erythematous13 also greatly increase the risk of athero-
thrombosis. A common theme linking these diseases to athero-
thrombosis is an overactive immune system, mediated in part by
increased production and activation of innate immune cells.

Leukocytosis as a risk factor for
cardiovascular disease
There is strong epidemiological evidence detailing the link between
elevated white blood cells (WBCs) and CVD.14 – 16 Numerous

studies of people with and without pre-existing CVD at baseline mea-
surements show that WBC counts predict the incidence of cardiac
events,17–27 largely irrespective of race or gender15,28–30 and after
adjusting for confounding factors such as smoking, age, BMI, and
lipids.17,28 It appears that the myeloid compartment of the WBCs,
namely monocytes31 – 33 and neutrophils14,34 – 37 are the strongest
predictors of cardiac events, while lymphocytes generally have no
correlation or an inverse relationship.20,32 Preclinical animal models
of atherosclerosis have identified monocytes, neutrophils, and plate-
lets as important players in the disease process, where the levels of
these cells in the blood influence disease initiation and progres-
sion38–45 (Figure 1). Cross-talk between these cells can also promote
thrombotic disorders.46–49 In humans, the abundance of leucocytes
can affect heart failure following a myocardial infarction,50,51 while
also contributing to secondary cardiovascular events.52

Neutrophils and atherosclerotic
cardiovascular disease
Neutrophils are the major WBC in humans accounting for �60% of
the circulating WBCs. Neutrophils are relatively understudied in the
setting of atherosclerosis as they are not always present within
stable atherosclerotic lesions. However, it is appreciated that neu-
trophil activation can influence coronary artery disease (CAD).
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People with unstable angina have higher levels of neutrophil activa-
tion as measured by lower myeloperoxidase (MPO) levels (i.e.
degranulation) compared to people with stable angina or healthy
controls.53 Further, MPO levels were found to be inversely asso-
ciated with the inflammatory molecule C-reactive protein
(CRP).53 C-reactive protein could be playing a causative role in neu-
trophil activation particularly when CPR dissociates into a mono-
meric form.54 This monomeric form of CRP is formed by and
activates platelets,55 and in turn platelets via P-selectin can activate
neutrophils in acute coronary syndromes.56 Importantly, neutro-
phils have been identified in human carotid atherosclerotic plaques
where their abundance correlates positively with features of vulner-
ability, i.e. lipid core area, macrophage abundance, vessel density,
and negatively with collagen and smooth muscle cells.57 In murine
models, neutrophils were shown to play a direct role in initiating
atherosclerotic lesion formation.38 Neutrophil levels have also

been shown to predict ischaemic heart disease over a 10-year per-
iod in the Caerphilly and Speedwell studies14 and also predict the
risk of recurrent ischaemic events.58 Conversely, Yemenite Jews,
who frequently present with benign hereditary neutropenia,59 rare-
ly suffer from myocardial infarction,60 and those who do are gener-
ally not neutropenic.61 Neutropenic preclinical models also support
the observations that lower neutrophil levels afford some protec-
tion against vascular disease, particularly in the early stages of
disease development.38 There may be an important role for co-
morbidities in driving the production of neutrophils and how they
influence CVD, for example, in Type 1 diabetics (T1D) who have
CVD compared with T1D without CVD.43 There are a number of
theories as to how neutrophils may contribute to CVD, including re-
leasing proteases that contribute to the rupturing of atherosclerotic
lesions62,63 and MPO, which modifies proteins, particularly lipopro-
teins,64,65 and is raised in people with CAD.66,67

Figure 1 Cardiovascular risk factors promote myelopoiesis and contribute to athero-thrombosis. (A) Increased plasma low-density lipopro-
teins and decreased high-density lipoproteins levels, (B) hyperglycaemia, and (C) obesity are major cardiovascular risk factors. Through various
mechanisms, these risk factors directly or indirectly stimulate the production of myeloid cells (monocytes, neutrophils, and reticulated platelets)
increasing the abundance in circulation. Hypercholesterolaemia also promotes the mobilization of haematopoietic stem cells (HSCs) to the spleen
resulting in extramedullary haematopoiesis further contributing to the circulating pool of myeloid cells. (1) The increased abundance in circulating
myeloid cells enhances the progression and impairs the regression of the atheroma. (2) There is also increased platelet– leucocyte interactions that
enhance the recruitment of the leucocytes to the atherosclerotic lesion. (3) Neutrophils activation can also result in the formation of neutrophil
extracellular traps (NETs), which contribute to enhanced atherogenesis and athero-thrombosis by binding platelets.
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Neutrophil extracellular traps
and athero-thrombosis
Recent findings suggest that neutrophils may also play an important
role in athero-thrombotic events, by releasing DNA NETs (neutro-
phil extracellular traps) that may have a primary role in protecting
against bacterial infections but also promote thrombus forma-
tion.68– 71 These NETs, while primarily comprised DNA, also hold
proteins of specific neutrophil granules including elastase, MPO,
and gelatinase, all of which have atherogenic and plaque-destabilizing
properties. NETosis with or without death of the neutrophil
leads to release cytoplasmic proteins including damage-associated
molecular pattern molecules (DAMPs) such as S100A8/A9 (mye-
loid-related protein 8/14; MRP8/14) and high mobility box 1
(HMGB1), which can further potentiate inflammation and coagula-
tion. These DAMPS can also be presented by activated platelets to
promote NETosis.72 The nucleic and chromatin contents of NETs
can be found systemically and are positively associated with CAD,
pro-thrombotic state, and adverse vascular events.73 Recent studies
have suggested that neutrophil nets are present in atherosclerotic
plaques in WTD-fed Apoe2/2 mice and that reducing net formation
by DNAse injection or by crossing mice with neutrophil elastase/
proteinase 3-deficient mice reduced formation of atherosclerotic
lesions. However, the major impact was on advanced rather than
early lesions, in contrast to earlier studies that had implicated neu-
trophils in early lesion development.38 Moreover, the critical genetic
test, involving atherosclerosis susceptible mice with genetic knock-
outs of peptidylarginine deiminase 4 (PAD4) (which has an essential
role in chromatin decondensation and net formation),74 has not yet
been reported. Neutrophils can be stimulated to release NETs
in vitro following incubation with cholesterol crystals;71 however, it
is uncertain whether neutrophils have significant contact with chol-
esterol crystals within atherosclerotic lesions. In another study of
human atherosclerotic lesions with eroded plaques, nets appeared
to be formed at the surface of plaques, where they were proposed
to contribute to endothelial cell apoptosis and pro-thrombotic ef-
fects.70 Platelet– leucocyte interactions have also been described
to trigger neutrophil activation and NET formation in sepsis, and
while this was primarily in the liver sinusoids,75 this could be a po-
tential mechanism in athero-thrombotic disease (Figure 1). Thus,
additional studies on the role of nets in atherosclerosis may prove
informative, especially in settings where neutrophils and platelet/
neutrophil aggregates are increased. Along with the strong evidence
for a role in thrombosis,69 these studies suggest that NETs may have
an important role in promoting athero-thrombosis.

Monocyte subsets and
atherosclerotic cardiovascular
disease
Monocytes account for around 10% of the WBCs and are also a
heterogeneous population of cells. They can be divided into three
sub-populations based on the expression of the cell surface markers
CD14 (co-LPS receptor) and CD16 (FcgIII receptor). Classical
monocytes are defined as CD14+CD162, intermediate are

CD14+CD16+, while non-classical are CD14dimCD16+.76 These
subsets differ in many respects, including in their expression of ad-
hesion molecules, chemokine receptors, and functionality.76

CD14+ monocytes are more phagocytic, produce larger amounts
of ROS and cytokines in response to bacterial cues, while CD16+

monocytes appear to be akin to murine Ly6-Clo monocytes in
that they can patrol the endothelium and appear to be adapted
for viral rather than bacterial immunity. CD16+ monocytes select-
ively produce TNF-a, IL-b, and CCL3 in response to viruses and im-
mune complexes containing nucleic acids via TLR7 and TLR8.76 The
role of monocyte subsets in CVD is not well established, but there
are some reports associating levels of specific subsets with disease.
Patients with CAD77–79 or unstable atherosclerotic plaques80 have
higher numbers of CD16+ monocytes. On the other hand, a de-
crease in these CD16+ monocytes is associated with plaque stabil-
ization.81 Elevated levels of CD16+ monocytes have been shown to
independently predict cardiovascular events82 and correlate with
markers of atherosclerosis including carotid intima media thickness
(cIMT) and risk algorithms (Framingham and SCORE).83 These asso-
ciations with the CD16+ monocytes are observed in people with
diseases associated with CVD including obesity83 and chronic kid-
ney disease,84 and abundance in CD16+ monocytes after stroke85

and myocardial infarction86 can predict the clinical course and in-
form on the prognosis. A recent study has also shown that Ly6-Clo

monocytes adhere more readily to endothelium and extravasate
into tissues resulting in macrophage accumulation in the setting of
hypertriglyceridaemia.87 Given that the CD14+CD162 monocytes
are the most abundant monocytes in humans and these cells are simi-
lar to the CCR2+Ly6Chi monocytes in mice, which are consistently
been reported to more readily enter atherosclerotic lesions,44,45 it
seems likely that both CD162 and CD16+ monocytes contribute
to atherogenesis in humans and the distinct roles of different subsets
require further investigation.

Platelets and platelet–leucocyte
aggregates in athero-thrombosis
Platelets also have a major role in the initial and advanced stages of
athero-thrombotic disease.39,40,42,88,89 Meta-analyses with combined
data from over 140 randomized trials show that anti-platelet therapy
reduces the risk of vascular events.90 However, platelet counts as pre-
dictors of disease have been far less studied. Thaulow et al.91 found
that platelet counts and platelet reactivity independently correlate
with CVD mortality in a cohort of healthy males. Infusion of activated
platelets into Apoe2/2 mice resulted in an increase in atherosclerosis,
reflecting binding of platelets and platelet/leucocyte aggregates to ar-
terial endothelium over atherosclerotic plaques with release and
binding of chemokines to arterial endothelium. Sreeramkumar
et al.92 have recently shown that activated platelets may bind to neu-
trophils after neutrophils have adhered to activated endothelium (Fig-
ure 1). The interaction of platelets with leucocytes is initiated by the
binding of platelet P-selectin to P-selectin glycoprotein ligand-1
(PSGL-1), which localizes to the uropod (tail) of neutrophils as
they bind to endothelium. Platelets and monocytes may be involved
in a similar interaction on arterial endothelium. Platelet– leucocyte
interactions trigger a series of events that contribute to the
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inflammatory reaction of the vessel wall and promotion of atherogen-
esis. Platelet– leucocyte interactions are also important as this can
activate adhesion molecules (i.e. CD11b/c) and trigger cytokine ex-
pression (i.e. IL-1b) in leucocytes (i.e. CD11b/c) causing adhesion
to arterial endothelium and promotion of atherosclerotic lesion for-
mations.93 This process also activates the platelets and triggers the re-
lease of an array of atherogenic chemokines including CCL5, CCL2,
and CXCL4, which promote entry of monocytes and neutrophils into
lesions93 (Figure 1). Platelet– leucocyte transcellular metabolism of
arachidonic acid leads to the synthesis of inflammatory, vasoconstrict-
ive leukotrienes, and thromboxane A2, while also generating pro-
resolving mediators such as lipoxins.94,95 The factors determining
the balance of these opposing factors are poorly understood but
could be important in determining the resolution of inflammatory
processes such as atherosclerosis.

Monocyte–platelet interactions are observed in the setting of MI
and are increased for at least 1 month after the acute event, suggest-
ing that this mechanism could contribute to a secondary MI.86 There
is also a clearly defined relationship between platelet size as deter-
mined by mean platelet volume (MPV), a marker of platelet produc-
tion, and CVD.96– 98 Mean platelet volume is increased in high-risk
groups including those with diabetes, obesity, metabolic syndrome,
after acute MI, and in restenosis of coronary angioplasty.99 In a study
of over 200 000 people with a median follow-up of 4.6 years, MPV
was found to predict mortality due to ischaemic heart disease.100

Mean platelet volume is also elevated in people with low levels of
HDL.101 Increased MPV suggests an enriched population of larger
immature or reticulated (RNA rich) platelets that are more reactive
than mature platelets102 and do not respond as well as mature pla-
telets to anti-platelet therapies such as aspirin and clopidogrel102

(Figure 1). This is possibly because reticulated platelets carry RNA
allowing de novo synthesis of cyclooxygenase (COX)-1 and
COX-2, overcoming effects of aspirin on these targets.103 This is
particularly relevant in people with diabetes who typically have ele-
vated reticulated platelets,102 – 106 increased MPV,106 – 108 and re-
spond poorly to anti-platelet therapies.109,110 A high MPV was
also shown to markedly increase CVD in people with diabetes.111

The increase in these platelet parameters appears to be driven by
diabetes (hyperglycaemia) as the increase independently correlates
with the severity of diabetes.112 Obese individuals also have an ele-
vated MPV,113 which is reduced upon weight loss.114 Significantly
elevated platelet counts also correlate with CVD in diabetic sub-
jects.115 These observations suggest the importance of anti-platelet
therapy in diabetics. Moreover, a deeper understanding of the me-
chanisms of platelet overproduction in diabetes could lead to the
development of new approaches to preventing CHD in diabetics.

Athero-thrombosis in
myeloproliferative disorders
Myeloproliferative neoplasms are blood disorders where increased
production of myeloid cells is strongly associated with venous and
arterial thrombosis (MI and stroke). These MPNs include essential
thrombocytosis (ET), polycythemia vera (PV), and myelofibrosis.
Cardiovascular disease is a major cause of morbidity and death in pa-
tients with MPNs.6– 10 Essential thrombocythemia is also associated

with thrombosis including CAD.116 – 119 Randomized clinical trials
have shown that aspirin on top of other anti-thrombotic strategies
(thromboprophylaxis) reduced the risk of vascular events;120 how-
ever, patients with MPNs still remain at significantly higher risk of
thrombotic and athero-thrombotic events. It is becoming apparent
that thrombosis in ET is linked to leukocytosis,121 potentially provid-
ing a major link to thrombotic events in MPNs as leukocytosis re-
mains the strongest risk factor for thrombosis in people with
PV.122 – 124 When people with PV are intensively treated with phle-
botomy and/or hydroxyurea to achieve a haematocrit target of
,45%, there was significantly fewer cardiovascular events com-
pared with the less aggressively treated group. Interestingly leuco-
cyte, but not platelet levels, reflected the abundance of
haematocrit in these people,125 providing further evidence for the
importance of WBC levels in people with MPNs and cardiovascular
events. While the mechanisms are not completely understood, it is
likely that enhanced leucocyte–platelet aggregates resulting in
leucocyte and platelet activation and chemokine/cytokine release
(as discussed above) are intimately involved.126 –129 In addition, in-
creased circulating leucocytes, possibly via the formation of plate-
let– leucocyte aggregates in MPN patients may give rise to NETS
that likely contribute to both arterial and venous thrombosis as
seen in other thrombotic disorders.48 Patients with MPNs often
have increased monocytes, which may lead to increased entry
into atherosclerotic plaques and contribute to increased macro-
phage foam cell formation. Interestingly, some genetic changes
that promote MPNs, such as in LNK/SH2B3, may also be associated
with platelet and leucocyte counts and with increased CVD in the
general population,130,131 suggesting common mechanisms promot-
ing athero-thrombosis in MPN and in the general population.

Disordered cholesterol
metabolism links haematopoiesis
to athero-thrombosis
Monocytosis is prominent in animal models of atherosclerosis and is
increased in response to diets high in saturated fat and choles-
terol.41,44,45,132 Moreover, monocytosis is associated with increased
monocyte entry into plaques, and limitation of monocytosis or entry
of monocytes into plaques reduces atherosclerosis, suggesting a causal
relationship.41,43–45,133 While monocytosis may be related in part to
increased inflammatory cytokines such as IL-3, GM-CSF, M-CSF,
IL-1b, etc.,134–138 recent studies have uncovered a role of both hyper-
cholesterolaemia and defective cholesterol efflux pathways in haem-
atopoietic progenitors, both in the bone marrow (BM) and in the
spleen, in promoting myelopoiesis in mouse atherosclerosis models.

Active cellular cholesterol efflux is mediated by ATP-binding cas-
sette transporters, including ABCA1 that mediates cholesterol efflux
to lipid-poor apoA-1 and minimally lipidated apoA-I particles, and
ABCG1 and ABCG4 that mediate cholesterol efflux to HDL particles,
especially larger HDL species.139 Unexpectedly, Abca-1/Abcg1 double
knockout mice were found to develop marked monocytosis and neu-
trophilia that were associated with a dramatic expansion of the haem-
atopoietic stem and multipotential progenitor cells (HSPCs) in the
BM, uncovering an important role of cholesterol efflux pathways in
the regulation of myelopoiesis140 (Figure 2). Another important
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cholesterol efflux pathway suppressing monocytosis and HSPC pro-
liferation is mediated by apolipoprotein E (apoE), which may interact
with ABCA1/G1 in haematopoietic stem cells and in multipotential
progenitor cells, i.e. the Lin2Sca1+cKit+ population (HSPCs) to pro-
mote cholesterol efflux.41 In both Abca12/2/Abcg12/2 and Apoe2/2

mice, HSPCs showed evidence of increased cholesterol in the plasma
membrane associated with increased cell surface levels of the

common b-subunit of the IL-3/GM-CSF receptor (CBS), allowing
these cells to more readily sense these cytokines.41,140 ABCA1/
ABCG1-deficient splenic macrophages also show increased expres-
sion of cytokines including M-CSF, which provide an additional
stimulus of myelopoiesis141 (Figure 2).

In line with these findings, injection of neutralizing antibodies to
IL-3 and GM-CSF in WTD-fed Apoe2/2 mice significantly reduced

Figure 2 Defects in cellular cholesterol efflux pathways trigger myelopoiesis, extramedullary haematopoiesis, and enhanced atherosclerosis. In
the bone marrow, defects in intrinsic cellular efflux pathways in haematopoietic stem (HSC) and myeloid progenitor cells result in increased mem-
brane cholesterol levels and increased sensitivity to growth factor and cytokines. Deletion of ABCG4 in megakaryocyte progenitors (MkPs) results
in increased c-MPL expression and enhanced thrombopoietin (TPO) signalling. This stimulates the production of immature reticulated platelets
that can enhance atherogenesis via a number of mechanisms including deposition of cytokines (CCL5) and binding and activating leucocytes. De-
fective cholesterol efflux in haematopoietic stem cell and myeloid progenitors increased the cell surface abundance of the common b-subunit
(CBS) of the IL-3, IL-5, and GM-CSF receptors resulting in enhanced proliferation. Inflammatory stimuli from a myocardial infarction including
damage-associated molecular pattern molecules and IL-1b can influence haematopoietic stem cell proliferation and lineage fate. HSCs can
also mobilize and migrate to the spleen when efferocytosis fails in macrophages with defective cholesterol efflux as there is a failure to shut
down the expression of IL-23; thus, IL-17 and in turn G-CSF levels remain increased. In the spleen, there is an increased abundance of the innate
response activator B cells (IRA B-cells) in the setting of hypercholesterolaemia, which produce GM-CSF driving the haematopoietic stem cells to
produce monocytes and neutrophils. Defective cholesterol efflux in splenic macrophages also promotes M-CSF production to enhance myelopoi-
esis and CCL2 to promote monocyte migration. Together, the increased abundance of platelets, monocytes, and neutrophils all contribute to
promoting the accumulation of macrophages in the atherosclerotic lesion.
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the production of splenic monocytes and in turn triggered apop-
tosis.142 IL-3 and GM-CSF appear to be made in IRA B-cells, which
arise from peritoneal B1a cells.143 The IRA B cells play an important
role in the spleen and are not only expanded in Apoe2/2 mice but
also produce more cytokines134 (Figure 2). Ldlr2/2 mice trans-
planted with Apoe2/2Cbs2/2 BM had fewer circulating monocytes
and neutrophils, which was accompanied by a reduction in BM
and splenic stem and progenitor cells compared with mice that
received Apoe2/2 BM.138 Interestingly, the IRA B cells are sensitive
to the hypercholesterolaemic environment (or the inflammation as-
sociated with it), which is dependent on the expression of the CBS.
Deletion of the CBS lowered the numbers and proliferation of the
IRA B cells. Initially, deletion of the CBS translated into smaller ath-
erosclerotic lesions with fewer macrophages. However, when stud-
ies were extended to look at more advanced lesions, it was
discovered that deletion of the CBS resulted in lesions of similar
size again with fewer macrophages, but these lesions had significantly
larger necrotic cores. The decrease in macrophages and larger
necrotic cores was linked to increased macrophage apoptosis. This
appeared to be due to a complete absence of Abcg1 expression,
which has been shown to render macrophages more susceptible to
apoptosis.144 Interestingly, GM-CSF has previously been identified
to stimulate Abcg1 expression via PPARg, suggesting an important
pro-survival role for this cytokine in atherosclerosis. The increase
in necrotic core formation associated with lower GM-CSF signalling
in advanced plaques suggests the need for caution when using therap-
ies that inhibit GM-CSF, e.g. in people with autoimmune diseases that
are also at high risk of CVD, e.g. rheumatoid arthritis.145

Increased LDL cholesterol has also been suggested to contribute
to the production of WBCs (monocytes and neutrophils) in preclin-
ical models,38,41,44,45,146,147 and this can be dampened when choles-
terol levels are restored to normal levels by diet147 or statin44

interventions. However, statins do not appear to effectively lower
WBCs in people with CVD,148 suggesting that targeting LDL levels
alone via statins may not be sufficient to reduce excessive WBC
production. Studies in genetically modified mice showed that hyper-
cholesterolaemia (i.e. increased LDL) along with decreased HDL le-
vels due to an Apoa1 gene mutation were both required to influence
monocyte counts.149 Similarly, in children with heterozygous familial
hypercholesterolemia who were statin naive, HDL cholesterol le-
vels were inversely related to blood monocyte counts.149 Together

these findings support the hypothesis that HDL inversely correlates
with monocyte levels, particularly in the setting of hypercholester-
olaemia, and suggest that to reduce leucocyte production it may be
necessary to increase cholesterol efflux in myeloid progenitors as
well as lowering LDL levels, for example by rHDL infusion or
LXR activator treatment41 (Table 1).

Enhanced thrombopoiesis and
atherosclerosis
As discussed above, platelets play an important role in CVD, and stud-
ies have linked their enhanced production and activation to cardiac
events.39,40,42,88,89 Platelets promote atherogenesis via a multitude
of pathways, from priming circulating monocytes and neutrophils
so they are ready to adhere to the endothelium, to depositing potent
chemokines such as RANTES (CCL5) and platelet factor 4 (CXCL4)
on monocytes and the endothelium lining the atherosclerotic le-
sion.39 The membrane-bound platelet adhesion molecule P-selectin
appears to be required for this to occur, and P-selectin-deficient pla-
telets do not elicit the same response.39 It should also be noted that a
soluble form of P-selectin occurs in vivo and has been shown to acti-
vate leucocytes from people with peripheral arterial occlusive disease
(PAOD).150,151 However, injections of sP-selectin only moderately
promote atherosclerosis,152 suggesting the platelet– leucocyte
interaction is key in this atherogenic pathway.

While the study by Huo et al. was seminal in understanding the
contribution of platelets to atherogenesis, they relied on adoptive
transfer of activated platelets. More recently, models of enhanced
thrombopoiesis have confirmed the important contribution that
platelets play to atherogenesis.42,153 The cholesterol transporter
ABCG4, which promotes cholesterol efflux to HDL, was shown
to regulate platelet production.42 ABCG4 was highly expressed in
MkPs, and haematopoietic deficiency of Abcg4 resulted in enhanced
atherogenesis, which again appeared to be attributable to an in-
crease in total platelets, reticulated platelets, enhanced activation,
and increased platelet– leucocyte aggregates42 (Figure 2). Deletion
of Abcg42/2 resulted in enhanced expression of the thrombopoie-
tin (TPO) receptor, c-MPL on MkPs making them more sensitive to
TPO signalling. It was found that LYN kinase acts a sensor of
membrane cholesterol, where LYN kinase is protected from

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Mechanisms of monocyte production in CVD and potential interventions

Disease complication Initiating cell/ligand Target cell/receptor Intervention References

Hypercholesterolaemia and
defective cholesterol efflux
(ABCA1/G1 and apoE)

Spleen
– IRA B cell/IL-3 and GM-CSF
– Macrophage/M-CSF and CCL2

HSPC/CBS rHDL 41,44,45,134,138,140,141,142

Myocardial infarction Damaged myocardium
– DAMPs
– IL-1b

HSPCs
– TLR4
– IL-1R

?Paquinimod
?Anakinra,
?Canakinumab

52,157,159,162,164,165,166

Diabetes/hyperglycaemia Neutrophil/S100A8/A9

?

CMPs/RAGE
Defective efflux in HSPCs

SGLT2i
?Paquinimod
Anti-miR33

43,192

Obesity ATM/IL-1b CMP and GMP/IL-1R Anakinra
?Paquinimod

167
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phosphorylation when cellular cholesterol levels increase. This pre-
cludes LYN kinase from activating the E-3 ubiquitin ligase c-CBL and
in turn prevents c-MPL from degradation. Interestingly, SNPs asso-
ciated with platelet counts revealed a connection to c-CBL, which is
in tight linkage disequilibrium with ABCG4. This suggests that SNPs
could alter the expression of either or both these genes and could
be responsible for altered platelet production.

Infusion of rHDL in WT mice, but not Abcg42/2 mice, significant-
ly lowered platelet numbers, by reducing MkPs and cell surface
c-MPL levels. The therapeutic potential of this pathway was demon-
strated by infusion of rHDL which suppressed platelet counts in a
mouse model of myelofibrosis and ET caused by an activating muta-
tion in c-MPL (c-MPLW515L). These suggest a role for rHDL infusions
or therapies that increase HDL production in the treatment of mye-
loproliferative disorders. While leucocyte levels were not measured
in this study, rHDL does reduce monocytes and neutrophils,41

decreases the activation of these cells,154,155 and reduces platelet
activation,156 suggesting that HDL therapies could reduce throm-
botic risk in people with MPNs.

HSC mobilization, extramedullary
haematopoiesis, and monocytosis
with myocardial infarction
The high rate of a secondary athero-thrombotic events after an
initial myocardial infarction may in part reflect an acceleration of
the underlying atherosclerotic process caused by enhanced myel-
poiesis.52 Swirski et al.157 initially showed the spleen was home to
a population of monocytes that were ready to be mobilized after
an inflammatory insult, such as an MI. While splenic reserves
dropped during the first 24 h following an infarct, by Day 6 post-MI
there was a significant expansion of splenic monocytes fuelling
monocytosis and entry into the infarct area.158 While this had a
beneficial effect on myocardial function, Dutta et al.52 discovered
that after an MI, myeloid cells, particularly Ly6-Chi monocytes,
also infiltrated atherosclerotic lesion causing a significant increase
in plaque size and a shift towards an unstable phenotype. Interesting-
ly, the continual supply of monocytes reflected an increased number
of HSCs in the spleen. In this setting, there was an expansion of a
myeloid-biased subset of activated HSCs that express CCR2,159

previously identified to be responsive to inflammatory cues
in vivo.160 Genes that are regulated by myeloid translocation gene
on chromosome 16 (Mtg16) were found to be enriched in the
CCR2+ HSCs, and deletion of Mtg16 resulted in depletion of
CCR2+ HSCs and monocytes after an MI. The CCR2+ HSCs
have significantly higher TLR2 and 4 expressions in the steady state
suggesting that they are ready to respond to inflammatory signals.
HSCs express functional TLRs and may directly sense their li-
gands.161,162 While the endogenous TLR ligand(s) post-MI remains
unknown, these could be DAMPs that have been released from dy-
ing or activated myocardial cells (Figure 2). Dutta et al. found that in-
jection of HMBG1, a DAMP found to be increased in patients after
an MI,163 significantly increased CCR2+ HSC proliferation. Other
DAMPs that are increased after MI include S100A8/A9,164 which
are correlated with leucocyte counts.165 Additionally, Sager
et al.166 has also discovered that IL-1b is increased and can

accelerate haematopoiesis, not to dissimilar has to what was discov-
ered with IL-1b in the setting of obesity167 (Table 1). Extramedullary
haematopoiesis is not only initiated after an MI, but also in inflamma-
tory diseases that are associated with increased risk of CVD includ-
ing autoimmune diseases and MPNs, suggesting a pro-atherogenic
role in these settings as well.

Promoting cholesterol efflux
inhibits haematopoietic stem cell
mobilization and extramedullary
haematopoiesis
In murine models of defective cholesterol efflux (i.e. Abca12/2/
Abcg12/2 and Apoe2/2 mice), there is chronic HSC mobilization
into the circulation and spleen168 (Figure 2). Interestingly, the me-
chanisms contributing to HSC mobilization were not intrinsic to
the HSC and instead reflected changes in the BM niche in response
to exogenous signals. This process was initiated by splenic macro-
phages and dendritic cells where defective cholesterol efflux re-
sulted in enhanced production of IL-23. This stimulated a
signalling axis involving IL-23, IL-17, and G-CSF,169,170 a well-known
HSC-mobilizing cytokine. These processes were reversed by
transgenic overexpression of human APOA-I in Abca12/2/
Abcg12/2 or infusion of rHDL in Apoe2/2 mice, suggesting a novel
therapeutic approach to suppression of extramedullary haemato-
poiesis in CVD, MPNs, and leukaemia.

Metabolic diseases, myelopoiesis,
and atherosclerosis
Metabolic diseases including obesity, insulin resistance, and diabetes
(Types 1 and 2) greatly increase the risk of CVD171 –174 and are as-
sociated with elevations in WBCs.83,175– 183 Even when LDL is low-
ered by statins in diabetics, there is increased residual CVD risk.
Using an experimental model of atherosclerotic lesion regression
caused by LDL lowering, Parathath et al.184 showed that the induc-
tion of diabetes with streptozotocin prevented regression of ath-
erosclerotic lesions. In this model, hyperglycaemia promoted BM
myelopoiesis,43 independent of changes in plasma cholesterol or in-
sulin levels. The mechanism involved neutrophils sensing increased
levels of blood glucose and responding with production and release
of S100A8/A9. S100A8/A9 induced myelopoiesis, via binding to the
pattern recognition receptor RAGE on common myeloid progeni-
tor cells (CMPs) in the BM and initiation of an autocrine/paracrine
loop via the induction of key myeloid-promoting cytokines M-CSF
and GM-CSF in CMPs (Figure 3). As CMPs are upstream of MkPs,
and diabetics have more reticulated platelets,102 – 106 this or a re-
lated mechanism could also contribute to the enhanced production
of platelets in diabetes (Figure 3). Together, the increased produc-
tion of myeloid cells and platelets may contribute to athero-
thrombotic complications in diabetes. The importance of glycaemic
control in promoting atherosclerotic lesion regression was shown
by treatment with the SGLT2i dapagliflozin (Farxiga). SGLT2i treat-
ment lowered blood glucose, decreased monocytosis, recruitment
of monocytes into lesions, and promoted lesion regression167
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(Table 1). These studies imply that tight blood glucose control (with-
out transient hyperglycaemic spikes)185 – 187 by use of glycosuric and
other agents may dampen monocyte production and entry of in-
flammatory monocytes into lesions, adding to the benefit of
lipid-lowering strategies in diabetics. In this regard, a recent CVD
outcomes trial (EMPA-REG OUTCOME)188 in over 7000 partici-
pants has been reported to show benefit of the SGLT2i empagliflo-
zin (Jardiance).189 However, it should be noted that this was largely
attributed to a reduction in heart failure, and more studies are
required to explore this anti-atherogenic mechanism in people
with diabetes.

Decreased levels of ABCA1190 and ABCG1191 in macrophages
and myeloid progenitors have been reported in diabetic animal
models and could also contribute to enhanced myelopoiesis.192

Conversely, increased Abca1 and Abcg1 expression in mice achieved
by administering anti-miR-33 was able to restore the defect in CMP/
GMP Abca1 and Abcg1 gene expression and to reduce the abun-
dance of CMPs and GMPs in the BM and monocytes in the blood
of diabetic mice. While miR-33 antagonism appears to have pleio-
tropic effects,193 – 195 more specific approaches to increasing HDL
levels, such as rHDL infusions, might also be effective at reducing
monocytosis in diabetic mice.

Figure 3 Mechanisms contributing to myeloid production in metabolic disorders. Hyperglycaemia: In the setting of elevated blood glucose,
neutrophils are stimulated to produce S100A8/A9, which travels to the bone marrow to interact with RAGE on the surface of macrophages
and common myeloid progenitors (CMPs) triggering the production of M-CSF and GM-CSF. These cytokines increase the abundance of common
myeloid progenitors and granulocyte–macrophage progenitors (GMPs) promoting the production of monocytes and neutrophils. Obesity: In the
context of obesity, local inflammation in the adipose tissue occurs which appears to be initiated by S100A8/A9 interacting with TLR4 on adipose
tissue macrophages (ATMs). This induces IL-1b, which is processed by the NLRP3 inflammasome to its mature form. IL-1b then travels to the
bone marrow and binds the IL-1 receptor, which is up-regulated on common myeloid progenitors and granulocyte–macrophage progenitors in
the obese state. This interaction drives myelopoiesis. As people with diabetes and obesity have increased diabetes and common myeloid progeni-
tor cells are precursors of megakaryocytes, this may be a mechanism contributing to increased platelets. The enhanced production of myeloid cells
in diabetes impairs the regression of atherosclerotic lesions due to persistent entry of monocytes.
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Obese Ob/Ob leptin-deficient and diet-induced obese mice that
are also insulin resistant and models of early T2D also develop pro-
found monocytosis and neutrophilia.167 These animals were only
mildly hyperglycaemic, and lowering blood glucose had no effect
on monocyte counts indicating an underlying mechanism distinct
from the STZ diabetes model (Figure 3). Using a fat transplantation
model, visceral adipose tissue was shown to directly contribute to
enhanced myelopoiesis. Moreover, the same ligand as in the T1D
models, S100A8/A9 was involved, albeit through a different mech-
anism. Local, but not systemic increases in S100A8/A9, were shown
to signal via CD11c+ adipose tissue macrophage (ATM) TLR4/
MyD88 to trigger IL-1b expression,167 which promoted prolifer-
ation of BM CMPs and GMPs, leading to increased myelopoiesis,
which presumably further promoted ATM accumulation and
atherogenesis. A second study also corroborated a role for
CD11c+ ATMs in promoting leucocyte production in obesity.196

While a variety of cytokines are likely involved in this inflammatory
signalling, the effect could be blocked using the IL-1R antagonist,
Anakinra, indicating the key role of IL-1b (Table 1). Clinical trials
are underway targeting the IL-1 pathway in CVD,197 and these re-
sults suggest that there could be a particular benefit in patients
with obesity and increased ATMs.198,199 A common molecule
identified in diabetes and obesity appears to be S100A8/A9, which
may provide a therapeutic target particularly as paquinimod
(ABR-215757) that blocks the interaction and function of these
DAMPs is an orphan drug for systemic sclerosis and appears to be
well tolerated, suggesting that it could be used as a chronic therapy
(Table 1).

Conclusion
In conclusion, elevated levels and activation of leucocytes and plate-
lets promote atherosclerosis, arterial and venous thrombosis.
Formation of platelet/leucocyte aggregates in the bloodstream
and on arterial endothelium promotes the entry of monocytes
and neutrophils into atherosclerotic lesions. Recent studies have im-
plicated a role for neutrophil-derived DNA nets in venous and ar-
terial thrombosis and possibly in atherogenesis. While elevated
levels of atherogenic lipoproteins and reduced HDL-mediated chol-
esterol efflux promote macrophage foam cell formation and inflam-
mation at the level of the arterial wall, they also act in the BM and
spleen driving myelopoiesis and platelet production and worsening
atherogenesis. Cholesterol accumulation in haematopoietic stem
and progenitor cells promotes myelopoiesis, while macrophage
foam cell formation in the spleen leads to cytokine release, further
myelopoiesis and mobilization of haematopoietic stem cells to the
spleen, further driving extramedullary haematopoiesis. The ability
of the spleen to act as a reservoir for monocytes and neutrophils
may be particularly important in the setting of myocardial infarction,
and while having a beneficial effect for the healing process, may also
promote further entry of leucocytes into atherosclerotic lesions. In
addition, Type 1 and 2 diabetes also promote excessive production
of inflammatory cells, involving distinct mechanisms invoked by
hyperglycaemia or adipose tissue inflammatory macrophages,
production of S100A8/A9, and expansion and activation of BM com-
mon myeloid progenitors. These mechanistic insights suggest a var-
iety of novel approaches to the prevention of athero-thrombosis.

Even with dramatic improvements in LDL lowering, there will be a
large burden of residual athero-thrombotic disease, and a need for
further novel therapies aimed at limiting the production and activa-
tion of inflammatory cells, especially in patients with myeloprolifera-
tive disorders, obesity, and diabetes.
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