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Aims Endothelial dysfunction is an early step in the development of atherosclerosis. Increased formation of superoxide an-
ions by NADPH oxidase Nox1, 2, and 5 reduces nitric oxide availability and can promote endothelial dysfunction. In
contrast, recent evidence supports a vasoprotective role of H2O2 produced by main endothelial isoform Nox4. There-
fore, we analysed the impact of genetic deletion of Nox4 on endothelial dysfunction and atherosclerosis in the low-
density lipoprotein receptor (Ldlr) knockout model.

Methods
and results

Ex vivo analysis of endothelial function by Mulvany myograph showed impaired endothelial function in thoracic aorta of
Nox42/2/Ldlr2/2 mice. Further progression of endothelial dysfunction due to high-fat diet increased atherosclerotic
plaque burden and galectin-3 staining in Nox42/2/Ldlr2/2 mice compared with Ldlr2/2 mice. Under physiological
conditions, loss of Nox4 does not influence aortic vascular function. In this setting, loss of Nox4-derived H2O2 pro-
duction could be partially compensated for by nNOS upregulation. Using an innovative optical coherence tomography
approach, we were able to analyse endothelial function by flow-mediated vasodilation in the murine saphenous artery in
vivo. This new approach revealed an altered flow-mediated dilation in Nox42/2 mice, indicating a role for Nox4 under
physiological conditions in peripheral arteries in vivo.

Conclusions Nox4 plays an important role in maintaining endothelial function under physiological and pathological conditions. Loss
of Nox4-derived H2O2 could be partially compensated for by nNOS upregulation, but severe endothelial dysfunction is
not reversible. This leads to increased atherosclerosis under atherosclerotic prone conditions.
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Translational perspective
Genetic deletion of the hydrogen peroxide producing NADPH oxidase 4 (Nox4), as shown in the present study, leads to endothelial dys-
function and increased atherosclerosis under pathological conditions. Consequently, endothelial activation of Nox4 may represent a prom-
ising novel strategy for preventing endothelial dysfunction and atherosclerosis and its severe clinical complications. This also suggests that in
contrast to the deleterious effects of oxidative stress certain reactive oxygen species might mediate beneficial effects in the vessel wall.
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Introduction
Endothelial dysfunction is an early event in atherosclerosis that pre-
cedes clinical symptoms and has prognostic value for future cardio-
vascular events.1 – 8 It is characterized by an imbalance between
vasodilation and vasoconstriction, inhibition and promotion of
proliferation and migration of smooth muscle cells, prevention
and stimulation of adhesion of monocytes and aggregation of
platelets.9 Furthermore, increased formation of reactive oxygen
species (ROS) such as superoxide anions can contribute to impaired
endothelium-dependent vasodilation by decreased bioavailability of
nitric oxide (NO).10,11

NADPH oxidase (Nox) enzyme complexes are predominant
sources of ROS in the vessel wall.12,13 Isoforms Nox1, Nox2,
Nox4, and Nox5 are expressed in the human vasculature.14 Nox4
is the predominant isoform in endothelial cells15 and mainly pro-
duces H2O2, which might explain functional differences to super-
oxide anion producing Nox isoforms.16– 18

The role of different Nox isoforms in cardiovascular physiology
and pathophysiology is controversial.11 Increased expression of
Nox1 and Nox2 in vascular cells and macrophages has been re-
ported as contributing to atherosclerosis and vascular diseases.19–21

Patients with genetic Nox2 deficiency show an enhanced
endothelium-dependent relaxation.22 Nox5 can contribute to the
oxidative stress in human coronary artery disease as well.23 Increas-
ing evidence supports mainly beneficial effects of Nox4 in the car-
diovascular system, overexpression of Nox4 reduced angiotensin
II-induced increase in blood pressure.24 Mechanistically, H2O2 in-
creases endothelial NO release by AKT-dependent (Ser473/
Thr308) phosphorylation.25 – 28 In addition, H2O2 acts as an
endothelium-derived hyperpolarizing factor (EDHF) in mice and
man leading to vasorelaxation.29–31 Global Nox4 knockout mice re-
vealed contractile impairment, cardiac hypertrophy, and intestinal fi-
brosis after chronic overload.32 In tamoxifen-inducible Nox4
knockout mice, angiotensin II-mediated aortic inflammation, media
hypertrophy, and endothelial dysfunction were enhanced.33 On
the other hand, Nox42/2 mice were protected from oxidative
stress, blood–brain barrier leakage, and neuronal apoptosis in a
stroke model.34 Cardiac hypertrophy, fibrosis, and apoptosis after
pressure overload were reduced in a model of cardiac-specific de-
letion of Nox4.35 These data suggest different cell- and dose-
dependent effects of Nox4 in cardiovascular diseases.36

To investigate the diverse role of Nox4, we analysed the effects of
genetic deletion of Nox4 in the development of endothelial dysfunc-
tion and atherosclerosis in mice in vivo.

Methods
All materials and methods are available in Supplementary material
online.

Results

Nox42/2/Ldlr2/2 mice develop
endothelial dysfunction
First, we analysed endothelial function in aortas of 10-week-old
C57BL/6J (wild type), Ldlr2/2, and Nox42/2 mice. We observed

no changes in endothelium-dependent relaxation. In contrast,
Nox42/2/Ldlr2/2 double knockout mice of the same age devel-
oped endothelial dysfunction (Figure 1A and B). No changes in
smooth muscle function were observed between the strains of
mice (Figure 1C). In addition, endothelial dysfunction could be in-
duced by application of catalase to aortic segments of Ldlr2/2

mice (Figure 1D and E). By blocking the calcium-activated potassium
channels with large conductance (BK channels) with paxilline endo-
thelial function of Ldlr2/2 mice, but not wild-type mice, was de-
clined to the level of endothelial dysfunction in aortic rings of
Nox42/2/Ldlr2/2 mice (Figure 1F and G).

Hydrogen peroxide release of aortas revealed significantly higher
levels in Ldlr2/2 mice. Aortas of Nox42/2/Ldlr2/2 mice released
significantly lower levels of hydrogen peroxide compared with the
Ldlr2/2 mice (Figure 1H). Interestingly, both Ldlr2/2 and
Nox42/2/Ldlr2/2 mice expressed significant lower eNOS mRNA
in the aorta compared with wild-type mice. This suggests that
hydrogen peroxide might partially compensate NO as a vasodilator
in Ldlr2/2 mice (Figure 1I and J ). In vitro experiments in human um-
bilical vein endothelial cells showed activation of pAKT1 (Ser473) by
high laminar flow of 30 dyn/cm2. Downregulation of NOX4 by
shRNA diminished pAKT1 (Ser473) phosphorylation (Figure 1K
and L). We assume that hydrogen peroxide derived from NOX4
acts via pAKT1 (Ser473) phosphorylation on eNOS activation.
We observed severely increased levels of LDL cholesterol, total
cholesterol, and triglyceride in the serum of Ldlr2/2 and
Nox42/2/Ldlr2/2 mice (see Supplementary material online).
Thus, hydrogen peroxide seems to be particularly essential under
pathological conditions.

Nox42/2/Ldlr2/2 mice on high-fat diet
develop increased atherosclerosis
To determine the outcome of the severe endothelial dysfunction,
we investigated Nox42/2/Ldlr2/2 mice after 20 weeks on a high-fat
diet. Body weight development, energy intake, blood glucose, serum
lipid parameters, weight of white adipose tissue, kidney, heart, and
liver did not differ between Ldlr2/2 and Nox42/2/Ldlr2/2 mice
(see Supplementary material online, Figure S3 and Tables S2, S3). Pla-
que burden in the aortic arch of Nox42/2/Ldlr2/2 mice was signifi-
cantly higher, compared with Ldlr2/2 mice, as indicated by Elastica
van Gieson staining (Figure 2A). Similarly, Galectin-3 staining was sig-
nificantly higher in aortic arch sections of Nox42/2/Ldlr2/2 mice,
compared with Ldlr2/2 mice, further supporting a more severe ath-
erosclerotic phenotype in the double knockout mice (Figure 2B).
Collagen content in the media analysed by Sirius Red staining was
significantly increased in Nox42/2/Ldlr2/2 mice (Figure 2C). Under
the severe conditions of LDL receptor knockout, the loss of Nox4
led to a higher progression of atherosclerosis.

Compensation of hydrogen peroxide
release in older Nox42/2 mice
The importance of hydrogen peroxide is also supported by the fact
that decreased aortic H2O2 levels in young Nox42/2 mice were re-
stored to levels of wild-type mice at 26 weeks of age (Figure 3A and
B). This effect could be blocked when incubating aortic segments
with NOS blocker L-NAME (Figure 3B), indicating a role of nNOS
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as potential source of H2O2. Similar to the compensation of hydro-
gen peroxide in the 26-week-old Nox42/2 mice, nNOS mRNA ex-
pression was significantly increased in aortas of 26-week-old but not
10-week-old Nox42/2 mice (Figure 3C and D). Aortic endothelial
function of 26-week-old Nox42/2 was not altered (Figure 3E).
However, NO availability seemed to be decreased in aortic seg-
ments of Nox42/2 mice. These mice showed a trend to decreased
L-NAME-induced endothelium-dependent constriction (Figure 3F).

Saphenous artery of Nox42/2 mice show
impaired flow-mediated dilation in vivo
Finally, we analysed endothelial function of Arteria saphena of
26-week-old wild-type, Nox42/2, and Ldlr2/2 mice in vivo. We de-
veloped a method of determining flow-mediated dilation by optical
coherence tomography (OCT). Cross-sectional tomographic
images (25 B-scans per second) at resting conditions, after vessel
clamp release and after sodium nitroprusside application were ana-
lysed (Figure 4A–C ). In addition, a continuous OCT recording was
performed over a 10-min period after vessel clamp release to ana-
lyse flow-mediated vasodilation (Figure 4D). Analysis showed signifi-
cant increase in vessel diameter due to flow-mediated dilation in
wild-type mice, while no significant increase in vessel diameter after
clamp release could be detected in either Nox42/2 or Ldlr2/2

mice (Figure 4C). Sodium nitroprusside caused similar increases of
vessel diameter in mice strains.

Discussion
In the present study, we were able to show that loss of H2O2-
releasing Nox4 in a genetic background of hypercholesterolaemia
leads to severe endothelial dysfunction. The reduced vasodilation
capacity in the Nox42/2/Ldlr2/2 mice was identical to the declined
maximal acetylcholine-induced relaxation of aortic segments of
Ldlr2/2 mice which were pre-incubated with hydrogen peroxide-
degrading catalase or BKCa channel inhibitor paxilline. This implies
a role of H2O2 as a vasodilator under pathological conditions. In
agreement with this assumption, we did not find changes in vascular
function in 10-week-old Nox42/2 mice. It was recently shown that
increased H2O2 release by overexpression of Nox4 enhances vaso-
dilation in mice.24 Aortas of Ldlr2/2 mice released more H2O2 than
wild-type mice. Compared with Ldlr2/2, Nox42/2/Ldlr2/2 double

knockout mice showed significantly lower levels of H2O2. This indi-
cates a specific role for Nox4-released H2O2 in Ldlr2/2 mice. In
support of this, we found a lower eNOS mRNA expression in
Ldlr2/2 mice as well as Nox42/2/Ldlr2/2 mice, which could ex-
plain the importance of H2O2 for vasorelaxation in these mice.
H2O2 might act as an EDHF in mice and man.29 – 31 Endothelium-
derived hyperpolarizing factors can open calcium-activated potas-
sium channels leading to a hyperpolarized membrane of the vascular
smooth muscle cell and subsequent vasorelaxation.37 Under patho-
logical conditions of atherosclerosis and hypertension H2O2 can be
involved in compensation of vasorelaxation in large vessels.27 In
mice with DOCA-salt hypertension and uncoupled eNOS,
endothelium-derived H2O2 compensated to maintain vasodila-
tion.38 We observed an altered endothelial function in Ldlr2/2

mice after application of BKCa channel inhibitor paxilline. The reduc-
tion was comparable with the endothelial dysfunction found in
Nox42/2/Ldlr2/2 mice. This suggests that H2O2 in Ldlr2/2 mice
leads via opening of potassium channels to hyperpolarization-
mediated dilation. Thereby, H2O2 compensates the loss of other
vasodilator mechanisms. Furthermore, unlike superoxide, H2O2

does not further decrease bioavailability of NO. H2O2 is also de-
scribed as increasing expression and activation of AKT/eNOS path-
way.25,26 Our observation, that downregulation of NOX4 leads to
less phosphorylation of pAKT1 (Ser473) under laminar shear stress,
suggests a protective role of Nox4 generated H2O2 via this pathway.

We analysed the consequences of the endothelial dysfunction in
Nox42/2/Ldlr2/2 mice by feeding a high-fat diet for 20 weeks. Pla-
que burden was significantly higher in the Nox42/2/Ldlr2/2 double
knockout compared with Ldlr2/2 mice. Inflammation marker
Galectin-3 and collagen content was also increased in Nox42/2/
Ldlr2/2 compared with Ldlr2/2 mice. Therefore, we are the first
to document a potential protective role of Nox4 in the background
of hypercholesterolaemia.

The role of other Nox isoforms in atherosclerosis is controver-
sial. Some studies using knockouts of subunits of the Nox2 complex
showed anti-atherosclerotic effects21,39,40 while others did not.41

The non-selective Nox1/Nox4 inhibitor GKT137831 slightly re-
duced atherosclerotic plaque area in diabetic ApoE2/2 mice.42 Fur-
thermore, Nox1 deletion, but not Nox4, decreased vascular
adhesion of leukocytes and expression of inflammation markers,43

indicating that the effects of inhibitor GKT137831 might mainly re-
sult from blocking Nox1. Nox4 expression was mainly upregulated

Figure 1 Nox42/2/Ldlr2/2 mice develop endothelial dysfunction. (A) Concentration–response curve for acetylcholine in aortic segments of
10-week-old wild-type, Ldlr2/2 , Nox42/2 , and Nox42/2/Ldlr2/2 mice (n ≥ 10) precontracted with phenylephrine. (B) Maximal effect of
30 mmol/L ACh on aortic segments of wild-type, Ldlr2/2, Nox42/2, and Nox42/2/Ldlr2/2 mice (n ≥ 10). (C) Concentration–response curves
for sodium nitroprusside in aortic segments of wild-type, Ldlr2/2, Nox42/2, and Nox42/2/Ldlr2/2 mice (n ≥ 7). (D and E) Concentration–re-
sponse curve for acetylcholine in aortic segments of 10-week-old wild-type and Ldlr2/2 mice with catalase (n ≥ 9). (F and G) Concentration–
response curve for acetylcholine in aortic segments of 10-week-old wild-type and Ldlr2/2 mice with paxilline (n ≥ 9). (H ) Amplex red assay for
hydrogen peroxide generation of Aorta thoracalis segments of wild-type, Ldlr2/2, Nox42/2, and Nox42/2/Ldlr2/2. H2O2 formation was mea-
sured as the catalase-sensitive part of the signal (a.u.: arbitrary units) (n ≥ 8). (I and J ) Real-time polymerase chain reaction of murine aorta from
wild-type, Ldlr2/2, Nox42/2, and Nox42/2/Ldlr2/2 mice (n ≥ 5). (K ) Western blot analysis of pAKT1 (Ser473) in human umbilical vein endo-
thelial cells transduced with shControl or shNOX4 for 48 h. Cells were either kept under static conditions or exposed to laminar shear stress
(30 dyn/cm2) for 5 min (n¼4. Statistics: one-way analysis of variance Duncan’s method). (L) Real-time polymerase chain reaction of NOX4 in
human umbilical vein endothelial cells. Cells were transduced for 72 h with shControl or shNOX4 (n ¼ 4).
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in the atheroma stage of plaques, but downregulated in more ad-
vanced stages of atherosclerosis.44 For the NADPH oxidase inhibi-
tor apocynin protective effects for the vascular function are
described as well.45 Apocynin is described to inhibit Nox activity
by blocking p47phox phosphorylation.14 Thereby, apocynin has a
lower effect on the Nox4/p22phox complex than on Nox2
activity.18,46 Furthermore, apocynin has been suggested to be not
a specific inhibitor of vascular Nox but rather an antioxidant.47

Therefore, the protective effects of apocynin observed in the

study by Liang et al. might be more due to inhibition of Nox2 rather
than Nox4.14

The importance of Nox4-released H2O2 might be emphasized by
the fact that loss of Nox4 led to compensation of H2O2 release in
26-week-old Nox42/2 mice. This upregulation to a level found in
wild-type mice was partially blocked by NOS inhibitor L-NAME.
In agreement with these findings, nNOS mRNA expression was sig-
nificantly elevated in the older Nox42/2 mice compared with wild-
type mice. A role for nNOS in vascular function has been

Figure 2 Nox42/2/Ldlr2/2 mice develop increased atherosclerosis on high-fat diet. (A) Atherosclerotic plaque burden: Plaque area relative to
total vessel area of aortic arch sections was shown with Elastica Van Gieson staining from Ldlr2/2 and Nox42/2/Ldlr2/2 mice after 20 weeks on
high-fat diet (n ¼ 14). (B) Galectin-3 staining of aortic arch sections of Ldlr2/2 and Nox42/2/Ldlr2/2 mice after 20 weeks on high-fat diet (n ≥ 8).
(C ) Collagen content: Sirius Red-positive staining of plaque and media of aortic arch sections from Ldlr2/2 and Nox42/2/Ldlr2/2 mice after 20
weeks on high-fat diet (n ¼ 7).
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described.48 In eNOS knockdown mice, nNOS inhibition reduced
H2O2 production and further reduced vasorelaxation.49

Finally, we analysed flow-mediated dilation in saphenous
arteries of 26-week-old wild-type and Nox42/2 mice using OCT.

We observed a significantly lower flow-mediated dilation in the
Nox42/2 mice compared with wild-type mice. Although ex vivo
analysis of vascular function in the aorta of Nox42/2 mice showed
no difference in endothelium-dependent relaxation compared

Figure 3 Compensation of hydrogen peroxide release during aging in Nox42/2 mice. (A and B) Amplex red assay for hydrogen peroxide gen-
eration of Aorta thoracalis segments of 10-week-old wild-type and Nox42/2 mice (n ≥ 9) or 26-week-old mice with or without L-NAME pre-
incubation (n ≥ 6). H2O2 formation was measured as the catalase-sensitive part of the signal. (C and D) Real-time polymerase chain reaction
of murine aorta from 10- and 26-week-old wild-type, Ldlr2/2, Nox42/2, and Nox42/2/Ldlr2/2 mice (n ≥ 6). (E) Concentration–response
curves of acetylcholine in aortic segments of 26-week-old wild-type and Nox42/2 mice (n ≥ 12) precontracted with phenylephrine. (F )
L-NG-Nitroarginine methyl ester induced constriction of aortic segments of 26-week-old wild-type and Nox42/2 mice (n ≥ 4).
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with wild-type mice, flow-mediated dilation in saphenous artery in
the Nox42/2 mice was significantly reduced. This supports a
much higher sensitivity of the in vivo method to objectify alterations
in vessel function. While ex vivo vessel ring analyses are based on
the effects of pharmacological stimuli, the OCT approach allows
us to monitor the effects of endogenous mechanical and chemical
stimuli. Furthermore, this novel approach allows measurements
of vasodynamics of a blood vessel segment integrated in the
complex anatomical and physiological vascular network. Our
data show evidence for a role of Nox4-released H2O2 in vascular

function of smaller arteries like the saphenous artery and vessels of
microcirculation. Paravicini et al. showed a role for Nox-derived
H2O2 in flow-induced cerebral vasodilation by performing
cranial window preparation in rats.

50 Catalase transgenic mice
show impaired endothelium-dependent relaxation in mesenteric
resistance arteries. These mice also revealed a reduction in
blood flow recovery and capillary formation after hindlimb
ischaemia and disorganized microvasculature.51 Significantly atte-
nuated blood flow recovery was also described for Nox42/2

mice.33

Figure 4 Nox42/2 mice show altered flow-mediated dilation in vivo. (A) Representative optical coherence tomography images of Arteria saphe-
na and evaluation of images of 26-week-old (A) wild-type, (B) Ldlr2/2, and (C) Nox42/2 mice under control conditions (basal), flow-mediated
dilation and after application of sodium nitroprusside. (D) Representative optical coherence tomography scan of the Arteria saphena of
26-week-old wild-type, Ldlr2/2, and Nox42/2 mice showing the process of flow-mediated dilation during 10 min after occlusion (n ¼ 10).
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In conclusion, Nox4 plays an important role under physiological
and pathological conditions in maintaining endothelial function. In
states of increased proatherosclerotic risk such as hypercholester-
olemia, Nox4 can protect against endothelial dysfunction and
atherosclerosis.

Authors’ contributions
H.L., C.B.: performed statistical analysis; C.B., S.R.B., A.D., E.K., H.M.:
handled funding and supervision; H.L., C.B., M.B.: acquired the data;
H.L., C.B., A.D., E.K., H.M.: conceived and designed the research;
H.L., C.B., H.M.: drafted the manuscript; H.L., C.B., A.H., P.C.,
S.R.B., A.D., E.K., H.M.: made critical revision of the manuscript
for key intellectual content.

Supplementary material
Supplementary material is available at European Heart Journal online.

Acknowledgements
We are grateful to Ralf P. Brandes and Katrin Schröder for providing
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