Validation of leadless atrioventricular synchronous pacing with Holter-ECG: a pilot study

S. Briongos Figuero, A. Estevez, A. Sanchez, S. Jimenez, E. Gomez, B. Jimenez-Candil, T. Ortega, M.A. Naranjo, M.A. Guimera, R.T. Garcia, R.T. Munoz-Aguilera

> Public Hospital of Vallecas - Hospital Infanta Leonor, Madrid, Spain Funding Acknowledgement: Type of funding sources: None.

Background: The novel MICRA AV leadless pacemaker can provide atrioventricular (AV) synchronous pacing using an accelerometer-based atrial sensing algorithm.

Purpose: To describe the performance of MICRA AV pacemaker in a reallife setting and to determine the agreement between AV synchrony determined by the device counters and AV synchrony obtained by a 24 h ECG Holter test.

Methods: This pilot study included the first ten patients implanted with a MICRA AV leadless pacemaker at our institution. All implants were performed according to standard protocols and under deep sedation. A close follow-up was performed, and atrial sensing parameters were adjusted following AV synchrony given by the device counters. Patients underwent a 24 h ECG Holter test once AV synchrony remained stable for at least two months. The ECG Holter signal was analyzed in a blinded manner by an automatic delineation system based on the wavelet transform (Figure). This algorithm has a sensivity of 98.9% and a positive predictive value of 91.9% to detect p waves. Cardiac cycles were defined as synchronous if a QRS complex followed the P-wave by \leq 300 ms, according to MARVEL 2 study criterion. AV synchrony obtained from the 24 h Holter test was compared with AV synchrony extracted from the device counters (AM-VP + AM-VS) during the same 24 h.

Results: From June to November 2020, 10 patients (7 males, mean age 83.5±5.4) were implanted with a MICRA AV leadless pacemaker (5 patients due to complete AV block and 5 patients due to second degree AV block). All devices were implanted after 1 deployment and no major complications appeared. Data related to implant parameters are displayed in Table 1. Device reprogramming was needed in all patients during follow up. The 24 h ECG Holter monitoring was performed 141.4±45 days after the implant (mean time). Device settings and programming at Holter date is displayed in Table 1. Total ECG recorded time was 210.6 h and 915,488 cardiac cycles were analyzed. The mean percentage of synchronous cardiac cycles was 88.6±8.5% of total cycles while the mean AV synchrony determined by the device counters (AM-VP + AM-VS) during those 24 h was 89.8±5.5%. A good patient to patient correlation between these two measures was found (coefficient of intraclass correlation = 0.72).

Conclusions: We obtained high rates of AV synchrony with MICRA AV leadless pacemaker, in our short-term follow-up pilot study. Manual adjustment of the atrial sensing parameters, guided by the device counters, seems to be useful to obtain an optimal performance.

•	Eluoro time (mean \pm SD)	9.2±14.6 min
•	Location (n) • High-septum • Mid-septum • RVOT	5 3 2
•	R wave (mean ± SD)	13±4.4 mV
•	Impedance (mean ± SD)	1004±273.7 Ohms
•	Threshold (x 0.24 ms) (mean \pm SD)	0.66±0.43 Volts
Holter	date	
•	R wave (mean \pm SD)	16.1±5.5 mV
•	Impedance (mean ± SD)	690±214.9 Ohms
•	Threshold (x 0.24 ms) (mean \pm SD)	0.55±0.51 Volts
•	AV conduction (n) Intact Paroxismal AV block 2° degree AV block Complete AV block 	1 3 5 1
•	Programming (n) • VDD 40/105 • VDD 50/105	73
•	Vector (n) o 1+2 o 1+3 o 2+3 o 1+2+3	3 1 5 1
•	A3 threshold (mean ± SD) *	8.0±3.1 m/s ²
•	VE window (mean ± SD) **	620±25.8 ms
•	A3 threshold (mean \pm SD) *	2.9±1.3 m/s ²
•	A4 amplitude (mean \pm SD)	4.4±1.4 m/s ²

Table 1. Implant data and functioning/programming data at Holter date.

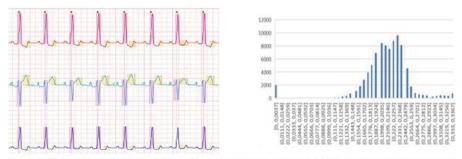


Figure. Example of the automatic ECG waves delineation performed by the wavelet transform algorithm (left). P-QRS intervals histogram (right) obtained after ECG analysis.